
M A N N I N G

With examples in F# and C#

Tomas Petricek
WITH Jon Skeet
FOREWORD BY  MADS TORGERSEN



Quick Reference – Functional Programming Concepts  

IMMUTABILITY TYPES
Everything in functional programming is immutable, 
which means that it can’t change once it’s created. 
This rule applies to values of variables as well as to 
the state stored in data types (objects) and has sev-
eral important implications.

Every expression has a type, which specifies  
what kind of values we get by evaluating it. In func-
tional languages every piece of code is an expres-
sion, so types ensure that the whole program is 
composed correctly.

Instead of variables, we use values (section 2.2.1), 
which are immutable (3.1). Data structures are 
immutable too (2.2.2, 3.2), which makes under-
standing programs easier (1.3.3). Immutability 
is important for refactoring (11.1) and unit 
testing (11.2), and it allows us to optimize pro-
grams using lazy evaluation (11.3). Immutability 
also plays an important role when we parallelize 
code (1.4.3, 14.1.3, 14.3).

The type of an expression can be a primitive (4.2.2) 
or a composed. Composed types can combine mul-
tiple values (3.2, 5.2) or represent one of several 
alternatives (5.3). Composed values can be 
decomposed using pattern matching (3.2.4, 4.2.2, 
and 5.3.2). Common types for representing data 
are functional lists (3.3, 6.7), arrays (10.2.3), and 
object types (chapter 9). In F#, we can annotate 
type with unit of measure (2.4.4, 13.4.2) to clarify 
meaning of numeric values.

DECLARATIVE STYLE EXPRESSIVITY
Code is written as an expression that describes the 
desired results. Expressions can be easily and 
safely composed, so we can build complex pro-
grams while hiding the details about the execution.

Recursion is a primary control structure, which 
makes it easy to encode many informal specifica-
tions. It can be hidden inside primitive library func-
tions that are smoothly integrated and appear as 
language extensions.

Code written as an expression (2.2.4) can be eas-
ily composed (1.4.1), analyzed (2.2.5, 6.4.3) and 
encapsulated into functions (3.1, 5.5). Functions 
are values (2.3.1, 3.4) and can be passed as an 
argument to higher-order functions (2.3.2). Com-
plex algorithms can be built using function com-
position (6.5), pipelining (6.7), or using custom 
combinators (15.1.4), for example, to describe 
animations (15.5) or financial contracts (15.6). 
Declarative code can be also easily parallelized 
(14.1.2).

Recursive types (3.3) are an elegant way for repre-
senting data like lists (6.7.1), trees (8.4.1), or doc-
uments (7.3). We can process them using recursive 
functions (3.3.4) that can be further optimized 
(10.1). Recursion is also useful when encoding 
state machines (16.3). Common functions (6.8) 
are shared by many types (options [6.4], lists [6.7], 
but also events [16.1]). One recurring pattern is 
called monad (12.4), which can be used, for exam-
ple, for list processing (12.1–3), logging (12.7), 
and asynchronous programming (13.1).

Licensed to   <kr_wilson@hotmail.com>



Real-World 
Functional Programming

Licensed to   <kr_wilson@hotmail.com>



 

Licensed to   <kr_wilson@hotmail.com>



Real-World 
 Functional Programming

WITH EXAMPLES IN F# AND C# 

TOMAS PETRICEK
with JON SKEET

M A N N I N G
Greenwich 

(74° w. long.)
Licensed to   <kr_wilson@hotmail.com>



For online information and ordering of this and other Manning books, please visit 
www.manning.com. The publisher offers discounts on this book when ordered in quantity.  
For more information, please contact

Special Sales Department
Manning Publications Co.
Sound View Court 3B
Greenwich, CT 06830
Email: orders@manning.com

©2010 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning 
Publications was aware of a trademark claim, the designations have been printed in initial caps 
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have  
the books we publish printed on acid-free paper, and we exert our best efforts to that end. 
Recognizing also our responsibility to conserve the resources of our planet, Manning books are 
printed on paper that is at least 15% recycled and processed without the use of elemental chlorine.

Development Editor: Tara Walsh
Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Gordan Salinovic
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 978-1-933988-92-4
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 14 13 12 11 10 09 
Licensed to   <kr_wilson@hotmail.com>

http://www.manning.com


brief contents
PART 1 LEARNING TO THINK FUNCTIONALLY ....................................1

1 ■ Thinking differently 3

2 ■ Core concepts in functional programming 29

3 ■ Meet tuples, lists, and functions in F# and C# 54

4 ■ Exploring F# and .NET libraries by example 81

PART 2 FUNDAMENTAL FUNCTIONAL TECHNIQUES .........................105

5 ■ Using functional values locally 107

6 ■ Processing values using higher-order functions 142

7 ■ Designing data-centric programs 177

8 ■ Designing behavior-centric programs 205

PART 3 ADVANCED F# PROGRAMMING TECHNIQUES .......................231

9 ■ Turning values into F# object types with members 233

10 ■ Efficiency of data structures 260

11 ■ Refactoring and testing functional programs 285

12 ■ Sequence expressions and alternative workflows 314
v

Licensed to   <kr_wilson@hotmail.com>



PART 4 APPLIED FUNCTIONAL PROGRAMMING ...............................351

13 ■ Asynchronous and data-driven programming 353

14 ■ Writing parallel functional programs 383

15 ■ Creating composable functional libraries 420

16 ■ Developing reactive functional programs 460
Licensed to   <kr_wilson@hotmail.com>



contents
foreword xvii
preface xix
acknowledgments xxi
about this book xxiv
about the cover illustration xxx

PART 1 LEARNING TO THINK FUNCTIONALLY........................1

1 Thinking differently 3
1.1 What is functional programming? 4
1.2 The path to real-world functional programming 6

Functional languages 6 ■ Functional programming on the .NET 
platform 7

1.3 Being productive with functional programming 7
The functional paradigm 7 ■ Declarative programming style 8 
Understanding what a program does 9 ■ Concurrency-friendly 
application design 10 ■ How functional style shapes your code 11

1.4 Functional programming by example 12
Expressing intentions using declarative style 13 ■ Understanding code 
using immutability 17 ■ Writing efficient parallel programs 20
vii

Licensed to   <kr_wilson@hotmail.com>



CONTENTSviii
1.5 Introducing F# 21
Hello world in F# 22 ■ From simplicity to the real world 24

1.6 Summary 27

2 Core concepts in functional programming 29
2.1 The foundation of functional programming 31
2.2 Evaluation of functional programs 32

Working with immutable values  33 ■ Using immutable data 
structures 33 ■ Changing program state using recursion 34 
Using expressions instead of statements 35 ■ Computation by 
calculation 37

2.3 Writing declarative code 39
Functions as values 39 ■ Higher-order functions 41

2.4 Functional types and values 45
Type inference in C# and F# 46 ■ Introducing the discriminated 
union type 47 ■ Pattern matching 48 ■ Compile-time program 
checking  51

2.5 Summary 52

3 Meet tuples, lists, and functions in F# and C# 54
3.1 Value and function declarations 55

Value declarations and scope 55 ■ Function declarations 57 
Declaring mutable values 59

3.2 Using immutable data structures 60
Introducing tuple type 60 ■ Implementing a tuple type in C# 63 
Calculating with tuples 64 ■ Pattern matching with tuples 66

3.3 Lists and recursion 68
Recursive computations 68 ■ Introducing functional lists 69 
Functional lists in C# 72 ■ Functional list processing 74

3.4 Using functions as values 75
Processing lists of numbers 76 ■ Benefits of parameterized functions 79

3.5 Summary 79

4 Exploring F# and .NET libraries by example 81
4.1 Drawing pie charts in F# 82
4.2 Writing and testing code in FSI 83

Loading and parsing data 83 ■ Calculating with the data 86
Licensed to   <kr_wilson@hotmail.com>



CONTENTS ix
4.3 Creating a console application 89
4.4 Creating a Windows Forms application 92

Creating the user interface 92 ■ Drawing graphics 95 
Creating the Windows application 101

4.5 Summary 102

PART 2 FUNDAMENTAL FUNCTIONAL TECHNIQUES .............105

5 Using functional values locally 107
5.1 What are values? 108

Primitive types, value types, and objects 108 ■ Recognizing values 
and data  109

5.2 Multiple values 109
Multiple values in F# and C# 109 ■ Tuple type and value 
constructors 111 ■ Using tuples compositionally 112

5.3 Alternative values 114
Discriminated unions in F# 115 ■ Working with alternatives 116 
Adding types vs. functions 118 ■ Using the option type in F# 120

5.4 Generic values 122
Implementing the option type in C# 122 ■ Generic option type in 
F# 125 ■ Type inference for values 127 ■ Writing generic 
functions 129

5.5 Function values 130
Lambda functions 132 ■ The function type 135 ■ Functions 
of multiple arguments 137

5.6 Summary 140

6 Processing values using higher-order functions 142
6.1 Generic higher-order functions 143

Writing generic functions in F# 144 ■ Custom operators 145

6.2 Working with tuples 147
Working with tuples using functions 147 ■ Methods for working 
with tuples in C# 150

6.3 Working with schedules 151
Processing a list of schedules 152 ■ Processing schedules  
in C# 153
Licensed to   <kr_wilson@hotmail.com>



CONTENTSx
6.4 Working with the option type 154
Using the map function 155 ■ Using the bind function 155 
Evaluating the example step-by-step 156 ■ Implementing 
operations for the option type 158

6.5 Working with functions 160
Function composition 160 ■ Function composition in C# 162

6.6 Type inference 163
Type inference for function calls in F# 163 ■ Automatic 
generalization  164

6.7 Working with lists 165
Implementing list in F# 165 ■ Understanding type signatures of 
list functions 166 ■ Implementing list functions 170

6.8 Common processing language 173
Mapping, filtering, and folding 173 ■ The bind operation for lists 174

6.9 Summary 175

7 Designing data-centric programs 177
7.1 Functional data structures 178

Using the F# record type 179 ■ Functional data structures in C# 181

7.2 Flat document representation  182
Drawing elements 183 ■ Displaying a drawing on a form 184

7.3 Structured document representation 187
Converting representations 188 ■ XML document 
representation 191

7.4 Writing operations 194
Updating using a map operation 195 ■ Calculating using an 
aggregate operation 198

7.5 Object-oriented representations 199
Representing data with structural patterns 200 ■ Adding 
functions using the visitor pattern 202

7.6 Summary 204

8 Designing behavior-centric programs 205
8.1 Using collections of behaviors 206

Representing behaviors as objects 206 ■ Representing behaviors as 
functions in C# 207 ■ Using collections of functions in 
C# 208 ■ Using lists of functions in F# 209
Licensed to   <kr_wilson@hotmail.com>



CONTENTS xi
8.2 Idioms for working with functions  211
The strategy design pattern 212 ■ The command design 
pattern 213 ■ Capturing state using closures in F# 215

8.3 Working with composed behaviors 219
Records of functions 219 ■ Building composed behaviors 221 
Further evolution of F# code 222

8.4 Combining data and behaviors 223
Decision trees 223 ■ Decision trees in F# 224 ■ Decision trees 
in C# 227

8.5 Summary 229

PART 3 ADVANCED F# PROGRAMMING TECHNIQUES...........231

9 Turning values into F# object types with members 233
9.1 Improving data-centric applications 234

Adding members to F# types 235 ■ Appending members using type 
extensions 238

9.2 Improving behavior-centric applications 240
Using records of functions 240 ■ Using interface object types 241

9.3 Working with .NET interfaces 243
Using .NET collections 244 ■ Cleaning resources using 
IDisposable 245

9.4 Concrete object types 248
Functional and imperative classes 249 ■ Implementing interfaces 
and casting 251

9.5 Using F# libraries from C# 255
Working with records and members 256 ■ Working with values 
and delegates 258

9.6 Summary 259

10 Efficiency of data structures 260
10.1 Optimizing functions 261

Avoiding stack overflows with tail recursion 261 ■ Caching 
results using memoization 266

10.2 Working with large collections 271
Avoiding stack overflows with tail recursion (again!) 271 
Processing lists efficiently 273 ■ Working with arrays 275
Licensed to   <kr_wilson@hotmail.com>



CONTENTSxii
10.3 Introducing continuations 279
What makes tree processing tricky? 279 ■ Writing code using 
continuations 281

10.4 Summary 283

11 Refactoring and testing functional programs 285
11.1 Refactoring functional programs 286

Reusing common code blocks 287 ■ Tracking dependencies and 
side effects 289

11.2 Testing functional code 292
From the interactive shell to unit tests 293 ■ Writing tests using 
structural equality 296 ■ Testing composed functionality 299

11.3 Refactoring the evaluation order 300
Different evaluation strategies 301 ■ Comparing evaluation 
strategies 302 ■ Simulating lazy evaluation using functions 303 
Lazy values in F# 304 ■ Implementing lazy values for C# 306

11.4 Using lazy values in practice  307
Introducing infinite lists 308 ■ Caching values in a photo 
browser 310

11.5 Summary 313

12 Sequence expressions and alternative workflows 314
12.1 Generating sequences 315

Using higher-order functions 316 ■ Using iterators in C# 316 
Using F# sequence expressions 317

12.2 Mastering sequence expressions 320
Recursive sequence expressions 320 ■ Using infinite 
sequences 322

12.3 Processing sequences 325
Transforming sequences with iterators 326 ■ Filtering and 
projection 327 ■ Flattening projections 329

12.4 Introducing alternative workflows 334
Customizing query expressions 335 ■ Customizing the F# 
language 336

12.5 First steps in custom computations 338
Declaring the computation type 338 ■ Writing the 
computations 339 ■ Implementing a computation builder in 
F# 340 ■ Implementing query operators in C# 342
Licensed to   <kr_wilson@hotmail.com>



CONTENTS xiii
12.6 Implementing computation expressions for options 343
12.7 Augmenting computations with logging 346

Creating the logging computation 346 ■ Creating the logging 
computation 347 ■ Refactoring using computation 
expressions 349

12.8 Summary 350

PART 4 APPLIED FUNCTIONAL PROGRAMMING...................351

13 Asynchronous and data-driven programming 353
13.1 Asynchronous workflows 354

Why do asynchronous workflows matter? 354 ■ Downloading web 
pages asynchronously 355 ■ Understanding how workflows 
work 358 ■ Creating primitive workflows 361

13.2 Connecting to the World Bank 362
Accessing the World Bank data 363 ■ Recovering from 
failures 365

13.3 Exploring and obtaining the data 366
Implementing XML helper functions 366 ■ Extracting region 
codes 368 ■ Obtaining the indicators 369

13.4 Gathering information from the data 372
Reading values 372 ■ Formatting data using units of 
measure 374 ■ Gathering statistics about regions 377

13.5 Visualizing data using Excel 378
Writing data to Excel 378 ■ Displaying data in an Excel 
chart 381

13.6 Summary 382

14 Writing parallel functional programs 383
14.1 Understanding different parallelization techniques 384

Parallelizing islands of imperative code 385 ■ Declarative data 
parallelism 386 ■ Task-based parallelism 390

14.2 Running graphical effects in parallel 395
Calculating with colors in F# 395 ■ Implementing and running 
color filters 396 ■ Designing the main application 399 
Creating and running effects 401 ■ Parallelizing the 
application 404 ■ Implementing a blur effect 406
Licensed to   <kr_wilson@hotmail.com>



CONTENTSxiv
14.3 Creating a parallel simulation 408
Representing the simulated world 409 ■ Designing simulation 
operations 411 ■ Implementing helper functions 413 
Implementing smart animals and predators 415 ■ Running the 
simulation in parallel 417

14.4 Summary 419

15 Creating composable functional libraries 420
15.1 Approaches for composable design 421

Composing animations from symbols 421 ■ Giving meaning to 
symbols 422 ■ Composing values 424 ■ Composing functions 
and objects 425

15.2 Creating animated values 428
Introducing functional animations 428 ■ Introducing 
behaviors 429 ■ Creating simple behaviors in C# 431 
Creating simple behaviors in F# 433

15.3 Writing computations with behaviors 434
Reading values 434 ■ Applying a function to a behavior 435 
Turning functions into “behavior functions” 436 
Implementing lifting and map in C# 438

15.4 Working with drawings 440
Representing drawings 440 ■ Creating and composing 
drawings 442

15.5 Creating animations 445
Implementing the animation form in F# 446 ■ Creating 
animations using behaviors 448 ■ Adding animation 
primitives 449 ■ Creating a solar system animation 452

15.6 Developing financial modeling language 454
Modeling financial contracts 455 ■ Defining the 
primitives 455 ■ Using the modeling language 457

15.7 Summary 459

16 Developing reactive functional programs 460
16.1 Reactive programming using events 461

Introducing event functions 462 ■ Using events and 
observables 463 ■ Creating a simple reactive application 466 
Declarative event processing using LINQ 467 ■ Declaring events 
in F# 470
Licensed to   <kr_wilson@hotmail.com>



CONTENTS xv
16.2 Creating reactive animations 471
Using the switch function 472 ■ Implementing the switch 
function 473

16.3 Programming UIs using workflows 474
Waiting for events asynchronously 474 ■ Drawing 
rectangles 477

16.4 Storing state in reactive applications 480
Working with state safely 480 ■ Creating a mailbox processor 481 
Communicating using messages 483 ■ Encapsulating mailbox 
processors 487 ■ Waiting for multiple events 488

16.5 Message passing concurrency 490
Creating a state machine processor 491 ■ Accessing mailbox 
concurrently 492

16.6 Summary 493

appendix Looking ahead 495
resources 498
index 501

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Licensed to   <kr_wilson@hotmail.com>



 
 
 
 

Licensed to   <kr_wilson@hotmail.com>



foreword
For the past couple of decades, object-oriented programming has dominated the 
industry, its ability to hide complexity and provide structure and intuition providing a 
major boost to software development.

 Not all kinds of complexity submit willingly to the mechanisms of encapsulated 
shared state and virtual methods. Some domains of computation, analysis, and trans-
formation were not much helped by objects, and, looming bigger every day, the 
demand for concurrency is placing new pressure on the object-oriented paradigm.

 From an obscure existence in academic institutions and research labs, functional 
and declarative techniques have gradually crept into mainstream languages to coun-
ter those challenges. In C#, for instance, we added generics, anonymous functions, 
and monadic query expressions. But a full-fledged commercial functional program-
ming language with the extensive libraries and tools that are crucial to developer pro-
ductivity has been lacking. I believe F# is a magnificent milestone: one of those 
turning points that we will look back on and say that’s when we turned the corner.

 F# reaches back pragmatically over the language divide, comfortably embracing 
the full object model of the .NET framework. But now, we have to distinguish between 
functional programming and functional programming languages. As languages become 
multi-paradigmatic, what used to be a binary choice up front (object-oriented or func-
tional) morphs into a broadened set of opportunities at every turn in your program. 
You can use functional programming techniques in C# to great benefit, though it is 
easier and more natural to do so in F#. You can settle on a preferred flavor in your 
choice of programming language, but your problem-solving options remain open.
xvii

Licensed to   <kr_wilson@hotmail.com>



FOREWORDxviii
 The great genius of this book is how it teases apart the functional mindset from the 
F# language itself. By showing both the C# and F# embodiments of functional pro-
gramming patterns, the reader is well served. The developer who wants to embark on 
coding in F# gets a leg up from seeing the patterns used in a (presumably) familiar 
language. The programmer with good reasons to stay in C# can appreciate the princi-
ples in their pure form from the F# examples.

 Functional programming is a state of mind. It is a way of thinking differently about 
the problem. It is not just a bag of useful tricks (though it is that too), but a perspec-
tive from which the gnarliest knots prove to be approachable. In this book, as practical 
and hands-on as it is, Tomas and Jon gently and bravely insist on stressing the princi-
ples underneath. Read it at your own peril; you will never look at your own code the 
same way again!

 MADS TORGERSEN

 C# LANGUAGE PROGRAM MANAGER

 MICROSOFT CORPORATION
Licensed to   <kr_wilson@hotmail.com>



preface
This book is different from many other programming books available today. It doesn’t 
focus only on a specific programming language or library. Instead, it uses the pre-
sented languages and libraries to explain a way of thinking—a way of thinking that is 
becoming increasingly important and has influenced many recent technologies.  

 You may already know some of the concepts described in this book, because func-
tional ideas appear in many technologies. Examples from the .NET world include C# 
3.0 and the LINQ project, Microsoft Parallel Extensions to .NET, and the declarative 
programming model used in Windows Presentation Foundation (WPF). In this book 
we’ll build on top of your existing .NET and C# experience to explain the functional 
programming paradigm. We’ll introduce F#, Microsoft’s new functional programming 
language, and use it to turn abstract ideas into something more concrete. Where 
possible we’ll also use C#, because functional ideas can help you when designing 
C# applications.

 If we’d been writing a book solely about F#, we could have simply organized it 
based on the individual language features and explained those features one by one. 
This book is about functional programming in general, so the structure is loosely 
based on ideas that form the functional paradigm. This is more difficult, because 
ideas don’t have clear boundaries and often overlap.

 We’ve tried to select the ideas that we believe are the most important for newcomers 
to functional programming and then shape the book around them. This is particularly 
important in part 2, where we systematically look at functional values, higher-order func-
tions, and the architecture of functional programs. This means that some examples that 
xix

Licensed to   <kr_wilson@hotmail.com>



PREFACExx
can be used to quickly demonstrate functional programming, such as working with col-
lections of data, don’t appear in only one place. Instead, they’re developed gradually 
through several chapters after we introduce each new idea. We decided to use this 
approach because it shows how functional programming elegantly arises from a small 
set of simple concepts—just as functional programs themselves do.
Licensed to   <kr_wilson@hotmail.com>



acknowledgments
The “butterfly effect,” a term coined by Edward Lorenz, is based in chaos theory: the 
idea is that a seemingly minor event such as a flap of butterfly’s wings somewhere in 
Asia can cause a major event such as a hurricane in South America. (The butterfly 
flapping its wings has been constant in the concept, but the location [Asia or Brazil] 
and the result [hurricane or tornado] have varied.) This alone would be enough to 
say that there were many more people (and butterflies), without whom this book 
would not exist than I can possibly list here. And even if I didn’t believe in chaos the-
ory, the number of people I’d want to mention in this section would be enormous. 

 I would never have become interested in F# and functional programming if I 
hadn’t met Don Syme. Don was my mentor during two internships at Microsoft 
Research and it was a great pleasure to work with him and participate in long discus-
sions about F# (and life, the universe, and everything else). I’m also grateful to James 
Margetson from Microsoft Research who taught me many cool functional program-
ming tricks. However, I’d never have met Don and James if I hadn’t gained status as an 
MVP by Microsoft and met Luke Hoban who introduced me to Don later. If I were to 
continue like this, I’d end up mentioning Michal Bláha, Jan Stoklasa, Božena Man-
nová, the authors of CodeProject.com, and many others.

 The book wouldn’t exist without Mike Stephens from Manning who first contacted 
me, and without Harry Pierson without whose initial involvement we’d never have 
started working on it. Even though we only worked together briefly, Harry’s participa-
tion was very important and encouraging. 
xxi

Licensed to   <kr_wilson@hotmail.com>



ACKNOWLEDGMENTSxxii
 Now that I’ve mentioned people without whom the book would never have started, 
it’s also a time to mention those, without whom it would never have been finished. 

 I’m very grateful to my coauthor Jon for helping me through the long process of 
turning the initial drafts and sketches into a real book. Jon is also the person to thank 
if you feel like this book was written exactly for you, because he carefully adjusted 
everything to be in the right form for our audience. Finally, Jon is a wonderful person 
to work with, so it was a pleasure to discuss the book with him both online and briefly 
in person.

 At this point, I’d like to mention everyone from Manning who contributed to this 
book. I already mentioned Mike Stephens who was always helpful in difficult 
moments. Nermina Miller and Tara McGoldrick Walsh guided me through the every-
day jungle of the writing process and Mary Piergies, with Liz Welch and Elizabeth 
Martin, helped me to find the way out of this jungle to a clear light. I briefly worked 
with many other great folks at Manning including Gabriel Dobrescu, Steven Hong, 
Dottie Marsico, Christina Rudloff, Gordan Salinovic, Maureen Spencer, and Karen 
Tegtmeyer. I would also like to thank publisher Marjan Bace, who provided numer-
ous useful insights.

 Folks from Manning also had a lucky hand picking people for the reviews at vari-
ous points in the writing process. We received a large number of comments, sugges-
tions, and hints, but also exactly the right amount of positive feedback that 
encouraged me to take as many of these suggestions as possible into account. Aside 
from our anonymous reviewers, I’d like to thank our two technical reviewers, Matthew 
Podwysocki and Michael Giagnocavo. I had the role of a technical reviewer in the past, 
so I can appreciate your hard work! And special thanks to Mads Torgersen, who wrote 
the foreword

 Another group who provided valuable input are readers of the early drafts. First of 
all, my colleagues Jan Stoklasa and René Stein, but also those who purchased the book 
through the Manning Early Access Program and shared their feedback in the forums 
(Dave Novick, Peer Reynders, Vladimir Kelman, and Michiel Borkent to name a few). 
Other reviewers who had a hand in making this book what it is are Marius Bancila, 
Freedom Dumlao, Eric Swanson, Walter Myers, Keith J. Farmer, Adam Tacy, Marc 
Gravell, Jim Wooley, Alessandro Gallo, Lester Lobo, Massimo Perga, Andrew Siemer, 
Austin Ziegler, Dave McMahon, Jason Jung, Joshua Gan, Keith Hill, Mark Needham, 
Mark Ryall, Mark Seemann, Paul King, and Stuart Caborn.

 I’d, of course, like to thank my friends and my family. To those who don’t know 
them, their question, “When is your book finally going to be finished?” may not sound 
particularly supportive, but I know them well and I honestly appreciated their encour-
agement. Last, but not least, I’m grateful to my dearest Evelina, who not only provided 
invaluable moral support, but also was so kind as to read and review large portions of 
the manuscript.

 TOMAS PETRICEK
Licensed to   <kr_wilson@hotmail.com>



ACKNOWLEDGMENTS xxiii
I would primarily like to thank Tomas and everyone at Manning for giving me the 
opportunity to be part of this book. Being a small part of a bigger goal is always inter-
esting, and it’s been great fun learning about functional programming “from” a book 
and “into” a book at the same time. I can only hope that the minor contributions I’ve 
made will be useful—I’ve primarily acted as the voice of a passionate but ignorant 
reader (and C# enthusiast of course), so in some ways the book you’re reading now is 
tailored toward teaching me functional programming. That in itself is a gift to be 
grateful for. Tomas has thanked all the editors and other staff at Manning, and I’d like 
to echo those thanks.

 My children are still too young to be programming, and my wife is too...well, nor-
mal, basically—but they’ve always been there for me when higher-order functions 
have burst my brain. I’ve been struggling to stay sane and work on more than one 
book at a time, whereas my wife (who writes children’s fiction) seems perpetually up 
to her ears in proposals, chapter breakdowns, first drafts, copy edits, proofs, and deliv-
ered manuscripts, all for different titles and even publishers. Beyond that, she’s mar-
ried to me—how she stays sane is anyone’s guess. However, I’m very glad that she 
does, and I’d like to thank her for being who she is. Tom, Robin, and William show 
great promise in their love of technology, but it’s their smiles and cuddles when I get 
home from work for which I’m most grateful.

 Finally, I’d like to thank all my English teachers, especially Simon Howells. The 
more I learn about programming languages, the more I believe that the language a 
software engineer should pay most attention to is the one he uses to communicate 
with people, not computers. Simon Howells is as passionate about language and litera-
ture as I am about computing, and that passion rubs off on his students. It is highly 
unlikely that he’ll ever read a word I’ve written, but his teaching will be with me for 
the rest of my life.

 JON SKEET
Licensed to   <kr_wilson@hotmail.com>



about this book
If you are an existing .NET developer who knows object-oriented technologies and are 
wondering what this new “functional programming” movement is about and how you 
can benefit from it, this book is definitely for you.

 It’s particularly tailored for .NET developers with working knowledge of object-
oriented programming and C# 2.0. Of course, you don’t need to know either of 
these for functional programming in general, or even F# in particular. In fact, it’s 
more difficult to learn functional programming if you’re already used to thinking in 
an object-oriented manner, because many of the functional ideas will appear unfa-
miliar to you. We’ve written the book with this concern in mind, so we’ll often refer 
to your intuition and use comparisons between OOP and functional programming to 
explain particular topics.

 If you’re an existing object-oriented programmer using other languages and tools 
(for example, Java, Python, or Ruby) with the ability to understand languages quickly, 
you can also benefit from this book. We’re using examples in C#, but many of them 
would look similar in other object-oriented languages. The C# 3.0 features that aren’t 
available in other languages are briefly explained, so you don’t have to worry about 
getting lost.

 This book doesn’t focus on academic aspects of functional programming, but if 
you’re a computer science student taking a course on the topic, you can read this 
book to learn about the real-world uses of functional concepts. 
xxiv

Licensed to   <kr_wilson@hotmail.com>



ABOUT THIS BOOK xxv
What will this book give you?

If you’re still wondering whether this book is right for you, here’s what you’ll learn by 
reading it:

■ Functional programming concepts. As you read through the book, you’ll learn 
a new way to think about problems. We’ll see how complex object-oriented 
design patterns become one simple concept in functional programming. Func-
tional thinking can be used when programming in any language, so this will be 
useful regardless of the specific technology you work with. 

■ Basic functional constructs in practice. Some of the constructs are now available 
in C# 3.0, so you’ll see many of the examples in familiar C# code next to a clean 
functional F# implementation. We’ll also explain recent features in C# 3.0 and 
how they relate to functional ideas. Understanding the concepts deeply will help 
you to get the most benefit from the new features. 

■ Writing real-world F# code. Even though the book isn’t only about F#, it will 
teach you everything you need to know to start. We’ll explore areas where F# 
really shines, including asynchronous programming and creating composable 
libraries.

We’re not claiming this is the perfect book for all purposes: computing isn’t a one-
size-fits-all field. It’s worth knowing what this book isn’t to avoid disappointment.

What won’t this book give you?

This hasn’t been written as a reference book. If you haven’t been exposed to func-
tional programming, the best way to read the book is to start from the beginning and 
follow the order of the chapters. That’s the way we’ve assumed it will be read, so later 
chapters often refer to concepts explained earlier. If you open the book somewhere in 
the middle, you may find it hard to understand.

 This book also isn’t a quick guide to F# programming. The only way to become a 
good F# programmer is to understand functional programming ideas. You could 
learn all the F# keywords and rewrite your C# code in F#, but it wouldn’t do you much 
good. If you want to write idiomatic F# code, you’ll need to learn a different way of 
thinking that is used in functional programming. That’s what you’ll get by reading this 
book. Once you’ve adapted to thinking in a functional style, there are other books 
which can help you learn F# in more depth.

 Our primary goal is to write a book that can be used by professional programmers 
to write solutions to real-world business problems. However, that doesn’t mean we can 
offer you a ready-to-use solution for the specific problem you need to solve right now. 
Instead, we’ve focused on the relevant concepts and techniques. We’ve demonstrated 
those principles with many examples, but it isn’t possible to cover all the areas where 
F# and functional programming can be applied.
Licensed to   <kr_wilson@hotmail.com>



ABOUT THIS BOOKxxvi
Roadmap

This book uses an iterative structure. In part 1 (chapters 1-4) we’ll explain a few aspects 
of the most important topics, so that you can see the motivation and understand what 
makes functional programming different. Part 2 (chapters 5-8) systematically discusses 
all the foundations of functional programming. In part 3 (chapters 9-12) we build on 
these foundations and talk about best practices for functional programming, optimiza-
tion, and some advanced techniques that most of the functional programmers occa-
sionally need. Part 4 (chapters 13-16) presents more complex examples showing how 
to use functional programming to develop larger real-world projects.

 Chapter 1 discusses the reasons why functional concepts are becoming increas-
ingly important. It gives examples of existing technologies that you may already know 
and that benefit from some aspects of functional programming. It also shows the first 
sample application in F#. 

 Chapter 2 introduces the concepts behind functional programming. Without 
showing any details and mostly using C#, it’ll help you understand how these concepts 
relate to each other and what they mean for the structure of program.

 Chapter 3 finally shows some real functional code. It demonstrates some data types 
used in F# such as a tuple and a list. We’ll see how to work with the types in F#, but 
we’ll also implement them in C# to explain how they work. This chapter introduces 
the idea of using functions as values, which is essential for functional programming.

 Chapter 4 shows our first real-world application implemented in F#. We’ll use vari-
ous .NET and F# libraries to implement a program for drawing pie charts. You’ll also 
see how to efficiently use the tools F# provides during the development process.

 Chapter 5 talks about values. Functional programs are written as calculations that 
take values as arguments and return values as results, so it is easy to see why we have to 
start the systematic review of functional features by looking at numerous kinds of values.

 Chapter 6 describes the most common way of working with values, which is to use 
higher-order functions. Working with values directly often requires a lot of repetitive 
code, so this chapter shows how to design and implement reusable operations.

 Chapter 7 turns the attention to architectural aspects. The structure of a func-
tional application is determined by the data that it works with. We’ll use an applica-
tion that manipulates and draws simple documents to demonstrate this important 
principle. 

 Chapter 8 focuses on the architecture of applications that need to dynamically 
change their behavior at runtime. This can be done using functions, so we’ll talk 
about them in detail and we’ll also explain related topics such as closures.

 Chapter 9 shows how to mix object-oriented and functional styles in F#. It demon-
strates how you can use functional features like immutability with object-oriented con-
cepts such as encapsulation when writing functional .NET libraries.

 Chapter 10 focuses on correctness and efficiency. We’ll see how to write functions 
that can process data sets of arbitrary size and how to write these functions efficiently. 
You’ll also learn how to optimize code using imperative constructs like arrays.
Licensed to   <kr_wilson@hotmail.com>



ABOUT THIS BOOK xxvii
 Chapter 11 talks about refactoring, testing and laziness. We’ll explain how func-
tional programming makes it easier to understand and improve existing code. We’ll 
also look at unit testing, seeing how composability and strictness remove the need for 
some types of test.

 Chapter 12 starts by showing how we can work with collections of data. We’ll intro-
duce F# sequence expressions, which are designed for this purpose. You’ll also see 
that this isn’t a built-in feature unlike its closest counterpart in C#—it’s an example of 
a more general ability to change what code means.

 Chapter 13 presents a common scenario when working with data in F#. It starts by 
downloading data using a public web service, then parses it into a structured format. 
Finally we see how to visualize interesting aspects using Excel.

 Chapter 14 shows how to use functional concepts to build applications that are 
easy to parallelize. It demonstrates this using an image processing application and a 
simulation featuring animals and predators that hunt them.

 Chapter 15 describes how to build declarative functional libraries. The chapter 
shows that well designed libraries can be elegantly composed. As an example, we’ll see 
how to create a library for creating animations and a library for representing financial 
contracts.

 Chapter 16 shows how to build GUI applications and in general, programs driven 
by external events. Implementing control flow like this is quite difficult in other lan-
guages, so we’ll look at tricks that make it much easier in F#.

Typographical conventions
The book contains numerous code examples that are typeset using fixed-width 
font. Longer samples are presented in listings with a heading. Since the book mixes 
C# and F#, the heading in side-by-side listings also indicates the language used. When 
showing code in F#, we distinguish between two forms of listing. Code marked as “F#” 
is plain source code that can be compiled as a whole. Listings marked as “F# Interac-
tive” present snippets in F# entered to an interactive shell. The output produced by 
the shell is typeset using italics. Bold fixed-width font is used to highlight all C# and 
F# keywords in all the listings.

Naming conventions
In this book, we’re mixing not only two languages, but also a functional programming 
tradition with the object-oriented tradition. Since we want to use the natural style in 
both languages, we have to follow different naming conventions in F# and C#.

 In C# we follow the usual .NET style. In F#, we use this notation without exceptions 
when developing classes or when writing components that can be accessed from other 
.NET languages. When we show F# code that is only a private implementation, we fol-
low the functional naming style. Most notably, we use camelCase for both variable and 
function names. This is the usual style in F#, because a function declaration is essen-
tially the same thing as a variable declaration. 
Licensed to   <kr_wilson@hotmail.com>



ABOUT THIS BOOKxxviii
 Occasionally, we use shorter names and abbreviations. There are two reasons for 
this. First, this style has been often used by functional programmers. With better IDEs 
there are fewer reasons to use this style, so we’ve tried to minimize its use. In some 
cases the shorter name is a common term in functional programming, so we’ve kept 
it. The second reason is that sometimes we present two samples side-by-side, which 
means that we have to use a more compact coding style. Otherwise, the naming mostly 
follows the .NET style with a few exceptions that are discussed in the text. 

StyleCop and FxCop
If you’re familiar with tools for code analysis such as StyleCop and FxCop, you may be 
wondering whether the code in this book follows the rules required by these tools. We 
follow most—but not all—of the usual .NET conventions. If you run the code through 
these tools, you’ll get numerous warnings, again for two reasons.

■ The tools for code analysis were developed for object-oriented languages using 
the naming and style of the object-oriented tradition. As you’ll learn in this 
book, the functional world is different in many ways and we simply cannot fol-
low all the object-oriented principles. The F# language is successful because it is 
very different from C# and Visual Basic. This isn’t just visible in the language 
keywords, but in the overall style of programming that it uses and in some ways 
also in naming conventions that make the code more succinct.

■ The limited space we have in the book. We use source code samples to demon-
strate important ideas, so we didn’t want to include noise that isn’t important for 
the discussion, but would be required to make the code comply with conventions.

Source code downloads
The source code for the examples in the book is available online from the publisher’s 
website at http://www.manning.com/Real-WorldFunctionalProgramming and at a 
code repository created by the authors http://code.msdn.microsoft.com/realworldfp.

Author Online
The purchase of Real-World Functional Programming includes free access to a private 
web forum run by Manning Publications, where you can make comments about the 
book, ask technical questions, and receive help from the authors and from other 
users. To access the forum and subscribe to it, point your web browser to http://
www.manning.com/Real-WorldFunctionalProgramming. This page provides informa-
tion about how to get on the forum once you’re registered, what kind of help is avail-
able, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaningful 
dialogue between individual readers and between readers and the authors can take 
place. It’s not a commitment to any specific amount of participation on the part of the 
authors, whose contribution to the book’s forum remains voluntary (and unpaid). We 
suggest you try asking them some challenging questions, lest their interest stray!
Licensed to   <kr_wilson@hotmail.com>

http://www.manning.com/Real-WorldFunctionalProgramming
http://code.msdn.microsoft.com/realworldfp
http://www.manning.com/Real-WorldFunctionalProgramming
http://www.manning.com/Real-WorldFunctionalProgramming


ABOUT THIS BOOK xxix
 The Author Online forum and the archives of previous discussions will be accessi-
ble from the publisher’s website as long as the book is in print.

Other online resources 
In addition to Manning’s website (http://www.manning.com/Real-WorldFunctional-
Programming), we have created a companion website for the book at http://
functional-programming.net. It contains additional information that you may find 
useful, source code for the individual chapters, and material that didn’t fit in the 
book. The page also links to recent articles related to functional programming, so 
you can look at it to learn more about this topic.

 If you’re interested in F#, you may also want to check out the official Microsoft’s 
Developer Center available at http://msdn.microsoft.com/fsharp. It contains the most 
recent information about the language as well as links to articles, videos, and other F# 
resources. If you want to ask a question about F# and be sure that you’ll get a competent 
answer, you can visit the F# community forums available at http://cs.hubfs.net.  
Licensed to   <kr_wilson@hotmail.com>

http://www.manning.com/Real-WorldFunctionalProgramming
http://www.manning.com/Real-WorldFunctionalProgramming
http://functional-programming.net
http://functional-programming.net
http://msdn.microsoft.com/fsharp
http://cs.hubfs.net


about the cover illustration
The figure on the cover of Real-World Functional Programming is captioned “An 
employee,” and it shows an office clerk or civil servant elegantly dressed in suit and 
top hat and carrying an umbrella. The illustration is taken from a 19th-century edi-
tion of Sylvain Maréchal’s four-volume compendium of regional dress customs pub-
lished in France. Each illustration is finely drawn and colored by hand. The rich 
variety of Maréchal’s collection reminds us vividly of how culturally apart the world’s 
towns and regions were just 200 years ago. Isolated from each other, people spoke dif-
ferent dialects and languages. In the streets or in the countryside, it was easy to iden-
tify where they lived and what their trade, occupation, or station in life was just by 
their dress.

 Dress codes have changed since then and the diversity by region, so rich at the 
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity 
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers 
based on the rich diversity of regional life of two centuries ago, brought back to life by 
Maréchal’s pictures.
xxx

Licensed to   <kr_wilson@hotmail.com>



Part 1

Learning to think functionally

You may have picked up this book for any number of reasons. Perhaps you’ve 
heard of functional programming when reading about LINQ and C# 3.0 or 
another technology that has been largely influenced by it, and you’re wondering 
if it has any other interesting ideas. You may have heard that functional program-
ming makes it simple to write parallel or asynchronous programs. Maybe you’ve 
heard about other interesting applications of the functional style—just how do
you go about writing programs with no mutable state? You may have heard about 
a new language called F# that’s going to be a part of Visual Studio 2010, and you 
want to learn what it has to offer.

 In any case, the first thing you’ll learn about functional programming is that 
it’s built on fundamentally different principles than the ones you’re probably 
used to. But that doesn’t mean you’ll have to throw away any of your existing 
knowledge, because functional programming on .NET plays nicely with the 
object-oriented style and existing libraries. The foundations are different, but we 
can build on top of them and return to familiar areas, looking at them from a 
different perspective.

 In part 1 we’ll focus on these fundamental principles. In chapter 1, we’ll 
examine the practical effects of some of these principles, but we won’t go into 
much detail. We’ll also write our first F# program so that you can start experi-
menting with F# on your own while you’re reading. In chapter 2, we’ll review the 
ideas behind functional programming more systematically and discuss how they 
change the way we write programs. We’ll use C# for most of the example code in 
that chapter, because many functional ideas can be used in C# as well.
Licensed to   <kr_wilson@hotmail.com>



 Chapter 3 gets into F# in more detail, looking at values, function declarations, 
and several built-in data types. We’ll also implement corresponding types and func-
tions in C#. This is the easiest way of explaining how F# works to a C# developer, and 
we’ll be able to reuse some of the types in real-world C# examples later in the book. 
In chapter 4 we’ll use everything we’ve learned so far to develop a charting applica-
tion in F#.
Licensed to   <kr_wilson@hotmail.com>



Thinking differently
Functional languages are expressive, accomplishing great feats using short, suc-
cinct, and readable code. All this is possible because functional languages provide 
richer ways for expressing abstractions. We can hide how the code executes and 
specify only the desired results. The code that specifies how to achieve the results is 
written only once. Thanks to the rich abstractions, we can hide all the complexity 
in libraries.

 This different approach to programming has far-reaching implications for real-
world applications. This way of expressing logic makes programs readable and easy 
to reason about, thus making it possible to understand and change previously 
unknown code. Functional programs are easy to test and refactor. Yet despite these 
benefits, functional languages have largely been ignored by mainstream develop-
ers—until now. Today we’re facing new challenges. We need to write programs that 
process large data sets and scale to a large number of processors We need to deal 

This chapter covers
■ Understanding functional programming
■ Increasing productivity with functional ideas
■ Writing efficient and readable code
■ Implementing your first F# application
3

Licensed to   <kr_wilson@hotmail.com>



4 CHAPTER 1 Thinking differently
with ever larger systems, so we have to get a better handle on their complexity. These 
trends open the door to functional languages. But they are far from being the only 
reason for using functional programming. 

 As a result, many mainstream languages now include some functional features. In the 
.NET world, generics in C# 2.0 were heavily influenced by functional languages. One of 
the most fundamental features of functional languages is the ability to create function 
values on the fly, without declaring them in advance. This is exactly what C# 2.0 enables 
us to do using anonymous methods, and C# 3.0 makes it even easier with lambda expres-
sions. The whole LINQ project is rooted in functional programming.

 While the mainstream languages are playing catch-up, truly functional languages 
have been receiving more attention too. The most significant example of this is F#, 
which will be an official, fully supported Visual Studio language as of Visual Studio 2010. 
This evolution of functional languages on .NET is largely possible thanks to the common 
language runtime (CLR), which allows developers to

■ Mix multiple languages when developing a single .NET application 
■ Access rich .NET libraries from new languages like F#

Sharing of libraries among all .NET languages makes it much easier to learn these new 
languages, because all the platform knowledge that you’ve accumulated during your 
career can still be used in the new context of a functional language. 

 In this book, we’ll explore the most important functional programming concepts 
and demonstrate them using real-world examples from .NET. We’ll start with a descrip-
tion of the ideas, then turn to the aspects that make it possible to develop large-scale 
real-world .NET applications in a functional way. We’ll use both F# and C# 3.0 in this 
book, because many of these ideas are directly applicable to C# programming. You 
certainly don’t need to write in a functional language to use functional concepts and 
patterns. But seeing the example in F# code will give you a deeper understanding of 
how it works, and F# often makes it easier to express and implement the solution.

 But we’ve jumped the gun. This is a book about functional programming, after all. 
Wouldn’t it make sense to start off by describing what the term means?

1.1 What is functional programming?
Finding a precise definition of functional programming is difficult. Various functional 
languages exist, and there’s no clear set of features that every functional language 
must have. Nonetheless, functional languages share common properties and support 
somewhat different styles of expressing solutions to programming problems. It’s easi-
est to describe functional programming by comparing it with the most common alter-
native option: imperative programming.

Functional programming is a style of programming that emphasizes the 
evaluation of expressions, rather than execution of commands. The 
expressions in these languages are formed by using functions to combine 
basic values. [Hutton ed. 2002]

FUNCTIONAL 
LANGUAGES
Licensed to   <kr_wilson@hotmail.com>



5What is functional programming?
This definition comes from a FAQ of an academic mailing list about functional lan-
guages, so it may sound a bit abstract. Believe us, the meaning will soon become clear. 
The “evaluation of expressions” in the first sentence represents the functional 
approach, compared with the “execution of commands” style of imperative code. 
Commands in imperative languages are called statements, so we’ll use this terminology 
instead. Let’s take a look at these two options in detail:

■ Execution of statements —The program is expressed as a sequence of commands, 
which are also called statements. Commands specify how to achieve the end 
result by creating objects and manipulating them. When using this approach, 
we typically work with objects that can be changed, and the code describes what 
modifications we need to perform in order to achieve the desired result. For 
example, we start by making a cup of black coffee. The object can be modified, 
so we can change it by adding two sugars to get the desired result.

■ Evaluation of expressions —In the functional style, the program code is an expres-
sion that specifies properties of the object we want to get as the result. We don’t 
specify the steps necessary to construct the object and we can’t accidentally use 
the object before it’s created. For example, we say that we want to get a coffee 
with two packets of sugars. We can’t drink it before the sugar is added, because 
when we get the cup, it already contains the sugar.1

This may still sound like a subtle difference, yet it leads to huge changes in the way 
you design code. The single axiom is that we write code as expressions instead of a 
sequence of statements, but this approach has many logical consequences. We encap-
sulate and compose code differently, we use various techniques for writing reusable 
code, we work with data structures that are more suitable for representing the result 
of a complex computation…the list goes on.

 Providing a definition of functional programming is one thing, but we also need to 
understand how the concepts can be used together. These two topics form the focus of 
this book. After you finish reading it, you’ll not only have an understanding of our ear-
lier definition, but you’ll also get an intuitive feeling for functional programming. This 
is much more important, and unfortunately, it can’t be explained in a few sentences.

 So far this may all sound a bit abstract, but this book’s title includes the words 
“Real World” for good reason. Functional programming can offer notable benefits. 
You may have encountered (just like the authors of this book) these situations where a 
functional style may be the answer:

■ Do you find it hard to predict the results of changing your code, due to hidden 
dependencies and subtleties?

■ Do you find yourself writing the same patterns over and over again, leaving little 
time for the genuinely different and interesting parts of the problem?

1 The analogy with coffee making was also used by Luca Bolognese in his great talk about F# at TechEd in 2009 
[Bolognese, 2009]. This coincidence suggests that by learning functional programming you’ll learn to think 
differently not only about programming problems but also about afternoon breaks.
Licensed to   <kr_wilson@hotmail.com>



6 CHAPTER 1 Thinking differently
■ Do you find it hard to reason about your code, worrying about whether each 
statement will execute in the right order and in the right conditions?

■ Do you find it hard to express abstractions that hide how the code executes and 
specify only what you’re trying to achieve?

■ Do you struggle with asynchronous control flow, finding that it leads to code 
that bears more than a passing resemblance to spaghetti?

■ Do you find it hard to split tasks into logically independent parts that can be 
run concurrently on multiple processor cores?

■ Does your code behave differently in the real world than it does in unit tests?

Before we look how functional programming can make you more productive, let’s 
briefly talk about its history, which is surprisingly rich. 

1.2 The path to real-world functional programming
Functional programming is a paradigm originating from ideas older than the first 
computers. Its history goes as far back as the 1930s, when Alonzo Church and Stephen 
C. Kleene introduced a theory called lambda calculus as part of their investigation of 
the foundations of mathematics. Even though it didn’t fulfill their original expecta-
tions, the theory is still used in some branches of logic and has evolved into a useful 
theory of computation. To explore the basic principles of functional programming, 
you’ll find a brief introduction to lambda calculus in the next chapter. Lambda calcu-
lus escaped its original domain when computers were invented and served as an inspi-
ration for the first functional programming languages.

1.2.1 Functional languages

The first functional programming language celebrated its 50th birthday in 2008. LISP, 
created by John McCarthy in 1958, is based directly on the lambda calculus theory. 
LISP, an extremely flexible language, pioneered many programming ideas that are still 
used today, including data structures, garbage collection, and dynamic typing.

 In the 1970s, Robin Milner developed a language called ML. This was the first of a 
family of languages that now includes F#. Inspired by typed lambda calculus, it added 
the notion of types and even allowed us to write “generic” functions in the same way 
we do now with .NET generics. ML was also equipped with a powerful type inference 
mechanism, which is now essential for writing terse programs in F#. OCaml, a prag-
matic extension to the ML language, appeared in 1996. It was one of the first lan-
guages that allowed the combination of object-oriented and functional approaches. 
OCaml was a great inspiration for F#, which has to mix these paradigms in order to be 
a first-class .NET language and a truly functional one. 

 Other important functional languages include Haskell (a language with surprising 
mathematical purity and elegance) and Erlang (which has become famous for mes-
sage passing concurrency that we’ll discuss in chapter 16). We’ll learn more about 
Haskell and LISP when we focus on topics where those languages have benefits over 
F#—but first, let’s finish our story by looking at the history of F#. 
Licensed to   <kr_wilson@hotmail.com>



7Being productive with functional programming

M

1.2.2 Functional programming on the .NET platform

The first version of .NET was released in 2002, and the history of the F# language dates 
to the same year. F# started off as a Microsoft Research project by Don Syme and his 
colleagues, with the goal of bringing functional programming to .NET. F# and typed 
functional programming in general gave added weight to the need for generics in 
.NET, and the designers of F# were deeply involved in the design and implementation 
of generics in .NET 2.0 and C# 2.0.

 With generics implemented in the core framework, F# began evolving more quickly, 
and the programming style used in F# also started changing. It began as a functional lan-
guage with support for objects, but as the language matured, it seemed more natural to 
take the best from both styles. As a result, F# is now more precisely described as a mul-
tiparadigm language, which combines both functional and object-oriented approaches, 
together with a great set of tools that allow it to be used interactively for scripting. 

F# is a functional programming language for the .NET Framework. It 
combines the succinct, expressive, and compositional style of functional 
programming with the runtime, libraries, interoperability, and object 
model of .NET.[F# home page]

F# has been a first-class .NET citizen since its early days. Not only can it access any of the 
standard .NET components but—equally importantly—any other .NET language can 
access code developed in F#. This makes it possible to use F# to develop standalone 
.NET applications as well as parts of larger projects. F# has always come with support in 
Visual Studio, and in 2007 a process was started to turn F# from a research project to a 
full production-quality language. In 2008 Microsoft announced that F# will become 
one of the languages shipped with Visual Studio 2010. This alone is a good reason for 
taking interest in F# and the whole functional paradigm, but let’s look at more prag-
matic reasons now.

1.3 Being productive with functional programming
Many people find functional programming elegant or even beautiful, but that’s hardly 
a good reason to use it in a commercial environment. Elegance doesn’t pay the bills, 
sad to say. The key reason for coding in a functional style is that it makes you and your 
team more productive. 

 In this section, we’ll look at the key benefits that functional programming gives 
you and explain how it solves some of the most important problems of modern soft-
ware development. Before exploring the specific benefits, we’ll consider a higher per-
spective. Functional programming isn’t a strictly delimited technology, because the 
functional ideas can appear in different forms. 

1.3.1 The functional paradigm

Functional programming is a programming paradigm This means that it defines the 
concepts that we can use when thinking about problems. But it doesn’t precisely specify 
how these concepts should be represented in the programming language. As a result, 

ICROSOFT F#
Licensed to   <kr_wilson@hotmail.com>



8 CHAPTER 1 Thinking differently
there are many functional languages, and each emphasizes different features and 
aspects of the functional style.

 We can use an analogy with a paradigm you’re already familiar with: object-
oriented programming (OOP). In the object-oriented style, we think about problems 
in terms of objects. Each object-oriented language has some notion of what an object 
is, but the details vary between languages. For instance, C++ has multiple inheritance 
and JavaScript has prototypes. Moreover, you can use an object-oriented style in a lan-
guage that isn’t object-oriented, such as C. It’s less comfortable, but you’ll still enjoy 
some of the benefits.

 Programming paradigms aren’t exclusive. The C# language is primarily object-
oriented, but in the 3.0 version it supports several functional features, so we can use tech-
niques from the functional style directly. On the other side, F# is primarily a functional 
language, but it fully supports the .NET object model. The great thing about combining 
paradigms is that we can choose the approach that best suits the problem. 

 Learning the functional paradigm is worthwhile even if you’re not planning to use 
a functional language. By learning a functional style, you’ll gain concepts that make it 
easier to think about and solve your daily programming problems. Interestingly, many 
of the standard object-oriented patterns describe how to encode some clear func-
tional concept in the OOP style.

 Now let’s focus on the benefits of functional programming. We’ll start by looking 
at the declarative programming style, which gives us a richer vocabulary for describing 
our intentions.

1.3.2 Declarative programming style

In the declarative programming style, we express the logic of programs without speci-
fying the execution details. This description may sound familiar to you because it’s 
quite similar to the definition of functional programming we’ve seen in section 1.1. 
But declarative programming is a more general idea that can be realized using differ-
ent technologies. Functional programming is just one way to achieve that. Let’s dem-
onstrate how functional languages make it possible to write declarative code.

 When writing a program, we have to explain our goals to the computer using the 
vocabulary that it understands. In imperative languages, this consists of commands. We 
can add new commands, such as “show customer details,” but the whole program is a 
step-by-step description saying how the computer should accomplish the overall task. An 
example of a program is “Take the next customer from a list. If the customer lives in the 
UK, show their details. If there are more customers in the list, go to the beginning.”

NOTE Once the program grows, the number of commands in our vocabulary 
becomes too high, making the vocabulary difficult to use. This is where 
object-oriented programming makes our life easier, because it allows us 
to organize our commands in a better way. We can associate all com-
mands that involve a customer with some customer entity (a class), which 
clarifies the description. The program is still a sequence of commands 
specifying how it should proceed.
Licensed to   <kr_wilson@hotmail.com>



9Being productive with functional programming
Functional programming provides a completely different way of extending the vocab-
ulary. We’re not limited to adding new primitive commands; we can also add new con-
trol structures—primitives that specify how we can put commands together to create a 
program. In imperative languages, we were able to compose commands in a sequence 
or by using a limited number of built-in constructs such as loops, but if you look at typ-
ical programs, you’ll still see many recurring structures—common ways of combining 
commands. In fact, some of these recurring structures are very well known and are 
described by design patterns. But in imperative languages, we keep typing the same 
structure of code over and over again.

 In our example we can see a pattern, which could be expressed as “Run the first 
command for every customer for which the second command returns true.” Using this 
primitive, we can express our program simply by saying “Show customer details of 
every customer living in the UK.” In this sentence “living in the UK” specifies the sec-
ond argument and “show customer details” represents the first.

 Let’s compare the two sentences that we’ve used to describe the same problem:

■ Take the next customer from a list. If the customer lives in the UK, show their 
details. If there are more customers in the list, go to the beginning.

■ Show customer details of every customer living in the UK.

Just like the earlier analogy of making a cup of coffee, the first sentence describes 
exactly how to achieve our goal whereas the second describes what we want to achieve.

TIP This is the essential difference between imperative and declarative styles 
of programming. Surely you’ll agree that the second sentence is far more 
readable and better reflected the aim of our “program.” 

So far we’ve been using an analogy, but we’ll see how this idea maps to actual source 
code later in this chapter. This isn’t the only aspect of functional programming that 
makes life easier. In the next section, we’ll look at another concept that makes it much 
simpler to understand what a program does.

1.3.3 Understanding what a program does

In the usual imperative style, the program consists of objects that have internal state
that can be changed either directly or by calling some method of the object. This 
means that when we call a method, it can be hard to tell what state is affected by the 
operation. For example, in the C# snippet in listing 1.1 we create an ellipse, get its 
bounding box, and call a method on the returned rectangle. Finally, we return the 
ellipse to whatever has called it.

Ellipse ellipse = new Ellipse(new Rectangle(0, 0, 100, 100));
Rectangle boundingBox = ellipse.BoundingBox;
boundingBox.Inflate(10, 10);                        
return ellipse;

Listing 1.1 Working with ellipse and rectangle (C#)

B

Licensed to   <kr_wilson@hotmail.com>



10 CHAPTER 1 Thinking differently
How do we know what the state of the Ellipse will be after the code runs just by look-
ing at it? This is hard, because boundingBox could be a reference to the bounding box 
of the ellipse and Inflate B could modify the rectangle, changing the ellipse at the 
same time. Or maybe the Rectangle type is a value type (declared using the struct
keyword in C#) and it’s copied when we assign it to a variable. Perhaps the Inflate
method doesn’t modify the rectangle and returns a new rectangle as a result, so the 
third line has no effect.

 In functional programming, most of the data structures are immutable, which 
means that we can’t modify them. Once the Ellipse or Rectangle is created, we can’t 
change it. The only thing we can do is create a new Ellipse with a new bounding box. 
This makes it easy to understand what a program does. As listing 1.2 shows, we could 
rewrite the previous snippet if Ellipse and Rectangle were immutable. As you’ll see, 
understanding the program’s behavior becomes much easier.

Ellipse ellipse = new Ellipse(new Rectangle(0, 0, 100, 100));
Rectangle boundingBox = ellipse.BoundingBox;
Rectangle smallerBox = boundingBox.Inflate(10, 10);  
return new Ellipse(smallerBox);                          

When you’re writing programs using immutable types, the only thing a method can 
do is return a result—it can’t modify the state of any objects. You can see that Inflate
returns a new rectangle as a result B and that we construct a new ellipse to return an 
ellipse with a modified bounding box C. This approach may feel a bit unfamiliar the 
first time, but keep in mind that this isn’t a new idea to .NET developers. String is 
probably the best-known immutable type in the .NET world, but there are many exam-
ples, such as DateTime and other value types. 

 Functional programming takes this idea further, which makes it a lot easier to see 
what a program does, because the result of a method specifies fully what the method 
does. We’ll talk about immutability in more detail later, but first let’s look at one area 
where it’s extremely useful: implementing multithreaded applications.

1.3.4 Concurrency-friendly application design

When writing a multithreaded application using the traditional imperative style, we 
face two problems: 

■ It’s difficult to turn existing sequential code into parallel code, because we have 
to modify large portions of the codebase to use threads explicitly. 

■ Using shared state and locks is difficult. You have to carefully consider how to 
use locks to avoid race conditions and deadlocks but leave enough space for 
parallel execution. 

Functional programming gives us the answers:

Listing 1.2 Working with immutable ellipse and rectangle (C#)

B
C

Licensed to   <kr_wilson@hotmail.com>



11Being productive with functional programming
■ When using a declarative programming style we can introduce parallelism into 
existing code. We can replace a few primitives that specify how to combine com-
mands with a version that executes commands in parallel.

■ Thanks to the immutability, we can’t introduce race conditions and we can 
write lock-free code. We can immediately see which parts of the program are 
independent, and we can modify the program to run those tasks in parallel.

These two aspects influence how we design our applications and, as a result, make it 
much easier to write code that executes in parallel, taking full advantage of the power 
of multicore machines. The simple fact that we’re writing immutable code doesn’t 
mean we’ll get parallelization for free. There’s work involved, but functional program-
ming minimizes the additional effort we have to put in parallelization. 

 We haven’t finished yet. There are other changes you should expect to see in your 
design when you start thinking functionally…

1.3.5 How functional style shapes your code

The functional programming paradigm no doubt influences how you design and 
implement applications. This doesn’t mean that you have to start all over, because 
many of the programming principles that you’re using today are applicable to func-
tional applications as well. This is true especially at the design level in how you struc-
ture the application.

 Functional programming can cause a radical transformation of how you approach 
problems at the implementation level. When learning how to use functional program-
ming ideas, you don’t have to make these radical changes right away. In C# you learn how 
to efficiently use the new features. In F#, you can often use direct equivalents of C# con-
structs while you’re still getting your feet wet. As you become a more experienced func-
tional developer, you’ll learn more efficient and concise ways to express yourself.

 The following list summarizes how functional programming influences your pro-
gramming style, working down from a design level to actual implementation:

■ Functional programs on .NET still use object-oriented design as a great method 
for structuring applications and components. A large number of types and 
classes are designed as immutable, but it’s still possible to create standard 
classes, especially when collaborating with other .NET libraries.

■ Thanks to functional programming, you can simplify many of the standard 
object-oriented design patterns, because some of them correspond to language 
features in F# or C# 3.0. Also, some of the design patterns aren’t needed when 
the code is implemented in the functional way. You’ll see many examples of this 
throughout the book, especially in chapters 7 and 8.

■ The biggest impact of functional programming is at the lowest level, where we 
encode the algorithms and behavior of the application. Thanks to the combina-
tion of a declarative style, succinct syntax, and type inference, functional lan-
guages help us concisely express algorithms in a readable way. 
Licensed to   <kr_wilson@hotmail.com>



12 CHAPTER 1 Thinking differently
We’ll talk about all these aspects later in the book. We’ll start with the functional val-
ues used to implement methods and functions before raising our sights to design and 
architecture. You’ll discover new patterns specific to functional programming, as well 
as learn whether the object-oriented patterns you’re already familiar with fit in with 
the functional world or are no longer required. 

So far we’ve concentrated on what makes functional programming different and why 
it’s worth learning, but there’s nothing like seeing actual code to bring things into 
focus. In the next section, we’ll look at the source code for the four examples men-
tioned in the sidebar.

1.4 Functional programming by example 
The goal of the next examples is to show you that functional programming isn’t by 
any means a theoretical discipline. You’ll see that you’ve perhaps even used some 
functional ideas in existing .NET technologies. Reading about functional program-
ming will help you understand these technologies at a deeper level and use them 
more efficiently. We’ll also look at a couple of examples from later parts of the book 
that show important practical benefits of the functional style. In the first set of exam-
ples, we’ll explore declarative programming.

What comes next in the introduction?
So far, we’ve only talked about functional programming in a general sense. You’ve 
seen how functional programming allows you to extend the vocabulary when program-
ming and how this makes your code more declarative. We’ve also talked about immu-
table data structures and what they mean for your programs. In the next section, we’ll 
explore four practical aspects of these two basic concepts:

Both declarative programming and immutable data structures affect the readability 
and clarity of the code in general, and you’ll see two examples in sections 1.4.1 
and 1.4.2. Then we’ll look at a current problem, parallelization, and see how declar-
ative programming helps us parallelize code and how immutable data structures 
make the process safer.

Functional 
programming

Immutable
data structures

Declarative 
programming

LINQ and XAML 
(Section 1.4.1)

Easy parallelization 
(Section 1.4.3)

Safer parallelization 
(Section 1.4.3)

Understanding code 
(Section 1.4.2)
Licensed to   <kr_wilson@hotmail.com>



13Functional programming by example 
1.4.1 Expressing intentions using declarative style

In the previous section, we described how a declarative coding style makes you more 
productive. Programming languages that support a declarative style allow us to add 
new ways of composing basic constructs. When using this style, we’re not limited to 
basic sequences of statements or built-in loops, so the resulting code describes more 
what the computer should do rather than how to do it.

 We’re talking about this style in a general way because the idea is universal and not 
tied to any specific technology. But it’s best to demonstrate using a few examples that 
you may know already to show how it’s applied in specific technologies. In the first two 
examples, we’ll look at the declarative style of LINQ and XAML. If you don’t know 
these technologies, don’t worry—the examples are simple enough to grasp without 
background knowledge. In fact, the ease of understanding code—even in an unfamil-
iar context—is one of the principal benefits of a declarative style.
WORKING WITH DATA IN LINQ

If you’re already using LINQ, this example will be just a reminder. But we’ll use it to 
demonstrate something more important. Here’s an example of code that works with 
data using the standard imperative programming style.

IEnumerable<string> GetExpenisveProducts() {
   List<string> filteredInfos = new List<string>();  
   foreach(Product product in Products) {             
      if (product.UnitPrice > 75.0M) {
         filteredInfos.Add(String.Format("{0} - ${1}",
            product.ProductName, product.UnitPrice));   
      }
   }
   return filteredInfos; 
}

The code, as you can see, is written as a sequence of basic imperative commands. The 
first statement creates a new list B, the second iterates over all products C, and a 
later one adds element to the list D. But we’d like to be able to describe the problem 
at a higher level. In more abstract terms, the code filters a collection and returns 
information about every returned product.

 In C# 3.0, we can write the same code using query expression syntax. This version, 
shown in listing 1.4, is closer to our real goal—it uses the same idea of filtering and 
transforming the data. 

IEnumerable<string> GetExpenisveProducts() {
   return from product in Products
             where product.UnitPrice > 75.0M   
             select String.Format("{0} - ${1}", 
                product.ProductName, product.UnitPrice);  
}

Listing 1.3 Imperative data processing (C#)

Listing 1.4 Declarative data processing (C#)

B
C

D

B

C

Licensed to   <kr_wilson@hotmail.com>



14 CHAPTER 1 Thinking differently
The expression that calculates the result (filteredInfos) is composed from basic 
operators such as where or select. These operators take other expressions as an argu-
ment, because they need to know what we want to filter or select as a result. Using the 
previous analogy, these operators give us a new way of combining pieces of code to 
express our intention with less writing. Note that the whole calculation in listing 1.4 is 
written as a single expression that describes the result rather than a sequence of state-
ments that constructs it. You’ll see this trend repeated throughout the book. In more 
declarative languages such as F#, everything you write is an expression.

 Another interesting aspect in the listing is that many technical details of the solu-
tion are now moved to the implementation of the basic operators. This makes the 
code simpler but also more flexible, because we can change implementation of these 
operators without making larger changes to the code that uses them. As you’ll see 
later, this makes it much easier to parallelize code that works with data. 

 LINQ isn’t the only mainstream .NET technology that relies on declarative pro-
gramming. Let’s turn our attention to Windows Presentation Foundation and the 
XAML language.
DESCRIBING USER INTERFACES IN XAML

Windows Presentation Foundation (WPF) is a .NET library for creating user interfaces. 
The library supports the declarative programming style. It separates the part that 
describes the UI from the part that implements the imperative program logic. But the 
best practice in WPF is to minimize the program logic and create as much as possible 
in the declarative way. 

 The declarative description is represented as a treelike structure created from 
objects that represent individual GUI elements. It can be created in C#, but WPF also 
provides a more comfortable way using an XML-based language called XAML. Never-
theless, we’ll see that many similarities exist between XAML and LINQ. Listing 1.5 
shows how the code in XAML compares with code that implements the same function-
ality using the imperative Windows Forms library.

<!-- Declarative user interface in WPF and XAML -->
<Canvas Background="Black">
   <Ellipse x:Name="greenEllipse" Width="75" Height="75" 
      Canvas.Left="0" Canvas.Top="0" Fill="LightGreen" />
</Canvas>

// Imperative user interface using Windows Forms
protected override void OnPaint(PaintEventArgs e) {
   e.Graphics.FillRectangle(Brushes.Black, ClientRectangle);
   e.Graphics.FillEllipse(Brushes.LightGreen, 0, 0, 75, 75);
}

It isn’t difficult to identify what makes the first code snippet more declarative. The XAML
code describes the UI by composing primitives and specifying their properties. The 
whole code is a single expression that creates a black canvas containing a green ellipse. 
The imperative version specifies how to draw the UI. It’s a sequence of statements that 

Listing 1.5 Creating a UI using the declarative and imperative styles (XAML and C#)
Licensed to   <kr_wilson@hotmail.com>



15Functional programming by example 
specify what operations should be executed to get the required GUI. This example dem-
onstrates the difference between saying what using the declarative style and saying how
in the imperative style.

 In the declarative version we don’t need as much knowledge about the underlying 
technical details. If you look at the code, you don’t need to know how WPF will repre-
sent and draw the GUI. When looking at the Windows Forms example, all the techni-
cal details (such as representation of brushes and order of the drawing) are visible in 
the code. In listing 1.5, the correspondence between XAML and the drawing code is 
clear, but we can use XAML with WPF to describe more complicated runtime aspects of 
the program. Let’s look at an example:

<DoubleAnimation
   Storyboard.TargetName="greenEllipse" 
   Storyboard.TargetProperty="(Canvas.Left)"
   From="0.0" To="100.0" Duration="0:0:5" />

This single expression creates an animation that changes the Left property of the 
ellipse (specified by the name greenEllipse) from the value 0 to the value 100 in 5 
seconds. The code is implemented using XAML, but we could’ve written it in C# by 
constructing the object tree explicitly. DoubleAnimation is a class, so we’d specify its 
properties. The XAML language adds a more declarative syntax for writing the specifi-
cation. In either case, the code would be declarative thanks to the nature of WPF. The 
traditional imperative version of code that implements an animation would be rather 
complex. It’d have to create a timer, register an event handler that would be called 
every couple of milliseconds, and calculate a new location for the ellipse. 

So far you’ve seen several technologies that are based on the declarative style and 
learned how they make problems easier to solve. You may be asking yourself how we 
use it for solving our own kinds of problems. In the next section, we’ll take a brief look 
at an example from chapter 15 that demonstrates this.

Declarative coding in .NET
WPF and LINQ are two mainstream technologies that use a declarative style, but 
many others are available. The goal of LINQ is to simplify working with data in a 
general-purpose language. It draws on ideas from many data manipulating languag-
es that use the declarative style, so you can find the declarative approach, for ex-
ample, in SQL or XSLT.

Another area where the declarative style is used in C# or VB.NET is when using .NET 
attributes. Attributes give us a way to annotate a class or its members and specify 
how they can be used in specific scenarios, such as editing a GUI control in a de-
signer. This is declarative, because we specify what we expect from the designer 
when we’re working with the control, instead of writing code to configure the design-
er imperatively.
Licensed to   <kr_wilson@hotmail.com>



16 CHAPTER 1 Thinking differently
DECLARATIVE FUNCTIONAL ANIMATIONS

Functional programming lets you write your own libraries to solve problems in the 
declarative style. You’ve seen how LINQ does that for data manipulation and how WPF
does that for UIs, but in functional programming, we’ll often create libraries for our 
own problem domains.

 When we mentioned earlier that declarative style makes it possible to ignore imple-
mentation details, we left something out. Functional programming doesn’t have any 
mystical powers that would implement the difficult part for us. We need to implement 
all the technical details when we’re designing our own library. But the implementa-
tion details can be hidden in the library (just like LINQ hides all the complexity from 
us), so we can solve the general problem once and for all.

 Listing 1.6 uses a declarative library for creating animations that we’ll develop in 
chapter 15. You don’t have to fully understand the code to see the benefits of using 
the declarative style. It’s similar to WPF in a sense that it describes how the animation
should look rather than how to draw it using a timer. 

var greenCircle = Anims.Circle(                                         
   Time.Forever(Brushes.OliveDrab), 100.0f.Forever());                  
var blueCircle  = Anims.Circle(                                         
   Time.Forever(Brushes.SteelBlue), 100.0f.Forever());                  

var movingPoint = Time.Wiggle * 100.0f.Forever();                          
var greenMoving = greenCircle.Translate(movingPoint, 0.0f.Forever());
var blueMoving = blueCircle.Translate(0.0f.Forever(), movingPoint);      

var animation = Anims.Compose(greenMoving, blueMoving);              

We’ll explain everything in detail in chapter 15. You can probably guess that the ani-
mation creates two ellipses: a green and a blue one. Later, it animates the location of the 
ellipses using the Translate C method and 
composes them using the Compose method D
into a single animation (represented as the ani-
mation value). If we render this animation to a 
form, we get the result shown in figure 1.1.

 The entire declarative description is based 
on animated values. There’s a primitive ani-
mated value called Time.Wiggle, which has a 
value that swings between –1 and +1. Another 
primitive construct, x.Forever(), creates an 
animated value that always has the same value. If 
we multiply Wiggle by 100, we’ll get an animated 
value that ranges between –100 and +100 B. 
These animated values can be used for specify-
ing animations of graphical objects such as our 
two ellipses. Figure 1.1 shows them in a state 

Listing 1.6 Creating functional animation (C#)

B
C

D

Figure 1.1 The ellipse on the right is 
moving from the left to the right, and the 
ellipse on the left is moving from the top to 
the bottom.
Licensed to   <kr_wilson@hotmail.com>



17Functional programming by example 
where the X coordinate of the green one and the Y coordinate of the blue one are close 
to the +100 state. 

 In listing 1.6, we don’t have to know anything about the representation of animated 
values, because we’re describing the whole animation by calculating with the primitive 
animated value. Another aspect of the declarative style that you can see in the code is 
that the animation is, in principle, described using a single expression. We made it 
more readable by declaring several local variables, but if you replaced occurrences of 
the variable with its initialization code, the animation would remain the same.

On the last few pages, we looked at declarative programming, which is an approach that 
we’ll use most of the time when programming in a functional language. Listing 1.6 
shows how this style can be used in an advanced library for describing animations. In 
the next section, we’ll turn our attention to a more technical, but also very interesting, 
functional aspect: immutability.

1.4.2 Understanding code using immutability

We discussed immutability earlier when describing the benefits of the functional style. 
We used an example with the bounding box of an ellipse, where it wasn’t clear how 
the code behaved. Once we rewrote the code using immutable objects, it became eas-
ier to understand. We’ll return to this topic in more detail in later chapters. The pur-
pose of this example is to show how an immutable object looks in practice.

 Again, don’t worry if you don’t grasp everything in detail at this point. Imagine 
we’re writing a game with some characters that are our target. This shows a part of the 
class that represents the character:

class GameCharacter {
   readonly int health;     
   readonly Point location;  

   public GameCharacter(int health, Point location) {
      this.health = health;                                     
      this.location = location;                                 
   }

Listing 1.7 Immutable representation of a game character (C#)

Compositionality
An important feature of declarative libraries is that we can use them in a compositional 
manner. You can see this aspect in the animation library demonstrated in listing 1.6. 
We can build numerous animated values like movingPoint from a few primitives such 
as Time.Wiggle and x.Forever(). Similarly, animations can be composed by apply-
ing operations such as Translate or Anim.Compose to simple animated graphical ob-
jects. Another example is that in LINQ, you can move a part of a complex query into a 
separate query and reuse it. We can build our own primitives (let’s say for creating 
orbiting circles) and use them to build our animations (for example, a solar system).

Declares all fields 
as read-only

B

Initializes immutable 
fields once and for all

C

Licensed to   <kr_wilson@hotmail.com>



18 CHAPTER 1 Thinking differently
   public GameCharacter HitByShooting(Point target) {
      int newHealth = CalculateHealth(target);
      return new GameCharacter(newHealth, this.location);  
   }
   public bool IsAlive {
      get { return health > 0; } 
   }
   // Other methods and properties omitted
}

In C#, we can explicitly mark a field as immutable using the readonly keyword. This 
means that we can’t change the value of the field, but we could still modify the target 
object if the field is a reference to a class that’s not immutable. When creating a truly 
immutable class, we need to make sure that all fields are marked as readonly and that 
the types of these fields are primitive types, immutable value types, or other immuta-
ble classes. 

 According to these conditions, our GameCharacter class is immutable. All its fields 
are marked using the readonly modifier B. int is an immutable primitive type and 
Point is an immutable value type. When a field is read-only, it can be set only when cre-
ating the object, so we can set the health and location of the character only in the con-
structor C. This means we can’t modify the state of the object once it’s initialized. So, 
what can we do when an operation needs to modify the state of the game character?

 You can see the answer when you look at the HitByShooting method D. It imple-
ments a reaction to a shot being fired in the game. It uses the CalculateHealth
method (not shown in the sample) to calculate the new health of the character. In an 
imperative style, it would then update the state of the character, but that’s not possible 
because the type is immutable. Instead, the method creates a new GameCharacter
instance to represent the modified character and returns it as a result. 

 The class from the previous example represents a typical design of immutable C# 
classes, and we’ll use it (with minor modifications) throughout the book. Now that 
you know what immutable types look like, let’s see some of the consequences.
READING FUNCTIONAL PROGRAMS

You’ve seen an example that used immutable types in listing 1.1, where we concluded 
that it makes the code more readable. In this section, we’ll consider two snippets that 
we could use in our functional game.

 Listing 1.8 shows two examples, each involving two game characters (player and 
monster). The first example shows how we can execute the monster AI to perform a 
single step and then test whether the player is in danger, and the second shows how 
we could handle a gunshot.

var movedMonster = monster.PerformStep();      
var inDanger = player.IsCloseTo(movedMonster);  
(...)

var hitMonster = monster.HitByShooting(gunShot);  
var hitPlayer = player.HitByShooting(gunShot);  
(...)

Listing 1.8 Code snippets form a functional game (C#)

Returns game 
character with 
updated health

D

B
C

D
E

Licensed to   <kr_wilson@hotmail.com>



19Functional programming by example 
The first part of the code runs one step of the monster AI to move it B to get a new 
state of the monster, then checks whether the player is close to the newly calculated 
position of the monster C.

 The second part processes a shooting in the virtual world. The code creates a value 
representing an updated monster D and a value representing a new state of the 
player E.

 All objects in our functional game are immutable, so when we call a method on an 
object, it can’t modify itself or any other object. If we know that, we can make several 
observations about the previous examples. In the first snippet, we start by calling the 
PerformStep method of the monster B. The method returns a new monster and we 
assign it to a variable called movedMonster. On the next line, C we use this monster to 
check whether the player is close to it and is thus in danger.

 We can see that the second line of the code relies on the first one. If we changed 
the order of these two lines, the program wouldn’t compile because movedMonster
wouldn’t be declared on the first line. If you implemented this in the imperative style, 
the method wouldn’t typically return any result and it’d only modify the state of the 
monster object. 

 In that case, we could rearrange the lines and the code would compile, but it’d 
change the meaning of the program and the program could start behaving incorrectly.

 The second snippet consists of two lines that create a new monster D and a new 
player object E with an updated health property when a shooting occurs in the game. 
The two lines are independent, meaning that we could change their order. Can this 
operation change the meaning of the program? It appears that it shouldn’t, and when 
all objects are immutable, it doesn’t. Surprisingly, it might change the meaning in the 
imperative version if gunShot were mutable. The first of those objects could change 
some property of the gunshot, and the behavior would depend on the order of these 
two statements.

 Listing 1.8 was quite simple, but it already shows how immutability eliminates 
many possible difficulties. In the next section, we’ll see another great example, but 
first let’s review what you’ll find later in the book. 

Refactoring and unit testing
As you know, immutability helps us understand what a program does and so is helpful 
when refactoring code. Another interesting functional refactoring is changing when 
some code executes. The code may run when the program hits it for the first time, but 
it may as well be delayed and execute when its result is needed. This way of evolving 
programs is important in F#, and immutability makes refactoring easier in C# too. 
We’ll talk about refactoring in chapter 11.

Another area where immutability proves advantageous is when we’re creating unit tests 
for functional programs. The only thing that a method can do in an immutable world 
is to return a result, so we only have to test whether a method returns the right result 
for specified arguments. Again, chapter 11 provides more on this topic.
Licensed to   <kr_wilson@hotmail.com>



20 CHAPTER 1 Thinking differently
When discussing how functional programming makes you more productive, we men-
tioned immutability as an important aspect that makes it easier to write parallel pro-
grams. In the next section we’ll briefly explore that and other related topics.

1.4.3 Writing efficient parallel programs

The fact that functional programming makes it easier to write parallel programs may be 
the reason you picked up this book. In this section, we’ll explore a couple of samples 
demonstrating how functional programs can be easily parallelized. In the first two 
examples, we’ll use Parallel Extensions to .NET, a new technology from Microsoft for 
writing parallel applications that ships as part of .NET 4.0. As you might expect, Parallel 
Extensions to .NET lends itself extremely well to functional code. We won’t go into the 
details—we want to demonstrate that parallelizing functional programs is significantly 
simpler and, more importantly, less error prone than it is for the imperative code.
PARALLELIZING IMMUTABLE PROGRAMS

First let’s take another look at listing 1.8. We’ve seen two snippets from a game written 
in a functional way. In the first snippet, the second line uses the outcome of the first 
line (the state of the monster after movement). Thanks to the use of immutable 
classes, we can see that this doesn’t give us any space for introducing parallelism.

 The second snippet consists of two independent lines of code. We said earlier that 
in functional programming, we can run independent parts of the program in parallel. 
Now you can see that immutability gives us a great way to spot which parts of the program 
are independent. Even without knowing any details, we can look at the change that 
makes these two operations run in parallel. The change to the source code is minimal:

var hitMonster = Task.Factory.StartNew(() =>
   monster.HitByShooting(gunShot));
var hitPlayer = Task.Factory.StartNew(() =>
   player.HitByShooting(gunShot));

The only thing that we did was wrap the computation in a Task type from the Parallel 
Extensions library. (We’ll talk about Future in detail in chapter 14.) The benefit isn’t 
only that we have to write less code, but that we have a guarantee that the code is cor-
rect. If you did a similar change in an imperative program, you’d have to carefully 
review the HitByShooting method (and any other method it calls) to find all places 
where it accesses some mutable state and add locks to protect the code that reads or 
modifies shared state. In functional programming everything is immutable, so we 
don’t need to add any locks.

 The example in this section is a form of lower-level task-based parallelism, which is 
one of three approaches that we’ll see in chapter 14. In the next section we’ll look at 
the second approach, which benefits from the declarative programming style.
DECLARATIVE PARALLELISM USING PLINQ

Declarative programming style gives us another great technique for writing parallel 
programs. You know that the code written using the declarative style is composed 
using primitives. In LINQ, these primitives are query operators such as where and 
select. In the declarative style, we can easily replace the implementation of these 
Licensed to   <kr_wilson@hotmail.com>



21Introducing F#
primitives and that’s exactly what PLINQ does: it allows us to replace standard query 
operators with query operators that run in parallel.

 Listing 1.9 shows a query that updates all monsters in our fictitious game and 
removes those that died in the last step of the game. The change is extremely simple, 
so we can show you both versions in a single listing. 

The only change that we made in the parallel version on the right side is that 
we added a call to the AsParallel method B. This call changes the primitives 
that are used when running the query and makes the whole fragment run in paral-
lel. You’ll see how this works in chapter 12, where we’ll discuss declarative computa-
tions like this in general, and in chapter 14, which focuses on parallel program- 
ming specifically.

 You may be thinking that you don’t use LINQ queries that often in your programs. 
This is definitely a valid point, because in imperative programs, LINQ queries are 
used less frequently. But functional programs do most of their data processing in the 
declarative style. In C#, they can be written using query expressions whereas F# 
provides higher-order list-processing functions (as we’ll see in chapters 5 and 6). 
This means that after you’ve read this book, you’ll be able to use declarative program-
ming more often when working with data. As a result, your programs will be more 
easily parallelizable.

 We’ve explained two ways in which functional programming makes parallelization 
simpler. This is one of the reasons that makes functional ideas very compelling today 
and we’ll discuss this and related topics in chapters 13 and 14. 

 Before we can start discussing real functional programs, we need to introduce the 
F# language. Let’s start by looking at classical “Hello world” program as well as at the 
F# tools. The following section also briefly introduces the typical development process 
used when developing F# solutions.

1.5 Introducing F#
We’ll introduce F# in stages throughout the book, as and when we need to. This section 
covers the basics, and we’ll write a couple of short examples so you can start to experi-
ment for yourself. We’ll examine F# more carefully after summarizing important func-
tional concepts in chapter 2. Our first real-world F# application will come in chapter 4.
After discussing the “Hello world” sample, we’ll talk about F# to explain what you 
can expect from the language. We’ll also discuss the typical development process 
used by F# developers, because it’s quite different from what you’re probably used to 
with C#. 

Listing 1.9 Parallelizing data processing code using PLINQ (C#)

var updated = var updated =
   from m in monsters    from m in monsters.AsParallel()  
   let nm = m.PerformStep()    let nm = m.PerformStep()
   where nm.IsAlive select nm;    where nm.IsAlive select nm;

B

Licensed to   <kr_wilson@hotmail.com>



22 CHAPTER 1 Thinking differently
1.5.1 Hello world in F#

The easiest way to start using F# is to create a new script file. Scripts are lightweight F#
sources that don’t have to belong to a project and usually have an extension of .fsx. In 
Visual Studio, you can select File > New > File (or press Ctrl+N) and select F# Script 
File from the Script category. Once we have the file, we can jump directly to the 
“Hello world” code. 

let message = "Hello world!"  
printfn "%s" message        

Listing 1.10 Printing hello world (F#)

Microsoft PLINQ and Google MapReduce
Google has developed a framework called MapReduce [Dean, Ghemawat, 2004] for 
processing massive amounts of data in parallel. This framework distributes the work 
between computers in large clusters and uses the same ideas as PLINQ. The basic 
idea of MapReduce is that the user program describes the algorithm using two oper-
ations (somewhat similar to where and select in PLINQ). The framework takes these 
two operations and the input data, and runs the computation. You can see a diagram 
visualizing the computation in figure 1.2. 

The framework splits the input data into partitions and executes the map task (using 
the first operation from the user) on each of the partitions. For example, a map task 
may find the most important keywords in a web page. The results returned by map 
tasks are then collected and grouped by a specified key (for example, the name of 
the domain) and the reduce task is executed for each of the groups. In our example, 
the reduce task may summarize the most important keywords for every domain.

Map Task 1

...
Map Task 1

Map Task 1

Reduce Task 1

Reduce Task 2

OutputInput

Data processing

User program

Computer cluster

...

Figure 1.2 In the MapReduce framework, an algorithm is described by specifying map task and 
a reduce task. The framework automatically distributes the input across servers and processes 
the tasks in parallel.

B
C

Licensed to   <kr_wilson@hotmail.com>



23Introducing F#
Although this isn’t the simplest possible ”Hello world” in F#, it would be fairly difficult 
to write anything interesting about the single-line version. Listing 1.10 starts with a 
value binding B. This is similar to variable declaration, but there’s one important dif-
ference: the value is immutable and we can’t change its value later. This matches with 
the overall functional style to make things immutable (you’ll learn about this in the 
next two chapters).

 After assigning the value Hello world to the symbol message, the program contin-
ues with a call to a printfn function C. It is important to note that arguments to F# 
functions are usually only separated by spaces with no surrounding parentheses or 
commas. We’ll sometimes write parentheses when it makes the code more readable, 
such as when writing cos(1.57), but even in this case the parentheses are optional. 
We’ll explain the convention that we’ll use as we learn the core concepts of F# in the 
next couple of chapters.

 The first argument to the printfn function is a format string. In our example, it 
specifies that the function should take only one additional parameter, which will be a 
string. The type is specified by the %s in the format string (the letter s stands for string) 
and the types of arguments are even checked by the compiler. Now we’ll show you 
how to run the code (listing 1.11).

TIP The easiest way to run the code is to use the interactive tools provided by 
F# tool chain. These tools allow you to use the interactive style of devel-
opment. This means that you can easily experiment with code to see what 
it does and verify whether it behaves correctly by running it with a sample 
input. Some languages have an interactive console, where you can paste 
code and execute it. This is called read-eval-print loop (REPL), because 
the code is evaluated immediately. 

In F#, we can use a command prompt called F# Interactive, but the 
interactive environment is also integrated inside the Visual Studio envi-
ronment. This means that you can write the code with the full IDE and 
IntelliSense support, but also select a block of code and execute it imme-
diately to test it. 

If you’re using F# Interactive from the command line, paste in the previous code, and 
type ;; and press Enter to execute it. 

 If you’re using Visual Studio, select the code and press Alt+Enter to send it to the 
interactive window. Let’s have a look at the results that we get when we run the code. 

Microsoft F# Interactive, (c) Microsoft Corporation, All Rights Reserved
F# Version 1.9.7.4, compiling for .NET Framework Version v2.0.50727

> (...);;                                                            
Hello world!                                 
val message : string = "Hello world!"  

The first line B is an output from the printfn function, which prints the string and 
doesn’t return any value. The second line, C generated by the value binding, 

Listing 1.11 Running the Hello world program (F# Interactive)

B
C

Licensed to   <kr_wilson@hotmail.com>



24 CHAPTER 1 Thinking differently
reports that a value called message was declared and that the type of the value is 
string. We didn’t explicitly specify the type, but F# uses a technique called type 
inference to deduce what the types of values are, so the program is statically typed 
just as in C#.

 Writing something like this “Hello world” example doesn’t demonstrate how work-
ing with F# looks at the larger scale. The usual F# development process is worth a look 
because it’s quite interesting.

1.5.2 From simplicity to the real world

When starting a new project, you don’t usually know at the beginning how the code 
will look at the end. At this stage, the code evolves quite rapidly. But as it becomes 
more mature, the architecture becomes more solid and you’re more concerned with 
the robustness of the solution rather than with the flexibility. Interestingly, these 
requirements aren’t reflected in the programming languages and tools that you use. 
F# is appealing from this point of view, because it reflects these requirements in both 
tools and the language.

Let’s see what the development process might look like in action. We’ll use a few more 
F# constructs, but we won’t focus primarily on the code. The more important aspect is 
how the development style changes as the program evolves.

F# development process in a nutshell
The F# Interactive tool allows you to verify and test your code immediately while writ-
ing it. This tool is extremely useful at the beginning of the development process, be-
cause it encourages you to try various approaches and choose the best one. Also, 
when solving some problem where you’re not 100 percent sure of the best algorithm, 
you can immediately try the code. When writing F# code, you’ll never spend a lot of 
time debugging the program. Once you first compile and run your program, you’ve al-
ready tested a substantial part of it interactively. 

When talking about testing in the early phase, we mean that you’ve tried to execute 
the code with various inputs to interactively verify that it works. In the later phase, we 
can turn these snippets into unit tests, so the term testing means a different thing. 
When working with a more mature version of our project, we can use tools such as 
Visual Studio’s debugger or various unit-testing frameworks. 

F# as a language reflects this direction as well. When you start writing a solution to 
any problem, you start with only the most basic functional constructs, because they 
make writing the code as easy as possible. Later, when you find the right way to ap-
proach the problem and you face the need to make the code more polished, you end 
up using more advanced features that make the code more robust, easier to docu-
ment, and accessible from other .NET languages like C#.
Licensed to   <kr_wilson@hotmail.com>



25Introducing F#
STARTING WITH SIMPLICITY

When starting a new project, you’ll usually create a new script file and try implement-
ing the first prototype or experiment with the key ideas. At this point, the script file 
contains sources of various experiments, often in an unorganized order. Figure 1.3 
shows how your Visual Studio IDE might look like at this stage.

 Figure 1.3 shows only the editor and the F# Interactive window, but that’s all we need 
now because we don’t have a project yet. As you can see, we first wrote a few value bindings 
to test how string concatenation works in F# and entered the code in the F# Interactive 
window to verify that it works as expected. After we learned how to use string concate-
nation, we wrapped the code in a function. (We’ll describe functions in chapter 3.)

 Next, we selected the function and pressed Alt+Enter to send it to F# Interactive. 
If we enter code this way, the shell won’t print the source code again: it prints only 
information about the values and functions we declared. After that, we entered an 
expression, sayHello("world"), to test the function we just wrote. Note that the 
commands in F# Interactive are terminated with ;;. This allows you to easily enter 
multiline commands.

 Once we start writing more interesting examples, you’ll see that the simplicity is 
supported by using the functional concepts. Many of them allow you to write the code 
in a surprisingly terse way, and thanks to the ability to immediately test the code, F# is 

Figure 1.3 Using F# Interactive, we can first test the code and then wrap it into a function.
Licensed to   <kr_wilson@hotmail.com>



26 CHAPTER 1 Thinking differently
powerful in the first phase of the development. (Part 2 focuses on the easy-to-use func-
tional constructs.) As the program grows larger, we’ll need to write it in a more polished 
way and integrate it with the usual .NET techniques. Fortunately, F# helps us do that too.
ENDING WITH ROBUSTNESS

Unlike many other languages that are popular for their simplicity, F# lives on the 
other side as well. In fact, it can be used for writing mature, robust, and safe code. The 
usual process is that you start with simple code, but as the codebase becomes larger 
you refactor it in a way that makes it more accessible to other F# developers, enables 
writing better documentation, and supports better interoperability with .NET and C#. 

 Perhaps the most important step in order to make the code accessible from other 
.NET languages is to encapsulate the functionality into .NET classes. The F# language 
supports the full .NET object model, and classes authored in F# appear just like ordi-
nary .NET classes with all the usual accompaniments, such as static type information 
and XML documentation. 

 You’ll learn more about F# object types in chapter 9, and you’ll see many of the 
robust techniques in part 4. For now, let’s prove that you can use F# in a traditional 
.NET style as well. Listing 1.12 shows how to wrap the sayHello function in a C# style 
class and add a Windows Forms UI.

open System.Drawing        
open System.Windows.Forms  

type HelloWindow() =                                  
   let frm = new Form(Width = 400, Height = 140)                   
   let fnt = new Font("Times New Roman", 28.0f)                            
   let lbl = new Label(Dock = DockStyle.Fill, Font = fnt,      
                              TextAlign = ContentAlignment.MiddleCenter)
   do frm.Controls.Add(lbl)                                             

   member x.SayHello(name) =          
      let msg = "Hello " + name + "!"
      lbl.Text <- msg                       

   member x.Run() =         
      Application.Run(frm)

Listing 1.12 starts with several open directives B that import types from .NET
namespaces. Next, we declare the HelloWindow class C, which wraps the code to con-
struct the UI and exposes two methods. The first method D wraps the functionality 
for concatenating “Hello world” messages that we interactively developed earlier. The 
second one runs the form as a standard Windows Forms application E. The class 
declaration appears just like an ordinary C# class, with the difference that F# has a 
more lightweight syntax for writing classes. The code that uses the class in F# will look 
just like your usual C# code:

let hello = new HelloWindow()
hello.SayHello("dear reader")
hello.Run()

Listing 1.12 Object-oriented “Hello world” using Windows Forms (F#)

B

C

Initializes UI

D

Modifies property 
of .NET typeE
Licensed to   <kr_wilson@hotmail.com>



27Summary
At this stage, we’re developing the appli-
cation in a traditional .NET style, so we’ll 
run it as a standalone application. The 
interactive style helped us, because we’d 
already interactively tested the part that 
deals with string concatenation. You can 
see how the resulting application looks 
in figure 1.4. 

 In this section, you had a taste of what the typical F# development process feels 
like. We haven’t explained every F# construct we’ve used, because we’ll see how every-
thing works later in the book. We started with an example that’s simple but that dem-
onstrates how you can use the F# language to write pretty standard .NET programs.

As we close this chapter, it’s very likely that you’re still finding some of the F# language 
constructs puzzling, but the purpose of this introduction wasn’t to teach you every-
thing about F#; our goal was to show you how F# looks and feels, so you can experi-
ment with it as we explore more interesting examples in the subsequent chapters.

1.6 Summary
This chapter gave you a brief overview of functional programming and what makes it 
interesting. We introduced the declarative programming style, which we can use when 
writing applications and libraries in a functional style. The declarative programming 
style is already used in many successful technologies such as WPF and LINQ, but we 
can also use it for writing functional solutions to other kinds of problems in C# 3.0.

What can F# offer to a C# developer?
F# is well-suited for writing code using simple concepts at the beginning and turning 
it into a traditional .NET version later, where C# is largely oriented toward the tradi-
tional .NET style. If you’re a C# developer creating real-world applications, you can 
easily take advantage of F# in two ways.

The first option is to use F# for rapid prototyping and experimenting with the code as 
well for exploring how .NET libraries work. As you’ve seen, using F# interactively is 
easy, so writing a first sketch of the code can be done in F#. You’ll save a lot of time 
when trying several approaches to a problem or exploring how a new library works. If 
you require code written in C#, you can rewrite your prototype to C# later and still save 
a lot of development time.

The second option is to reference a library written in F# from your C# project. F# is a 
fully compiled .NET language, so there are no technical reasons for preferring C# 
source code. This means that you can make sure that your library can be easily ac-
cessed from C# by turning the code from a simple to a traditional .NET version and 
use F# for writing parts of a larger .NET solution.

Figure 1.4 Running our WinForms application 
created using the OOP style in F#
Licensed to   <kr_wilson@hotmail.com>



28 CHAPTER 1 Thinking differently
 Parallel programming is a big challenge for modern software development. Using 
a functional approach makes it significantly easier, thanks to the use of immutability 
and declarative programming. Immutability helps us write correct and safe code, and 
declarative programming allows us to hide unnecessary technical details when solv-
ing problems.

 In the next chapter, you’ll see a much broader picture of functional programming. 
We’ll explore the important ideas from a high-level perspective and demonstrate how 
they relate to one another. Even though we won’t look at much real code, the next 
chapter will give you a solid foundation you can build on in the rest of the book.

 

Licensed to   <kr_wilson@hotmail.com>



Core concepts in 
 functional programming
If you ask three functional programmers what they consider the most essential 
aspect of the functional paradigm, you are likely to get three different answers. The 
reason is that functional programming has existed for a long time and there’s a 
wide range of diverse programming languages. Every language emphasizes a differ-
ent set of aspects while giving less importance to others. Most of the concepts are to 
some extent present in all functional languages.

 The central part of this chapter focuses on these common ideas, exploring the 
basic features and techniques that functional programmers have in their toolset. 
We’ll investigate the concepts from a high-level perspective, and you’ll see how they 
fit together to form one coherent way of tackling problems. 

This chapter covers
■ Understanding concepts and foundations
■ Programming with immutable data
■ Reasoning about functional code
■ Working with functional data types and values
29

Licensed to   <kr_wilson@hotmail.com>



30 CHAPTER 2 Core concepts in functional programming
 We’ll begin by exploring how functional programs represent program state and 
how they change it. In OOP the state is carried by objects, while in functional 
programming the key role is played by functions and data types. Next, we’ll look 
at language features that support the declarative programming style we intro- 
duced in chapter 1. Finally, we’ll talk about types and how they help verify program 
correctness. This aspect isn’t shared by all functional languages, but it’s essential 
for many of them (including OCaml, F#, and Haskell). Their implementation of 
type checking is advanced and differs in many ways from what you may be used to 
from C#.

 We won’t go into much programming yet. Instead you’ll get a general understand-
ing of the key concepts and a better feeling about how functional programs look. The 
sidebar “What comes next in this chapter?” gives an overview of the organization of 
this chapter. We discussed some of the concepts in chapter 1, but we focused on their 
consequences. In this chapter we’ll analyze their fundamentals.

What comes next in this chapter?
In chapter 1, we focused on two concepts: immutability and declarative style. Here 
we’ll introduce some of the language features that make them possible. We’ll also 
talk about types, another essential concept discussed in this book. 

In section 2.1, we’ll begin with a brief digression and explore the mathematical 
background of functional programming. Reading that section isn’t necessary, 
but you may find it interesting, because it demonstrates where many of the 
concepts come from. After this introduction, we’ll return to functional programming 
in a more concrete form. We’ll talk about immutable data structures and in particu-
lar, how we can write programs that work with them (section 2.2.3). In sec- 
tion 2.3.2 we’ll take a first look at features such as higher-order functions that 
are essential for writing declarative code in functional languages. We’ll show you 
how types in F# prevent us from making many common programming errors (sec-
tion 2.4.4).

Functional 
programming

Immutable
data structures 
(Section 2.2)

Declarative 
programming 
(Section 2.3)

Programming 
reusable functions 

(Section 2.3.2)

Compile-time safety 
(Section 2.4.4)

Reasoning
about code

(Section 2.2.5)

Programming with 
immutable data 
(Section 2.2.3)

Types
(Section 2.4)

Foundations
(Section 2.1)
Licensed to   <kr_wilson@hotmail.com>



31The foundation of functional programming
This chapter focuses on the concepts of functional programming. We’ll start by 
exploring the theoretical foundations, but we’ll omit all details and explain the core 
ideas using a brief example.  

2.1 The foundation of functional programming
As you may recall from chapter 1, lambda calculus originated in 1930s as a mathemat-
ical theory. Nowadays, it’s an important part of theoretical computer science. In logic 
it’s used in tools that assist with the proving and verification of systems (for example, 
in CPU design). It’s also used as a simple formal programming language that can help 
to explain precisely how other languages behave.

NOTE In the next section, we’ll show you a few sample “programs” written in 
lambda calculus. These programs show the purest and cleanest form of 
many concepts that we’ll see later in this chapter. In lambda calculus, the 
whole “program” is an expression (section 2.2.4), and functions can take 
other functions as parameters (2.3.2). We’ll get back to these concepts in 
the context of real programming languages within a few pages. 

We’ve included this background material because it demonstrates some 
of the ideas in their purest form. Hopefully you’ll find it as interesting as 
we do—but it’s not essential in order to understand the rest of the book.

When Alonzo Church introduced lambda calculus in 1932, he attempted to formalize 
every mathematical construct using the most essential mathematical concept, a func-
tion. When you write a mathematical function (let’s call it f) which adds 10 to any 
given argument, you write something like this:

f(x) = x + 10

Church wanted to use functions everywhere. In fact, everything in his formalism was a 
function. Assigning a name to every function would be impractical, because when 
everything is written as a function, many functions are used only once. He introduced 
a notation that allowed a function to be written without giving it a name:

(λx.x + 10)

This expression represents a function that takes a single parameter, denoted by the 
Greek letter lambda followed by the variable name (in our case, x). The declaration of 
the parameter is followed by a dot and by the body of the function (in our case, x + 10). 
In the pure lambda calculus, numerals (such as 10) and mathematical operators (such 
as +) are also defined using functions, so there’s nothing except functions, which is 
quite surprising. To makes things simple, we’ll use standard numbers and operators. 
Let’s continue with our example function. Say we want to set 32 as an argument and see 
what the result will be: 

(λx.x + 10) 32 = 32 + 10 = 42

Giving an argument to a function (which is called the application of a function in 
lambda calculus) is done by writing the function followed by the argument. When a 
function is called with some value as an argument, it simply replaces all occurrences of 
Licensed to   <kr_wilson@hotmail.com>



32 CHAPTER 2 Core concepts in functional programming
the variable (in our case, x) with the value of the argument (32 in our example). This 
is the expression that follows the first equal sign. If we look at + as a built-in function, 
it will be called in the next step, yielding 42 as a result.

 The most interesting aspect about lambda calculus—and the cornerstone of func-
tional programming languages—is that any function can take a function as an argu-
ment. This means that we can write a function that takes a function (binary operator) 
and a value as parameter and calls the binary operator with the value as both argu-
ments:

(λop.λx.(op x x))

As you can see, we wrote a function that takes op and x as arguments. When writing a 
function with more arguments, we use the lambda symbol multiple times to declare 
more parameters. In the body of the lambda function, we use op to represent a func-
tion and x to represent the first and second arguments to the op function. Let’s see 
what the code does if we give it the plus operator as a first argument and 21 as a sec-
ond argument:

(λop.λx.(op x x)) (+) 21 = (λx.((+) x x)) 21 = (+) 21 21 = 42

A function with multiple parameters is a function that takes the first argument (in our 
case, op) and returns a lambda expression, which is just another function. This means 
that in the first step, we apply the function (which takes op as an argument) to the 
argument (+). This yields a result that you can see after the first equal sign: the op vari-
able was replaced with a plus sign. The result is still a function with arguments, so we 
can continue with the evaluation. The next step is to apply the function with x as a 
parameter to a value 21. The result is an expression, (+) 21 21, which is an alternative 
notation for adding two numbers. It means the same thing as 21 + 21, so our final 
result of this calculation is 42. As you can see, the calculation in lambda calculus con-
tinues until there’s no function application (a function followed by its arguments) 
that could be evaluated.

 Lambda calculus is interesting from a theoretical point of view or to see where the 
functional ideas came from, but let’s turn our attention back to the real world. The first 
group of concepts that we’ll talk about are related to the representation of data in func-
tional programs. These concepts heavily influence how a program works with data. 

2.2 Evaluation of functional programs
In chapter 1 you learned that functional programs use immutable data structures to 
represent their state. The functional approach to make things immutable doesn’t only 
influence data structures (or classes in C#), but extends to local variables as well. 

 We wouldn’t be surprised if you were wondering how the program can do anything 
at all when everything is immutable. The short answer is that functional programs 
aren’t described as a sequence of statements that change the state but rather as com-
putations. In this section, we’ll shed some light on how these calculations are written. 
Let’s start with the simple code that works with variables.
Licensed to   <kr_wilson@hotmail.com>



33Evaluation of functional programs
2.2.1 Working with immutable values 

The first of the common features is that functional programs rarely have typical vari-
ables as we know them from other programming languages. The key difference is that 
functional languages prefer immutable variables, meaning the variable can’t change 
its value once it’s initialized. Thus, using the term variable is quite inappropriate, and 
functional programmers prefer the term value.

 Let’s demonstrate with an example. Say we want to write a program that takes an 
initial value, reads two numbers from the console, adds the first number to the initial 
value, and multiplies the result by the second number. A typical implementation of 
something like this in C# would look like this (we’ll use the hypothetical methods 
GetInitialValue(), ReadInt32(), and WriteInt32(), but you could easily imple-
ment them if you want to play with this example):

int res = GetInitialValue();
res = res + ReadInt32();
res = res * ReadInt32();
WriteInt32(res);

We declared a variable res to hold the initial value. Then we modified it two times, 
using an input value read from the console. Now, let’s look at the same code imple-
mented without modifying the value of any variables:

int res0 = GetInitialValue();
int res1 = res0 + ReadInt32();
int res2 = res1 * ReadInt32();
WriteInt32(res2);

Because we couldn’t modify the value of the first variable, we declared a new variable
every time we wanted to calculate a new value (res0, res1, res2). The key difference 
is that in the second example, we didn’t use the assignment operator (written as an 
equal sign in C#). The only occurrence of this symbol in a second example is when 
initializing a variable value, which has a different meaning from the assignment oper-
ator. Instead of changing a value of an existing variable, we create a new variable with 
the specified initial value.

 Working with values differs from working with variables in many ways, so using the 
term value isn’t just a change in the terminology but a different concept. For this reason 
we’ll use the functional terminology in the rest of the book, but you may sometimes find 
the analogy between variables and values useful. We’ll also use the term value binding, 
which refers to a declaration of a value that assigns (binds) the value to a symbol.

 Using immutable values instead of variables requires us to express many problems 
in a different way. We’ll get back to this topic in section 2.2.3. First, let’s look at how im-
mutable values relate to the concept of immutable types that we discussed in chapter 1.

2.2.2 Using immutable data structures

When representing data in functional programs, we’ll work with data structures. We’ll 
discuss data structures in chapters 5 and 7. For now, keep in mind that we’re talking 
Licensed to   <kr_wilson@hotmail.com>



34 CHAPTER 2 Core concepts in functional programming
about any composite data type, such as a C# value type or even a class, even though 
data structures are generally a simpler concept. Recall from chapter 1, in functional 
programming these data structures are immutable.

 The concept of immutable data structures logically follows from the concept of 
immutable value bindings. A typical data structure contains field declarations. If we 
extend the idea of immutability from variable declarations to field declarations, we get 
a world where everything is immutable. In C#, you can write immutable class fields using 
the readonly modifier, whereas in F# all data structures are immutable by default. F# 
isn’t a strictly functional language, so it allows you to create mutable types too.

 At this point, you know how to work with immutable data structures and how to 
create an immutable class in C#. Methods of a class or functions working with the data 
structure can’t modify the state of the structure. The only thing they can do is return 
something, so all the operations that work with the data structure return a new value 
as the result. In C# the string type behaves exactly like this. If you write 
str.Substring(0, 5), you’ll get a new string value as the result and the original string 
remains unchanged.

 We mentioned in chapter 1 that functional code is often written as a single expres-
sion rather than a sequence of statements. This different understanding of code 
makes programs more declarative, so using immutable data structures supports this 
aspect of functional style as well. Say we have a class that represents a functional collec-
tion. It’ll come with an operation that creates an empty list and an operation that 
“adds” a number to the list. Because the list is immutable, adding an element can’t 
change the original list. Instead, the operation returns a new list containing the items 
from the original list and the newly added element. If we want to create a list and add 
elements to it, we can write something like this: 

var res = ImmutableList.Empty<int>().Add(1).Add(3).Add(5).Add(7);

To do the same thing with a mutable list, we’d have to create it, then modify it by call-
ing the imperative Add method that would modify the list. As a result, we’d write one 
variable declaration and four statements (perhaps five lines of source code in total). 
This example shows that the immutable data structures often help you write more suc-
cinct code. There are ways to achieve similar benefits in imperative languages, but in 
the functional style you’ll get them without additional effort. 

 So far, you’ve seen that functional languages use immutable data structures and 
immutable values instead of mutable variables. You can imagine how to write some 
extremely simple programs without using traditional variables and the assignment 
operator. But once you start thinking about more complicated problems, things 
become difficult until you change how you look at the world. In the next section, we’ll 
look how to encode more sophisticated calculation in the functional style. 

2.2.3 Changing program state using recursion

Now, let’s see how to write more complicated functions using values. We’ll implement 
a function that sums numbers in a specified range. We could calculate this sum directly, 
Licensed to   <kr_wilson@hotmail.com>



35Evaluation of functional programs
but we’ll use it as an example of a calculation that uses a loop. (In section 2.3.1, we’ll 
show you how to change this code into a more generally useful function.) 

int SumNumbers(int from, int to) {
    int res = 0;
    for (int i = from; i <= to; i++)
        res = res + i;
    return res;
}

In this case, we can’t directly replace the variable with value bindings, because we 
need to modify the value during every evaluation of the loop. The program has to 
keep a certain state, and that state changes on each iteration of the loop. That means 
we can’t declare a new value for every change of the state, as we did in our earlier 
example. We need to make a fundamental change in the code and use a technique 
called recursion instead of using loops:

int SumNumbers(int from, int to) {
    if (from > to) return 0;
    int sumRest = SumNumbers(from + 1, to);
    return from + sumRest;
}

As you know, recursion means that a function (SumNumbers in our case) calls itself—
in this case, when we calculate the value of the sumRest variable. In this code we’re 
using only value bindings, so it’s purely functional. The state of the computation, 
which was originally stored in a mutable variable, is now expressed using recursion. 
When we first mentioned that we can’t declare a new variable for every change of 
the state, we were in some sense incorrect, because that’s what our new recursive 
implementation does. Every time the function recursively calls itself, it skips the first 
number and calculates a sum of the remaining numbers. This result is bound to a 
variable sumRest, which is declared as a new variable during every execution of the 
recursive function.

 Writing the recursive part of a computation every time would be difficult, so 
functional languages provide a way for “hiding” the difficult recursive part and 
expressing most of the problems without explicitly using recursion. We’ll get back 
to this topic in section 2.3.1 after we finish our discussion of calculation in func-
tional programs.

2.2.4 Using expressions instead of statements

In imperative languages, an expression is simply a piece of code that can be evaluated 
and that yields a result. So a method call or any use of a Boolean or integer operator is 
an expression. A statement is a piece of code that affects the state of the program and 
doesn’t have any result. A call to a method that doesn’t return any value is a statement, 
because it affects the state of the program, depending on whatever the method does. 
An assignment also changes the state (by changing a value of a variable), but in the 
simplest version, it doesn’t return any value. 
Licensed to   <kr_wilson@hotmail.com>



36 CHAPTER 2 Core concepts in functional programming
NOTE An assignment in C# returns a value, so you can write a = (b = 42);. In 
the simplest form (which we’re discussing here), it’s a statement that 
assigns a value to a variable without returning anything (such as b = 42;).

Another example of a typical statement is returning from a function using return or
escaping a loop using break. Neither construct has any “return value,” and instead, its 
only purpose is to change the state of the program. return and break change the cur-
rently executing statement of the code (return by jumping to back to the code that 
called the method and break by jumping to just after the end of the loop).

 As you know, in functional languages the state is represented by what a function 
returns and the only way to modify a state is to return a modified value. Following 
this logic, in functional languages everything is interpreted as an expression with a 
return value. The consequences can be nicely demonstrated with our earlier exam-
ple that sums numbers in a specified range. Here’s the original version of the code, 
which uses recursion but is still not fully functional because it’s written as a series of 
three statements:

int SumNumbers(int from, int to) {
   if (from > to) return 0;
   int sumRest = SumNumbers(from + 1, to);
   return from + sumRest;
}

We can turn this into a more functional version using the C# conditional operator 
(?:). Using this construct, we can rewrite the body as a single expression, which is 
closer to how functional languages treat all valid code. In C#, this is possible only for 
relatively simple code samples, because we can’t declare local variables in branches of 
the conditional operator. 

 To demonstrate how functional languages work, we’ll write the same method in a 
nonexistent “functional C#.” As you can see in listing 2.1, the only nonstandard 
feature of our “functional C#” is that it allows us to place variable declarations in- 
side expressions. 

int SumNumbers(int from, int to) {
   return                                  
      (from > to)
         ? 0                                                     
         : { var sumRest = SumNumbers(from + 1, to);
             from + sumRest; };                               
}

To write the code using only expressions, we have to deal with quite a few restrictions 
because most of the control flow constructs (such as conditionals or loops) are state-
ments. Even though the example is minimalistic, it gives us useful hints about what we 
can write in a functional language: 

Listing 2.1 Summing numbers in the specified range in a “functional C#”

B

C
D

Licensed to   <kr_wilson@hotmail.com>



37Evaluation of functional programs
■ The whole body of the method is a single expression that returns a value. In C# 
this means that the body has to start with return B. Also, we can’t use return
anywhere else in the code, because that would require jumping to the end of 
the method from a middle of an expression, which isn’t possible. 

■ Because if-then-else is a statement, we have to use the conditional operator 
instead. This also means that we have to provide code for both of the cases (C
and D). Any expression evaluates to a value, but if we omitted the else branch 
and the condition was false, we wouldn’t know what to return!

■ The expression in the else branch D is written as a code block that contains a 
variable declaration followed by a standard expression. It declares a local vari-
able sumRest that will be accessible in the rest of the code block. Variable decla-
rations in F# work exactly this way. The declaration isn’t an expression, but a 
special syntactical construct that can be appended to an expression.

We’ll get back to value bindings (an F# equivalent to variable declarations) in chap-
ter 3, so you’ll see how this works in F#. Another notable difference in F# is that 
there’s a type that represents nothing. The void keyword in C# isn’t an actual type, 
so you can’t declare a variable of type void. The F# type unit is a real type, which has 
only a single value that doesn’t carry any information. All the imperative constructs 
in F# use this type, so when calling, say, the Console.WriteLine method, F# treats it 
as an ordinary expression that returns a value of type unit. The fact that everything 
is an expression makes it easier to reason about the code. We’ll take a look at one 
very interesting technique in the next section.

2.2.5 Computation by calculation

The approach discussed in the previous two sections gives us a new way of thinking 
about program execution. To understand how an imperative program executes, we 
have to understand how its state changes. In a program written using an object-
oriented imperative language, the state is not only the internal state of all the objects, 
but also the currently executing statement (in each thread!) and the state of all the 
local variables in every stack frame. The fact that the currently executing statement is 
part of the state is important, because it makes tracing the state difficult when you’re 
writing the program execution on paper. 

 In functional programming, we can use an approach called computation by calcula-
tion. This approach is particularly important for Haskell (see the sidebar “Mathematical 
purity in Haskell”) and is described in more detail in The Haskell School of Expression
[Hudak, 2000]. Using computation by calculation, we start with the original expression 
(such as a function call) and perform a single step (like replacing the call with the body 
of the function or calculating a result of a primitive mathematical operation). By 
repeating this step several times, we can easily analyze how the program evaluates. 

 This technique is particularly useful if we want to understand the behavior of a 
function in corner cases. In listing 2.2 we use it to analyze how SumNumber behaves 
when it gets the same number as both an upper and a lower bound of the range.
Licensed to   <kr_wilson@hotmail.com>



38 CHAPTER 2 Core concepts in functional programming
Start evaluating the call SumNumbers(5, 5):

SumNumbers(5, 5)

Expand the function call using the body of the function. Replace all occurrences of 
function parameters with the value specified as an argument (from = 5, to = 5):

(5 > 5) ? 0 : {
   var sumRest = SumNumbers(5 + 1, 5); 
   5 + sumRest; };

Reduce the conditional operator expression. First, evaluate the condition (5 > 5) and 
then continue evaluating the false branch:

var sumRest = SumNumbers(5 + 1, 5); 
5 + sumRest;

Calculate the value assigned to the sumRest variable. To do this, we evaluate values of 
the function call arguments and expand SumNumbers(6, 5):

var sumRest = 
   return (6 > 5) ? 0 : {
      var sumRest = SumNumbers(6 + 1, 5); 
      6 + sumRest; };
5 + sumRest

Continue calculating the value of sumRest. Evaluate the condition (6 > 5) and 
replace the initialization expression with the subexpression from the then branch:

var sumRest = 0
5 + sumRest

After evaluating the value of the variable, we can replace all occurrences of the vari-
able in the rest of the expression with its actual value:

5 + 0

Evaluate the call to the primitive + operator:

5

As you can see, this way of writing down the computation of functional code is easy. 
Even though functional programmers don’t spend their lives writing down how their 
program executes, it’s useful to get used to this kind of computation, because it gives 
us a powerful way of thinking about functional code.

 Of course, because this example was so simple, we didn’t discuss many important 
details. Rest assured, we’ll get to all of these problems in the next chapter. Another 
interesting aspect of the computation shown in listing 2.2 is deciding which part of 
the expression should be evaluated next. In this example we used the innermost sub-
expression, so we evaluate all arguments of a function call or an operator use (with 
the exception of conditional operator, which is treated differently). This strategy, 
called strict or eager, is how many functional languages, including F#, work, and it’s sim-
ilar to executing the code statement by statement. 

Listing 2.2 Functional evaluation of an expression SumNumbers(5,5)
Licensed to   <kr_wilson@hotmail.com>



39Writing declarative code
In the last few sections, we discussed program state and writing calculations using 
recursion. We promised that you’d learn how to write the difficult part of the code in 
a reusable way, so that’s the main topic of our next section. 

2.3 Writing declarative code
In chapter 1, you learned what it means to use a declarative programming style from a 
high-level perspective. Now, we’ll talk about more technical concepts of the functional 
style that enable declarative programming. From this point of view, two important 
aspects lead to the declarative style. We just discussed the first one—that every lan-
guage construct is an expression. This aspect demonstrates that functional languages 
try to minimize the number of built-in concepts—we don’t need any notion of state-
ment, because the whole program can be composed from expressions. Writing every 
operation using explicit recursion would be difficult. The second aspect addresses this 
problem, so let’s start by seeing how to write a single function that can be used in 
many variations for different purposes.

2.3.1 Functions as values

The question that motivates this section is “How can we separate the functionality 
that will vary with every use from the recursive nature of the code that always stays 
the same?” The answer is simple: we’ll write the recursive part as a function with 
parameters and these parameters will specify the “unique operation” that the func-
tion should perform.

Mathematical purity in Haskell
Haskell appeared in 1990 and has been popular in the academic community. In this 
section you’ve seen that in functional languages, you work with immutable data struc-
tures and use immutable values rather than mutable variables. This isn’t strictly true 
in F# because you can still declare mutable values. This nonstrict approach is partic-
ularly useful for .NET interoperability. Most of the .NET libraries rely on mutable state, 
as it was designed for imperative object-oriented languages such as C# and VB.NET. 

On the other hand, Haskell strictly enforces mathematical purity. This means it can 
be flexible about the order in which programs execute. In our previous example, we 
mentioned that F# evaluates the innermost part of an expression first. In Haskell, 
there are no side effects so the order of evaluation doesn’t (and can’t) matter. As long 
as we’re reordering parts of the code that don’t depend on each other, it won’t change 
the meaning of the program. As a result, Haskell uses a technique called lazy evalua-
tion, which doesn’t evaluate the result of an expression until it’s actually needed (for 
example, to be printed on a console). 

The ability to make a change in the program without changing its meaning is impor-
tant in F# too, and you’ll learn how to use it to refactor F# programs in chapter 11. 
You’ll see that lazy evaluation can be used in F# as well and can be a valuable opti-
mization technique.
Licensed to   <kr_wilson@hotmail.com>



40 CHAPTER 2 Core concepts in functional programming
 Let’s demonstrate using the SumNumbers method. In section 2.2.3, we wrote a func-
tion that takes an initial value, looping through a specified numeric range. It calcu-
lates a new “state” of the calculation for each iteration using the previous state and the 
current number from the range. So far we’ve used zero as an initial value. We used 
addition to aggregate the numbers in the range, so a resulting computation for a 
range from 5 to 10 would look like this: 5 + (6 + (7 + (8 + (9 + (10 + 0))))). 

 What if we decide to modify this function to be more general and allow us to per-
form computations using different operations? For example, we could multiply all the 
numbers in the range together, generating the following computation: 5 * (6 * (7 * (8 
* (9 * (10 * 1))))). If you think about the differences between these two computations, 
you’ll see that there are only two changes: we changed the initial value from 0 to 1 
(because we don’t want to multiply the result of a call by zero!), and we changed the 
operator used during the computation from + to *. Let’s see how we could write a func-
tion like this in C#:

int AggregateNumbers(Func<int, int, int> op, int init, int from, int to) {
    if (from > to) return init;
    int sumRest = AggregateNumbers(op, init, from + 1, to);
    return op(from, sumRest);
}

We added two parameters to the function—the initial value (init) and an operation 
(op) that specifies how to transform the intermediate result and a number from the 
range into the next result. To specify the second parameter, we’re using a delegate, 
Func<int, int, int>, which represents a function that has two parameters of type int
and returns an int. This delegate type is available in .NET 3.5 (we’ll talk about it in 
chapter 3).

 In functional languages, we don’t have to use delegates, because these languages 
have a much simpler concept: a function. This is exactly what the term functions as val-
ues refers to—the fact that we can use functions in the same way as any other data type 
available in the language. We can write functions that take functions as parameters (as 
we did in this example), but also return a function as the result or even create a list of 
functions, and so on. Functions are also useful as a mental concept when approaching 
a problem.  

Thinking about problems using functions
For many people who know functional programming, the most important thing isn’t that 
functional languages have some particular useful features, but that the whole environ-
ment encourages you to think differently and more simply about problems that you en-
counter when designing and writing applications regardless of the language you use.

The idea of using functions as ordinary values is one of these useful concepts. Let’s 
demonstrate using an example. Suppose we have a list of customers and we want to 
sort it in a particular way.
Licensed to   <kr_wilson@hotmail.com>



41Writing declarative code
In chapter 1, we said that the declarative style gives us a new way for extending the 
vocabulary we can use to specify a solution to a class of problems. This general goal 
can be achieved by using functions that take other functions as parameters. We’ll talk 
about these in the next section.

2.3.2 Higher-order functions

You know that we can treat functions as values and write functions that take other 
functions as parameters. There are two important terms that are often used when talk-
ing about these kinds of functions: 

■ First-class functions, meaning that a function is a value just like any other, so you 
can use a function as an argument to another function. As a result, function val-
ues also have a type (in C#, this is expressed using a delegate). You can use a 
function in any place where you can use an integer or a string. 

■ Higher-order function, which refers to a function that takes a function as a param-
eter or returns it as a result. In the C# examples in this book, we’ll often use 
higher-order functions. For example, the method AggregateNumbers from the 
previous section is a higher-order function. 

(continued)
The classical object-oriented way to address this problem is to use a Sort method 
that takes a parameter of some interface type (in .NET this would be IComparer 
<Customer>). The parameter specifies how to compare two elements. Now, if we 
want to sort the list using customer names, we’d create a class that implements this 
interface and use an instance of that class. To summarize, that means writing an in-
terface that contains a member representing the operation we want to use, creating 
a class that implements the interface, creating an instance of that class, and pass-
ing it as an argument.

In functional programming, we can use the concept of a function. You’ve seen that C# 
can represent similar ideas using a delegate—which is definitely simpler than inter-
faces— but functions are even simpler. They don’t have to be declared in advance, 
and the only thing that matters about them is what arguments they take and what re-
sults they return. The generic Func delegate in .NET 3.5 is close to the idea of a func-
tion, but once you get used to thinking about functions, you’ll find places where they 
are appropriate more often than when thinking about delegates.

The argument of the functional Sort method would be a function that takes two cus-
tomers as arguments and returns an integer. This is a brief way to specify the argu-
ment. On the other hand, when using an interface or a delegate, we have to declare 
some type in advance and then refer to it whenever we want to use the object-orient-
ed Sort method. Using a function is more straightforward, because when you look 
at the functional Sort method, you immediately see what argument it expects. The 
concept of a function is useful even if you end up implementing the code using inter-
faces. It gives you a terser way to think about the problem, so the number of ele-
ments that you’ll have to keep in mind will be lower.
Licensed to   <kr_wilson@hotmail.com>



42 CHAPTER 2 Core concepts in functional programming
This kind of parameterization of code is used often in functional languages, so as 
you’ll see, many of the useful functions in the F# library are higher-order functions. 
Let’s look at an example that shows how higher-order functions make our code 
more declarative.
EXTENDING THE VOCABULARY USING HIGHER-ORDER FUNCTIONS

Working with collections is the best example of how higher-order functions make your 
code more declarative. You can do so in C# using the extension methods (such as 
Where and Select) that are provided as part of LINQ, because everything you can 
write using a LINQ query can be also written using a method that takes a Func delegate 
as an argument.

 In this section we’ll look at how to write the same code using lists in F# to demon-
strate a few interesting aspects of F#. We haven’t yet seen enough from F# to fully 
explain what the code does, but we know enough to see the high-level picture. The 
first example in listing 2.3 shows how to filter only odd numbers from a list. The sec-
ond one filters numbers and then calculates the square of every returned number.

> let numbers = [ 1 .. 10 ]
   let isOdd(n) = n % 2 = 1  
   let square(n) = n * n  
  ;;
val numbers : int list 
val isOdd : int -> bool  
val square : int -> int

> List.filter isOdd numbers;;     
val it : int list = [1; 3; 5; 7; 9]

> List.map square (List.filter isOdd numbers);;  
val it : int list = [1; 9; 25; 49; 81]

We first implemented two functions, which we’ll use later when working with lists. The 
first one tests whether a number given as an argument is odd B and the second one 
returns square of a given integer C. Recall from chapter 1, the F# compiler automati-
cally deduces the types of expressions that we enter, so it also deduced the type of 
those functions D. We’ll talk about types in F# later in this chapter, and chapter 3 
explores in detail the printed type signatures and function declarations.

 Listing 2.3 shows how higher-order functions extend our vocabulary when 
expressing a problem. In the first example, we’re using a higher-order function, 
List.filter, which takes a function as the first argument and a list as the second 
argument E. We give it our function that tests whether a number is odd and a list of 
numbers from 1 to 10. As you can see on the next line, the result is a list containing 
all odd numbers in that range.

 In the usual imperative style, we could implement this using a for loop or similar 
construct. As you learned in the first chapter, imperative languages give us only a lim-
ited way to compose basic commands and the for loop is one of them. The example 

Listing 2.3 Working with lists using higher-order functions (F# Interactive)

B
C

D

E

F

Licensed to   <kr_wilson@hotmail.com>



43Writing declarative code
we’ve just seen implements a new control structure for composing commands. The 
List.filter function is an abstract way for describing certain patterns for working 
with lists, but makes the pattern reusable, because we can specify the behavior of the 
filter using a function. Higher-order functions are an essential concept of functional 
programming, and we’ll talk about them again in chapter 6. As you’ll see, we can write 
useful higher-order functions for working with most data structures.

 In the second example F, we use the entire expression from the first example as 
an argument to another function. This time we use List.map, which applies the func-
tion given as the first argument to all values from the given list. In our example, this 
means that it calculates squares of all odd numbers. The code is still declarative, but it 
isn’t as readable as it should be. One of the reasons for this is that the first construct of 
the expression is List.map, but List.map is actually the operation that’s performed 
last. F# is a flexible language and it gives us ways to deal with this problem. Let’s see 
how we can use another feature—pipelining—to make the code clearer.
LANGUAGE-ORIENTED PROGRAMMING

Language-oriented programming can be viewed as another programming paradigm, 
but it is less clearly defined. The principle is that we’re trying to write the code in a 
way that makes it read more naturally. This goal can be achieved in languages that 
provide more flexibility in how you can write the code.

 In this section, we’ll see that a relatively simple syntactical change can give us a dif-
ferent point of view when thinking about the code. Listing 2.4 shows the new way of 
writing the same code—we’re still returning squares of odd numbers. The example 
only demonstrates the idea, so you don’t have to fully understand it. We’ll talk about 
language-oriented programming and list processing later in this book. The point of 
this example is to show a different way of thinking about the task. 

> let squared = 
     numbers                                     
     |> List.filter isOdd                        
     |> List.map square;;                        
val it : int list = [1; 9; 25; 49; 81]

Instead of nesting function calls, we’re now using the pipelining operator (|>). This con-
struct allows you to write expressions as a series of operations that are applied to the 
data. The code is still written in the usual F# language, but if you didn’t know that, you 
could almost believe it was written in a data processing language. 

NOTE From the F# point of view there’s nothing special about the code. F# 
allows you to write custom operators and the pipelining operator is just 
an operator that we can define ourselves. The rest of the code is written 
using the appropriate parameterized higher-order functions.

We can look at the set of list processing constructs (such as |>, List.map, and others) 
as if it were a separate list processing language embedded in F#. This is what the term 

Listing 2.4 Elegant way for working with functions (F# Interactive)
Licensed to   <kr_wilson@hotmail.com>



44 CHAPTER 2 Core concepts in functional programming
language-oriented programming refers to. Even though the code is implemented as a 
completely standard F# library, it looks like a language designed for this particular 
problem, which makes the code more readable. In fact, many well-designed func-
tional libraries look like declarative languages.

 The fact that functional libraries look like declarative languages for solving prob-
lems in some specific area is a critical aspect of the declarative style. Its great benefit is 
that it supports division of work in larger teams. You don’t have to be an F# guru to 
understand how to use the list processing “language” or any other library that’s 
already available. This means that even novice F# programmers can quickly learn how 
to solve problems using an existing library. Implementing the library is more difficult, 
so this is a task that would be typically handled by the experienced F# developers on 
the team. 

 This book aims to train functional masters, so we’ll talk about this problem in 
upcoming chapters. In chapter 6, we’ll look at writing higher-order functions for 
working with lists and other basic types. Using higher-order functions is a basic 
technique used when designing functional libraries, but as we’ve seen in this sec-
tion, it makes the code look natural. In chapter 15, we’ll take the next step and 
design a library for creating animation with the goal of making the syntax as natural 
as possible. 

Language-oriented programming in LISP
LISP appeared in 1958 and is the oldest high-level language still in common use (oth-
er than FORTRAN). There are also some popular LISP dialects, including Common Lisp
and Scheme. The languages from this family are widely known for their extremely flex-
ible syntax, which allows LISP to mimic many advanced programming techniques. This 
includes OOP, but also some less widely known approaches, like aspect-oriented pro-
gramming (AOP). AOP is available today in languages like AspectJ or libraries such as 
PostSharp or prototype-based object systems (also seen in JavaScript).

Anything you write in LISP is either a list or a symbol, so you can write (- n 1). This 
is a list containing three symbols: -, n, and 1. LISP can be viewed as program code: 
a call to the function - (the binary minus operator) with two arguments: n and 1. This 
makes the code a bit difficult to read if you’re not used to the syntax, but we wanted 
to show it here to demonstrate how far the idea of making the language uniform can 
be taken. When solving some difficult problem in LISP, you almost always create your 
own language (based on LISP syntax), which is designed for solving the problem. You 
can simply define your own symbols with a special meaning and specify how the code 
written using these symbols executes.

You saw something similar when we discussed declarative animations in chapter 1, 
so you know that we can use a language-oriented approach even when writing 
the code in C#. We’ll talk about this example in chapter 15, where you’ll learn how 
language-oriented programming looks in both C# and F#.
Licensed to   <kr_wilson@hotmail.com>



45Functional types and values
In the declarative programming style, we’re extending the vocabulary, which we can 
use to express our intentions. We also need to make sure that the primitives we’re add-
ing will be used in a correct way. In the next section, we’ll look at types, which serve as 
“grammar rules” for these primitives. 

2.4 Functional types and values
The C# language is a statically typed programming language;1 every expression has a 
type known during compilation. The compiler uses static typing to verify that when 
the program runs, it will use values in a consistent way. For example, it can guarantee 
that the program won’t attempt to add a DateTime with an integer, because the + oper-
ator can’t be used with these two types.

 In C#, we have to specify the types explicitly most of the time. When writing a method, 
we have to specify what the types of its parameters are and what the return type is. In F# 
we don’t typically write any types. F# language is also statically typed. In F#, every expres-
sion has types as well, but F# uses a mechanism called type inference to deduce the types 
automatically at compile-time. Static typing in a functional language such as F# guar-
antees even more than it does in C#. We’ll see an example in chapter 5 when we discuss 
the option type, which can be used to avoid using uninitialized references.

We’ll talk about values and their types primarily in chapter 5. In chapter 6, you’ll learn 
how types of higher-order functions help you to write correct code. You’ll also see that 
type information can often give you a good clue about what the function does. In the 

1 C# 4.0 adds support for some of the dynamic language features, but even with these features, C# is still a 
mostly statically typed language.

Types in functional programming
Because functional languages treat any piece of code as an expression, saying that 
every expression has a type is a very strong statement. It means that any syntacti-
cally correct piece of F# code has some type. The type says what kind of results we 
can get by evaluating the expression, so the type gives us valuable information 
about the expression.

Types can be viewed as grammar rules for composing primitives. In functional lan-
guages, a function (such as the square function from the previous example) has a 
type. This type specifies how the function can be used—we can call it with an integer 
value as an argument to get an integer as the result. 

More importantly, the type also specifies how we can compose the function with 
higher-order functions. For example, we couldn’t use square as an argument for 
List.filter, because filtering expects that the function returns a Boolean value 
and not an integer. This is exactly what we mean by a grammar rule—the types verify 
that we’re using the functions in a meaningful way.
Licensed to   <kr_wilson@hotmail.com>



46 CHAPTER 2 Core concepts in functional programming
next section, we’ll look at the mechanism that allows us to use types without writing 
them explicitly.

2.4.1 Type inference in C# and F#

When most of the types have a simple name such as int or Random, there’s only a small 
need for type inference, because writing the type names by hand isn’t difficult. C# 2.0 
supports generics, so you can construct more complicated types. The types in func-
tional languages like F# are also quite complicated, particularly because you can use 
functions as a value, so there must also be a type that represents a function. 

 A simple form of type inference for local variables is now available in C# 3.0. When 
declaring a local variable in earlier versions of C#, you had to specify the type explic-
itly. In C# 3.0 you can often replace the type name with a new keyword, var. Let’s look 
at a couple of basic examples:

var num = 10;
var str = "Hello world!";

The first line declares a variable called num and initializes its value to 10. The compiler 
can easily infer that the expression on the right-hand side is of type int, so it knows 
that the type of the variable must also be int. Note that this code means exactly the 
same thing as if you had written the type explicitly. During the compilation, the C# 
compiler replaces var with the actual type, so there is no additional work done at run-
time. As we have mentioned, this is particularly useful when working with complex 
generic types. For example, we can write the following:

var dict = new Dictionary<string, List<IComparable<int>>>();

Without the var keyword, you’d have to specify the type twice on a single line:

■ When declaring the variable 
■ When creating the instance of Dictionary class

The type inference in C# is limited to local variable declarations. In F# you often don’t 
write any types at all. If the F# type inference fails to deduce some type, you can specify 
the type explicitly, but this is a relatively rare occurrence.

 To give you a better idea of how this works, listing 2.5 shows a simple function that 
takes two parameters, adds them, and formats the result using the String.Format
method. The listing first shows valid F# code, then how you could write it in C# if 
implicit typing were extended to allow you to use the var keyword in other places.

let add a b =   
   let res = a + b  
   String.Format("{0} + {1} = {2}", a, b, res)  

var Add(var a, var b) {                                         
   var res = a + b;                                                   
   return String.Format("{0} + {1} = {2}", a, b, res);
}

Listing 2.5 Implementing methods with type inference

B
C

D

E

Licensed to   <kr_wilson@hotmail.com>



47Functional types and values
As you can see, the F# syntax is designed in a way that you don’t have to write any types 
at all in the source code B. In the pseudo-C# version E, we used the var keyword 
instead of any types, and this is (in principle) what the F# compiler sees when you 
enter the code. If you paste the code for this function into F# Interactive, it will be 
processed correctly and F# Interactive will report that the function takes two integers 
as arguments and returns a string. Let’s look how the F# compiler can figure this out.

 The first hint that it has is that we’re adding the values a and b C. In F#, we can 
use + to add any numeric types or to concatenate strings, but if the compiler doesn’t 
know anything else about the types of values, it assumes that we’re adding two inte-
gers. From this single expression, the compiler can deduce that both a and b are inte-
gers. Using this information, it can find the appropriate overload of the 
String.Format method D. The method returns string, so the compiler can deduce 
that the return type of the add function is also a string.

 Thanks to the type inference, we can avoid many errors and use all other benefits 
of static typing (like hints to developers when writing the code) and at almost no 
price, as the types are inferred automatically in most of the cases. When using F# in 
Visual Studio, the type inference is running in the background, so when you hover 
over a value with a mouse pointer, you’ll instantly see its type. The background compi-
lation also reports any typing errors instantly, so you’ll get the same experience as 
when writing C# code.

 If you’re accustomed to using types from other programming languages, you 
probably already know that there are primitive types (like integers, characters, or 
floating-point numbers) and more complicated types composed from these primi-
tive types. Functional languages have a slightly different set of composed types. We’ll 
talk about all these types in detail in chapter 5, but first let’s explore one particu-
larly interesting type.

2.4.2 Introducing the discriminated union type

In this section, we’ll focus on the discriminated union type, one of the basic func-
tional types. Let’s begin with a sample that illustrates its usefulness. Imagine that 
you’re writing an application that works with graphical shapes. We’ll use a simple rep-
resentation of shape, so it will be a rectangle, an ellipse (defined by the corners of a 
bounding rectangle), or a shape composed from two other shapes.

 If you think about this problem using the object-oriented concepts, you’ll probably 
say that we need an abstract class to represent a shape (let’s call it Shape) and three 
derived classes to represent the three different cases (Ellipse, Rectangle, and Com-
posed). Using the object-oriented terminology, we now have in mind four classes that 
describe the problem. Also, we don’t yet know what we’ll want to do with shapes. We’ll 
probably want to draw them, but we don’t know yet what arguments we’ll need to do 
the drawing, so we can’t yet write any abstract method in the Shape class.

 Our original idea was simpler than this full-blown class hierarchy: we just needed 
to have a representation of a shape with three different cases. We want to define a 
Licensed to   <kr_wilson@hotmail.com>



48 CHAPTER 2 Core concepts in functional programming
simple data structure that we can use to represent the shape—and F# allows us to do 
exactly that:

type Shape = 
   | Rectangle of Point * Point       
   | Ellipse of Point * Point         
   | Composed of Shape * Shape        

This code creates a discriminated union type called Shape, which is closer to the original 
intention we had when describing the problem to start with. As you can see, the type dec-
laration contains three cases that cover three possible representations of the shape. 
When working with values of this type in F#, we’ll write code such as Rectangle(pt1, 
pt2) to create a rectangle. Unlike with unions in the C language, the value is tagged, 
which means that we always know which of the options it represents. As we’ll see in the 
next section, this fact is quite important for working with discriminated union values. 

 The usual development process in F# starts by designing data structures needed to 
keep the program data. We’ll explore this problem in greater detail in chapters 7 
through 9. In the next section, we’ll introduce pattern matching, a concept that 
makes many typical functional programming tasks easy. Even though pattern match-
ing doesn’t look like a concept related to types, you’ll see that there are some impor-
tant connections. Among other things, we can use pattern matching for 
implementing functions that work with discriminated unions.

2.4.3 Pattern matching

When using functional data types, we know much more about the structure of the 
type that we’re working with. A nice demonstration of this property is a discriminated 
union—when working with this type, we always know what kind of values we can 
expect to get (in our previous example, it could be a rectangle, an ellipse, or a com-
posed shape).

 When writing functions that work with discriminated unions, we must specify what 
the program should do for each of the cases. The construct that makes this possible is 
in many ways similar to the switch statement from C#, but several important differ-
ences exist. First let’s see how we can use the switch statement to work with a data 
structure mimicking a discriminated union in C#. Listing 2.6 shows how we could 
print information about the given shape.

switch(shape.Tag) {             
   case ShapeType.Rectangle:
      var rc = (Rectangle)shape;                                   
      Console.WriteLine("rectangle {0}-{1}", rc.From, rc.To);
      break;
   case ShapeType.Composed:
      Console.WriteLine("composed");
      break;
}

Listing 2.6 Testing cases using the switch statement (C#)

B

Licensed to   <kr_wilson@hotmail.com>



49Functional types and values
Listing 2.6 assumes that the shape type has a property Tag B, which specifies what 
kind of shape it represents. This corresponds to F# discriminated unions, where we 
can also test which of the possible cases the value represents. When the value is a rect-
angle, we want to print some information about the rectangle. To do this in C#, we 
first have to cast the shape (which has a type of the abstract base class Shape) to the 
type of the derived class (in our example, it’s Rectangle), and then we can finally 
access the properties that are specific for the rectangle. In functional programming 
we use this type of construct more often than in regular C#, so we’ll need an easier 
and safer way for accessing properties of the specific cases.

 A final thing worth noting about listing 2.6 is that it contains code for only two of 
the three cases. If the shape represents an ellipse, the switch statement won’t do any-
thing. This may sometimes be the right behavior in C#, but it’s not appropriate for 
functional programs. We said that everything is an expression in functional program-
ming, so we could return some value from the functional version switch. In that case, 
we definitely need to cover all cases, because otherwise the program wouldn’t know 
what value to return.

 In listing 2.7, we’ll look at the F# alternative to the C# switch statement. The con-
struct is called match; we’ll use it to calculate the area occupied by the shape.

match shape with
| Rectangle(pfrom, pto) ->
     rectangleArea(pfrom, pto)  
| Ellipse(pfrom, pto) ->
     ellipseArea(pfrom, pto)
| Composed(Rectangle(from1, to1), Rectangle(from2, to2))
        when isNestedRectangle(from2, to2, from1, to1) ->    
     rectangleArea(from1, to1)
| Composed(shape1, shape2) ->     
     let area1 = shapeArea(shape1)
     let area2 = shapeArea(shape2)
     area1 + area2 - (intersectionArea(shape1, shape2))

The first important difference from the C# switch construct is that in F#, we can 
deconstruct the value that we’re matching against the patterns. In listing 2.7, it is used 
in all the cases. The different cases (denoted using the | symbol) are usually called pat-
terns (or guards).

 When calculating area of a rectangle B, we need to get the two points that specify 
the rectangle. When using match, we can just provide two names (pfrom and pto) and 
the match construct assigns a value to these names when the shape is represented as a 
rectangle and the branch is executed. Listing 2.7 is simplified, so it just uses a utility 
function to calculate the actual number. 

 The second case is for an ellipse, and it’s very similar to the first one. The next case 
is more interesting C. The pattern that specifies conditions under which the branch 
should be followed (which is specified between the bar symbol and the arrow [->]) is 
quite complicated. The pattern only matches when the shape is of type Composed, and

Listing 2.7 Calculating the area using pattern matching (F#)

B

c

D

Licensed to   <kr_wilson@hotmail.com>



50 CHAPTER 2 Core concepts in functional programming
both of the shapes that form the composed shape are rectangles. Instead of giving 
names for values inside the Composed pattern, we specify another two patterns (Rect-
angle, twice). This is called a nested pattern and it proves very useful. Additionally, this 
pattern contains a when clause, which allows us to specify any arbitrary condition. In 
our example, we call the isNestedRectangle function, which tests whether the sec-
ond rectangle is nested inside the first one. If this pattern is matched, we get informa-
tion about two rectangles. We also know that the second one is nested inside the first 
one, so we can optimize the calculation and return the area of the first rectangle.

 The F# compiler has full information about the structure of the type, so it can ver-
ify that we’re not missing any case. If we forgot the last one D it would warn us that 
there are still valid shapes that we’re not handling (for example, a shape composed 
from two ellipses). The implementation of the last case is more difficult, so if our pro-
gram often composes two rectangles, the optimization in the third case would be 
quite useful. Similar to first-class functions, discriminated unions and pattern match-
ing are other functional concepts that let us think about problems in simple terms. 

We mentioned that the F# compiler can verify that we don’t have any missing cases in 
the pattern matching. This is one of the benefits that we get thanks to the static typing 
of the F# language, but there are many other areas where it helps too. In the next sec-
tion, we’ll review the benefits and look at one example that highlights the goals of 
compile-time checking in F#.

Thinking about problems using functional data structures
Even though there’s no simple way to create a discriminated union type in C#, the con-
cept is still valuable even for C# developers. Once you become more familiar with 
them, you’ll find that many of the programming problems you face can be represented 
using discriminated unions. 

If you know the object-oriented design pattern called composite, you may recognize it 
in our earlier example. We can create a more complicated shape by composing it from 
two other shapes. In functional programming, we’ll use discriminated unions more 
often to represent program data, so in many cases the composite design pattern 
will disappear.

If you end up implementing the problem in C#, you can encode a discriminated union 
as a class hierarchy (with a base class and a derived class for every case). Mentally 
you can still work with the simple concept, which makes thinking about the applica-
tion architecture easier. In functional programming, this kind of data structure is 
used frequently, which also explains why functional languages support more flexible 
pattern matching constructs. Listing 2.7 demonstrated that the F# match expression 
can simplify implementation of rather sophisticated constructs. We’ll see this type 
of simplification repeatedly throughout the book: an appropriate model and a bit of 
help from the language can go a long way to keeping code readable.
Licensed to   <kr_wilson@hotmail.com>



51Functional types and values
2.4.4 Compile-time program checking

Well-known benefits of using compile-time typing are that it prevents many common 
mistakes and the compiled code is more efficient. In functional languages there are 
several other benefits. Most importantly, types are used to specify how functions can 
be composed with each other. The types are not only useful for writing correct code, 
but serve as valuable information:

■ For the developer, as part of the documentation 
■ For the IDE, which can use types to provide useful hints when writing the code 

Types in functional languages tell us even more than they do in imperative languages 
such as C#, because the functional code uses generics more often. In fact, most of the 
higher-order functions are generic. We’ve seen that, thanks to type inference, the 
types can be nonintrusive and you often don’t have to think about them when coding.

 In the next section, we’ll show one example of a feature that nicely demonstrates 
the purpose of types and compile-time program checking in F#. The goal is to make 
sure that your code is correct as early as possible and to provide useful hints when writ-
ing it. 
UNITS OF MEASURE

In 1999 NASA’s Climate Orbiter was lost because part of the development team used 
the metric system and another part used imperial units of measure. A part of the team 
expected that distances were measured in meters and weight in kilograms, while the 
other part provided data in inches and pounds. This incident was one of the motiva-
tions for a new F# feature called units of measure, which allows us to avoid this kind of 
issue. We’ll talk about units of measure in chapter 13; here we want to use units of 
measure to demonstrate how type checking helps when writing F# code. We chose this 
example because it’s easy to explain, but the compile-time checking is present when 
writing any F# code.

 Listing 2.8 shows a brief session from F# Interactive. The calculation tests whether 
the speed of a car is violating a specified maximum speed.

> let maxSpeed = 50.0<km/h>                                     
  let actualSpeed = 40.0<mile/h>  
  ;;
val maxSpeed : float<km/h>        
val actualSpeed : float<mile/h>  

> if (actualSpeed > maxSpeed) then  
     printfn "Speeding!";;
Error FS0001: Type mismatch. 
Expecting a float<mile/h> but given a float<km/h>.                         
The unit of measure 'mile/h' does not match the unit of measure 'km/h'  

> let mphToKmph(speed:float<mile/h>) =        
     speed * 1.6<km/mile>;;                           
val mphToKmph : float<mile/h> -> float<km/h>

Listing 2.8 Calculating speed using units of measure (F# Interactive)

Maximal allowed 
speed in km/hActual speed in mph

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



52 CHAPTER 2 Core concepts in functional programming
> if (mphToKmph(actualSpeed) > maxSpeed) then  
     printfn "Speeding!";;
Speeding!

Listing 2.8 starts by declaring two values (maxSpeed and actualSpeed). The declara-
tion annotates these values with units, so you can see that the first is in kilometers per 
hour and the second is in miles per hour. This information is captured in the type B, 
so the type of these two values isn’t just a float but a float with additional informa-
tion about the units.

 Once we have these values, we try to compare the actual speed with the speed 
limit C. In a language without units of measure, this comparison would be per-
fectly valid and the result would be false (because 40 is less than 50), so the driver 
would escape without a penalty. The F# compiler reports D that we can’t compare 
these numbers, because the type float<km/h> is a different than float<mile/h>.

 To solve the problem, we have to implement a function that converts the speed 
from one type to another E. The function takes an argument of type float<mile/h>, 
which means that the speed is measured in miles per hour and returns a float repre-
senting speed in kilometers per hour. Once we use this conversion function in the 
condition F, the code compiles correctly and reports that the actual speed is in fact 
larger than the allowed speed. If we implemented this as a standalone application 
(without using F# Interactive), we’d get an error complaining about units during the 
compilation. Additionally, you can see the units in Visual Studio, so it helps you verify 
that your code is doing the right thing. If you see that a value that should represent 
the speed has a type float<km^2>, you quickly realize that something is wrong with 
the equation. Note that there’s a zero runtime penalty for units of measure in F#. The 
verification of the code correctness is done at compile-time as part of type checking.

 While static type checking isn’t present in all functional languages, it’s extremely 
important for F#. In the last few sections, we looked at the concepts that are important 
for functional languages, and you’ve seen how some functional constructs differ from 
similar constructs in the common imperative and object-oriented languages. Some of 
the features may still feel a bit unfamiliar, but we’ll discuss every concept in detail later 
in the book, so you may return to this overview to regain the “big picture” after you 
learn more about functional programming details. 

2.5 Summary
In this chapter, we talked about functional programming in general terms, including 
its mathematical foundation in lambda calculus. You’ve learned about the elements 
that are essential for functional programming languages such as immutability, recur-
sion, and using functions as values. We briefly introduced the ideas that influenced 
the design of these languages and that are to some extent present in almost all of 
them. These ideas include making the language extensible, writing programs using a 
declarative style, and avoiding mutable state. Even though all of the languages we’ve 
discussed are primarily “functional,” there are still important differences between 

F

Licensed to   <kr_wilson@hotmail.com>



53Summary
them. This is because each of these languages puts emphasis on a slightly different 
combination of the essential concepts. Some of the languages are extremely simple 
and extensible, while others give us more guarantees about the program execution.

 In the next chapter, we’ll see how some of the functional concepts look in practice 
in F# and how the same ideas can be expressed in C#, so you can see familiar C# code 
with a functional F# equivalent side by side. In particular, we’ll describe functional 
data structures and look at the tuple, a basic F# immutable data structure, as well as its 
equivalent in C#. We’ll also look at collections of data (called lists in functional lan-
guages) and how you can work with them using recursion. You’ve seen that a single 
recursive function can be used for various purposes when it takes another function as 
an argument, so we’ll use this technique for writing universal list-processing code. 

 

Licensed to   <kr_wilson@hotmail.com>



Meet tuples, lists, and 
 functions in F# and C#
In chapter 2, we explored the most important concepts of functional program-
ming, but we did this from a high-level perspective. We haven’t shown you any real
functional code, aside from quick examples to demonstrate our ideas. Our goal so 
far has been to illustrate how concepts relate to one another and how the result is a 
very different approach to programming. 

 In this chapter you’ll finally get to write functional F# code, but we’ll focus on 
examples that can be nicely explained and demonstrated using C#. We won’t yet 
delve into the details; you’ll learn more about those in part 2.

 Here’s a brief look at this chapter’s topics:

This chapter covers
■ Declaring functions and values
■ Working with immutable tuples and lists
■ Processing lists using recursion
■ Parameterizing processing functions
54

Licensed to   <kr_wilson@hotmail.com>



55Value and function declarations
■ Value bindings —The F# feature that unifies function and value declarations; 
we’ll also look at constructs that aren’t familiar from C#, such as nested func-
tion declarations. 

■ Immutability —A general principle saying that values can’t change after they’ve 
been initialized; we’ll demonstrate it using the simplest functional data type: a 
tuple.

■ Lists —A humble, but very useful, functional data type; just like the tuple, it’s 
immutable, but it’s also recursive, which is another important aspect; most impor-
tantly, we’ll look at how to write recursive computations that process lists.

■ Pattern matching —A feature used for checking the structure and content of data 
types; we’ll introduce it when we’ll talk about tuples and lists.

■ Functions as values —Using function values as parameters of other functions, we 
can hide the difficult part of a computation. We’ll see how to implement this 
idea in both F# and C#.

As you can see, we have a quite a few features to go through! After the introduction 
from chapter 2, you have a good idea about most of the features, so understanding 
them in practice won’t be a problem for you. We’ll also use C# examples to demon-
strate how the F# code works, which is often more useful than numerous paragraphs 
of written text.

3.1 Value and function declarations
You’ve already seen several examples of value binding (written using the let keyword
in F#) in chapter 1. As you’ll see, value binding isn’t just a value declaration—it’s a 
powerful and common construct, used for declaring both local and global values as 
well as functions. Before we explore examples using functional programming in F#, 
let’s look at other uses for value binding.

3.1.1 Value declarations and scope

As we already know, you can use the let keyword to declare immutable values. We 
haven’t yet talked about a scope of the value, but it’s easier to explain with a concrete 
example. Listing 3.1 is extremely simple, but we think you’ll agree it’s amazing how 
many nuances can hide in just four lines of code.

let number = 42       
printfn "%d" number 
let message = "Answer: " + number.ToString()  
printfn "%s" message 

Listing 3.1 is quite straightforward: it declares two values—the second C is calculated 
using the first B—then prints them to the console. What’s important for us is the 
scope of the values—that is, the area of code where the value can be accessed. As you’d 
expect, the value number is accessible after we declared it on the first line, and the 

Listing 3.1 The scope of a value (F#)

B

C

Licensed to   <kr_wilson@hotmail.com>



56 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
value message is accessible only on the last line. You can look at the code and verify 
that we’re using the values only when they’re in scope, so our code is correct.

 We’ll use this code to demonstrate one more thing. The example in listing 3.1 
looked a lot like C# code, but it’s important to understand that F# treats the code dif-
ferently. We touched on this topic in chapter 2 (section 2.2.4), where we attempted to 
write code in C# using only expressions. We’ve seen that value bindings have to be 
treated specially, if we want every valid F# code to be an expression. Indeed, if you 
wrote code to do the same thing as listing 3.1 in C#, the compiler would see it as a 
sequence of four statements. Let’s now see how F# understands the code. To demon-
strate, we’ve made a few syntactical changes (see listing 3.2).

let number = 42 in
(                                                     
   printfn "%d" number;                 
   let message =                                              
      "Answer: " + number.ToString() in
   (                                                              
      printfn "%s" message                                 
   )                                                              
)                                                     

Listing 3.2 sports several obvious changes to the layout, but it’s also worth noting the 
introduction of the in keyword after every let binding. Adding the in keyword is 
required if you turn off the default syntax where whitespace is significant.1 The other 
change is that a block of the code following the let binding is enclosed in parentheses. 
Doing so is optional, but it’s closer to how the F# compiler understands the code we 
wrote. Interestingly, the code in listing 3.2 is still valid F# code with the same meaning as 
earlier—because sometimes you may want to be more explicit about the code, and using 
in keywords and additional parentheses to wrap expressions enables you to do that.

 What becomes more obvious in listing 3.2 is that the let binding assigns a value to 
a symbol and specifies that the symbol can be used inside an expression. The first let
binding states that the symbol number refers to the value 42 in the expression follow-
ing the in keyword, which is enclosed in parentheses B. The whole let binding is 
treated as an expression, which returns the value of the inner expression. For exam-
ple, the let binding that defines the value message D is an expression that returns a 
result of printfn. This function has unit as a return type, so the result of the whole 
expression will be a unit.

NOTE A single line starting with let and ending with the in keyword wouldn’t 
alone be a valid expression, because it would be missing the body part of 
the let binding. You always have to specify some expression as the body.

Listing 3.2 Example of let binding with explicit scopes (F#)

1 The default setting is sometimes called lightweight syntax. F# also supports OCaml-compatible syntax, which is 
more schematic and which we’ll use in the example. We won’t use it in the rest of the book, but in case you 
want to experiment with this syntax, you can turn it on by adding the directive #light "off" to the begin-
ning of F# source file.

C

B
D

Licensed to   <kr_wilson@hotmail.com>



57Value and function declarations
The next interesting thing is the sequencing of expressions. The expression D is pre-
ceded by another expression C, and as you can see, we added a semicolon between 
these two. The semicolon works as a sequencing operator in F#. It specifies that the 
expression preceding the semicolon should be evaluated before the one following it. 
In our example, that means C will be evaluated before D. The expression preceding 
the sequencing operator should also return a unit, because otherwise the returned 
value would be lost. 

NOTE When using the lightweight syntax, we don’t have to include the semico-
lon and can use a line break instead. The compiler uses the indentation 
in the code to figure out which lines are expressions and automatically 
inserts semicolons at the end of the line.

So far we’ve seen only ordinary bindings that declare an ordinary value, but the same 
let binding is also used for declaring functions and for nested bindings, as you’ll 
learn next.

3.1.2 Function declarations

As noted earlier, we can use let bindings to declare functions. Let’s demonstrate this 
on a fairly simple function that multiplies two numbers given as the arguments. This is 
how you’d enter it in F# Interactive:

> let multiply num1 num2 =
     num1 * num2;;
val multiply : int -> int -> int

To write a function declaration, you must follow the name of the symbol with one or 
more parameter names. In our example, we’re writing a function with two parame-
ters, so the name of the function (multiply) is followed by two parameters (num1 and 
num2). Let’s now look at the body of the function. We can view the body simply as an 
expression that’s bound to the symbol representing a name of the function (multiply
in our case), with the difference being that the symbol doesn’t represent a simple 
value but rather represents a function with several arguments. 

 In chapter 2, you learned that functions in F# are also values. This means that 
when using the let construct, we’re always creating a value, but if we specify argu-
ments, we declare a special type of value: a function. From a strictly mathematical 
point of view, an ordinary value is a function with no arguments, which also sheds 
more light on the F# syntax. If you omit all the arguments in a function declaration, 
you’ll get a declaration of a simple value.

 When writing a function, be sure to indent the body of the function properly. That 
way, you don’t have to use other, more explicit ways to specify where the function dec-
laration ends, as you would using the OCaml-compatible syntax.
FUNCTION SIGNATURES

One part of the previous example that we haven’t discussed yet is the output printed 
by F# Interactive. It reports that we declared a new value and its inferred type. Because 
we’re declaring a function, the type is a function type written as int -> int -> int. 
Licensed to   <kr_wilson@hotmail.com>



58 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
This type represents a function that has two arguments of type int (two ints before 
the last arrow sign) and returns a result of type int (the type after the last arrow sign). 
We’ve already seen that F# uses type inference to deduce the type, and in this exam-
ple, F# used the default type for numeric calculations (an integer). We’ll get back to 
function types in chapter 5, where we’ll also explain why parameters are separated 
using the same symbol as the return value. 
NESTED FUNCTION DECLARATIONS

Let’s now examine a slightly more complicated function declaration in listing 3.3, 
which also demonstrates another interesting aspect of let bindings: the fact that they 
can be nested. 

> let printSquares message num1 num2 =
     let printSquareUtility num =                                              
        let squared = num * num                                          
        printfn "%s %d: %d" message num squared            
     printSquareUtility(num1)                                                    
     printSquareUtility(num2)                                                   
  ;;
val printSquares : string -> int -> int -> unit

> printSquares "Square of" 14 27;;
Square of 14: 196
Square of 27: 729

Listing 3.3 shows an implementation of a function named printSquares. As you can 
see from its signature (string -> int -> int -> unit), this function takes a string as 
its first argument (message) and two numbers (num1 and num2) as the second and 
third arguments. The function prints squares of the last two arguments using the first 
argument to format the output. It doesn’t return any value, so the return type of the 
function is unit.

 The body of the printSquares function B contains a nested declaration of the 
function printSquareUtility. This utility function takes a number as an argument, 
calculates its square, and prints it together with the original number. Its body C con-
tains one more nested let binding, which declares an ordinary value called squared D. 
This value is assigned the square of the argument, to make the code more readable. The 
utility function ends with a printfn call that prints the message, the original number, 
and the squared number. The first argument specifies the format and types of the argu-
ments (%s stands for a string, and %d stands for an integer).

 One more important aspect about nested declarations can be demonstrated with 
this example. We’ve mentioned that the parameters of a function are in scope (mean-
ing that they can be accessed) anywhere in the body of a function. For example, the 
parameter message can be used anywhere in the range B. This also means that it can 
be used in the nested function declaration, and this is exactly what we do inside 
printSquareUtility on the fourth line E when we output the numbers using the 
message value. The nested declarations are, of course, accessible only inside the scope 

Listing 3.3 Nested let bindings (F# Interactive)

D
BE

c

Licensed to   <kr_wilson@hotmail.com>



59Value and function declarations
where they’re declared—you can’t use printSquareUtility directly from other parts 
of the program, for example. Correct scoping of values also guarantees that the mes-
sage parameter will always have a value.

 One last aspect of value declarations in F# is that they can be used for declaring 
mutable values. Even though we usually work with immutable values in functional pro-
grams, it’s sometimes useful to be able to create a mutable value as well.

3.1.3 Declaring mutable values

In section 3.1.1, we declared a value of type integer by writing let number = 10. If you 
were curious and tried to modify it, you may have attempted to write something like 
number = 10. This doesn’t work because a single equal sign outside a let binding is 
used to compare values in F#. It would be valid code, but it’d probably return false
(unless num happened to have the value 10). It would seem that modifying an existing 
value in F# isn’t even possible.

 That isn’t true, since F# is pragmatic and sometimes you may need to use mutable 
values in F#. This situation is most likely to occur when you’re optimizing code or 
using mutable .NET objects. Listing 3.4 shows how immutable and mutable values can 
be used in F# and what the operator for mutating values looks like.

> let n1 = 22;;  
val n1 : int

> n1 <- 23;;                                      
error FS0027: This value is not mutable.  

> let mutable n2 = 22;;  
val mutable n2 : int

> n2 <- 23;;        
> n2;;                  
val it : int = 23

All values in F# are immutable by default, so when we declare a value using the usual 
let binding syntax B and then attempt to modify it using the assignment operator 
(<-) we get a compile-time error message C. To declare a mutable variable, we have 
to explicitly state it using the mutable keyword D. We can later change this value 
using the assignment operator, and when we print it, we can see that the value has 
changed E.

NOTE You should get into the habit of using immutable values wherever possi-
ble in F#—only use mutable values when you really have to, not because 
they’re necessarily wrong, but they’re not idiomatic. Thinking function-
ally will lead to more concise code, which will be easier to read and rea-
son about. Don’t expect this to happen overnight, but the more you work 
with the language instead of fighting its normal idioms, the more you’re 
likely to get out of it.

Listing 3.4 Declaring mutable values (F# Interactive)

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



60 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
You’ve learned quite a lot from a section that focused on such a basic concept, but 
that was all we need to cover before moving to the core parts of the chapter. As we 
mentioned in chapter 1, the default use of immutability doesn’t only influence local 
value declarations but also extends to data structures. In the next section, we’ll look at 
the most basic immutable types that we use in functional programming. 

3.2 Using immutable data structures
An immutable data structure (or object) is a structure whose value doesn’t change 
after it’s created. When you declare a data structure that contains some values, you 
store these values in slots, such as a field or value declaration. In functional program-
ming, all these slots are immutable, which leads to the use of immutable data struc-
tures. In this section, we’ll demonstrate the simplest built-in immutable data type. 
You’ll see more common functional data structures in the upcoming chapters.

3.2.1 Introducing tuple type

The simplest immutable data structure in F# is a tuple  2 type. Tuple is a simple type that 
groups together several values of (possibly) different types. The following example 
shows how to create a value, which contains two values grouped together: 

> let tp = ("Hello world!", 42);;
val tp : string * int

Creating a tuple value is fairly easy: we write a comma-separated list of values enclosed 
in parentheses. But let’s look at the code in more detail. On the first line, we create a 
tuple and assign it to a tp value. The type inference mechanism of the F# language is 
used here, so you don’t have to explicitly state what the type of the value is. The F# 
compiler infers that the first element in the tuple is of type string, and the second is 
an integer, so the type of the constructed tuple should be something like a tuple con-
taining a string as the first value and an integer as the second value. Of course, we don’t 
want to lose any information about the type, and if we represented the result using 
only some type called, for example, Tuple, we wouldn’t know that it contains a string 
and an integer. 

 The inferred type of the expression is printed on the second line. You can see that 
in F# a type of a tuple is written as string * int. In general, a tuple type is written as 
types of its members separated by an asterisk. In the next few sections, you’ll see how 
tuples can be used in F#, but we’ll also show you how to use the same functionality in 
C#. If you don’t immediately understand everything after reading the F# code, don’t 
worry; continue with the C# examples, which should make everything clearer.

 In C#, we can use a type that’s already available in .NET 4.0, but we’ll also look how 
to implement it to better understand the internal workings of tuples. Representing 
tuples in C# is possible thanks to generics. We can use them to implement a type that 

2 The u in the word tuple is pronounced as the same as in cup. 
Licensed to   <kr_wilson@hotmail.com>



61Using immutable data structures
can store different values in a type-safe fashion. Using generics, the C# equivalent of 
the F# type string * int will then be Tuple<string, int>. We’ll get to the C# version 
shortly after discussing one more F# example. 
WORKING WITH TUPLES IN F#

Let’s look at more complicated F# code that uses tuples. In listing 3.5, we use tuples to 
store information about a city. The first member is a string (the name of the city) and 
the second is an integer, containing a number of people living there. We implement a 
function printCity, which outputs a message with the city name and its population, 
and finally we create and print information about two cities.

> let printCity(cityInfo) =                
     printfn "Population of %s is %d."         
                 (fst cityInfo) (snd cityInfo)
  ;;
val printCity : string * int -> unit         

> let prague  = ("Prague", 1188126)
   let seattle = ("Seattle", 594210)  
  ;;
val prague : string * int                
val seattle : string * int              

> printCity(prague)                
   printCity(seattle);;              
Population of Prague is 1188126.
Population of Seattle is 594210.

Listing 3.5 shows a session from F# Interactive, so you can easily try it for yourself. The 
first piece of code B declares a function printCity, which takes information about 
the city as an argument and prints its value using the standard F# printfn function. 
The formatting string specifies that the first argument is a string and the second is an 
integer. To read the first and second element of the tuple, we use two standard F# 
functions, fst and snd, respectively (which obviously represent first and second). 

 The next line shows the type of the function deduced by the F# type inference. As 
you can see, the function takes a tuple as an argument (denoted using an asterisk: 
string * int) and doesn’t return any value (denoted as the unit type on the right 
side of the arrow symbol). This is exactly what we wanted.

 Next, we create two tuple values C that store population information about 
Prague and Seattle. After these lines are entered, the F# Interactive shell prints the 
types of the newly declared values, and we can see that the values are of the same tuple 
type that the printCity function takes as an argument. That means we can pass both 
values as an argument to our printing function and get the expected result D.

 We promised that we’d implement exactly the same code as the previous example 
in C# as well, so now it’s time to fulfill this promise.

Listing 3.5 Working with tuples (F# Interactive)

B

Shows type 
of function

C

Creates two 
tuple values

D

Licensed to   <kr_wilson@hotmail.com>



62 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
WORKING WITH TUPLES IN C# 

As we mentioned, if we use .NET 4.0, we can work with an existing generic type, 
Tuple<T1, T2>, from the System namespace. We’ll look how to implement a type like 
that shortly.

 In any case, the type we’ll work with will have a single constructor with two param-
eters of types T1 and T2 respectively. It’ll also have two properties for accessing the val-
ues of its members, so unlike in F# where we accessed the elements using the 
functions fst and snd, in C# we’ll use the properties Item1 and Item2. Listing 3.6 has 
the same functionality as listing 3.5, but it’s written in C#. 

void PrintCity(Tuple<string, int> cityInfo) {     
   Console.WriteLine("Population of {0} is {1}.",
      cityInfo.Item1, cityInfo.Item2);                
}

var prague  = new Tuple<string, int>("Prague", 1188000);
var seattle = new Tuple<string, int>("Seattle", 582000);  

PrintCity(prague); 
PrintCity(seattle);  

The translation from F# code to C# is straightforward once we have an equivalent for 
the F# tuple type in C#. The PrintCity method takes a tuple of string and int as an 
argument. In C# we have to specify the types of method arguments explicitly, so you 
can see that the type of the cityInfo parameter is Tuple<string, int> B. The 
method prints the information using the .NET Console.WriteLine method and uses 
properties of the tuple type (Item1 and Item2) to read its value C. Next, we initialize 
two tuples that store information about the cities using a constructor with two argu-
ments D, and we use the PrintCity method to show the information E.

Listing 3.6 Working with tuples (C#)

Type checking when using tuples
The fact that types of the tuple match the parameter type of the function is important, 
because otherwise the two types would be incompatible and we wouldn’t be able to 
call the function. To demonstrate this, you can try entering the following code in the 
F# Interactive console:

let newyork = ("New York", 7180000.5)
printCity(newyork)

We’re not sure how New York could have 7,180,000.5 inhabitants, but if this were 
the case, the type of the tuple newyork wouldn’t be string * int anymore and 
would instead be string * float, as the type inference would correctly deduce that 
the second element of the tuple is a floating-point number. If you try it, you’ll see 
that the second line isn’t valid F# code, and the compiler will report an error saying 
that the types are incompatible.

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



63Using immutable data structures
 The code is slightly more verbose, mainly because we have to explicitly specify the 
type several times; in the F# example, the type inference mechanism was able to infer 
the type everywhere. In a moment you’ll see that we can minimize the number of 
explicitly stated types in the C# code a bit. So far, we’ve only used a new C# 3.0 feature 
(the var keyword), which at least lets us use type inference when declaring the prague
and seattle variables D, because we’re initializing the variables and C# can automat-
ically infer the type from the right-hand side of the assignment. 

 Just like in the F# code, if we declared a tuple with an incompatible type (for 
example, Tuple<string, double>) we wouldn’t be able to use it as an argument 
to the PrintCity method. This restriction is more obvious in C#, because we have 
to explicitly state what the type arguments for the generic parameters of the Tuple
type are.

3.2.2 Implementing a tuple type in C#

The actual Tuple<T1, T2> type available in the System namespace is a bit more compli-
cated, but we can quite easily implement the features that we need in this chapter. We’ll 
follow the same naming as the .NET type, so if you’re not using .NET 4.0, you can use our 
implementation in all the examples. The complete code is shown in listing 3.7.

public sealed class Tuple<T1, T2> {
   private readonly T1 item1;                   
   private readonly T2 item2;                   

   public T1 Item1 { get { return item1; } }
   public T2 Item2 { get { return item2; } }

   public Tuple(T1 item1, T2 item2) {
      this.item1 = item1;                  
      this.item2 = item2;                    
   }
}

The most notable thing is that the type is immutable. We’ve already seen how to create 
an immutable class in C# in the first chapter. In short, we mark all fields of the type 
using the readonly modifier B and provide only a getter for both of the properties. 
Interestingly, this is somewhat the opposite of F#, where you have to explicitly mark val-
ues as mutable. Read-only fields can be set only from the code of the constructor C, 
which means that once the tuple is created, its internal state can’t be mutated as long 
as both of the values stored in the tuple are immutable as well.
BETTER TYPE INFERENCE FOR C# TUPLES 

Before moving forward, we’d like to show you one C# trick that makes our further 
examples that use tuples much more concise. In the earlier examples, we had to cre-
ate instances of our tuple type using a constructor call, which required explicit specifi-
cation of type arguments. We used the new C# 3.0 var keyword, so that the C# 
compiler inferred the type of variables for us, but we can do even better. 

Listing 3.7 Implementing the tuple type (C#)

B

C

Licensed to   <kr_wilson@hotmail.com>



64 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
 There’s one more place where C# supports type inference: when calling a generic 
method. If you’re calling a generic method and its type parameters are used as types 
of the method parameters, then the compiler can use the compile-time types of the 
method arguments when the method is called to infer the type arguments.3 To clarify 
this, let’s look at listing 3.8.

public static class Tuple {
   public static Tuple<T1, T2> Create<T1, T2>(T1 item1, T2 item2) {
      return new Tuple<T1, T2>(item1, item2);
   }
}

var prague  = Tuple.Create("Prague", 1188000);
var seattle = Tuple.Create("Seattle", 582000);  

Listing 3.8 implements a static method Create, which has two generic parameters and 
creates a tuple with values of these types. We need to place this method in a nonge-
neric class, because otherwise we’d have to specify the generic parameters explicitly. 
Luckily, C# allows us to use the name Tuple, because types can be overloaded by the 
number of their type parameters (Tuple and Tuple<T1, T2> are two distinct types). It 
probably won’t surprise you that this class is available in the System namespace as well, 
so if you’re using .NET 4.0, you don’t have to implement it yourself.

 The body of the method is simple: its only purpose is to make it possible to create 
a tuple by calling a method instead of calling a constructor. This allows the C# com-
piler to use type inference B. The full syntax for calling a generic method includes 
the type arguments, so using the full syntax we’d have to write Tuple.Create<string,
int>(...). In the next section, we’ll look at writing code that calculates with tuples. 
Since we’ve just implemented the tuple type in C#, we’ll start with the C# version of 
the code and then move on to the F# alternative.

3.2.3 Calculating with tuples

In the examples so far, we’ve created several tuples and printed the values, so let’s per-
form some calculation now. We might want to increment the number of inhabitants 
by adding a number of newborns for the last year. 

 As you know, the tuple type is immutable, so we can’t set the properties of the C# 
tuple class. In F#, we can read the values using two functions (fst and snd), but there 
are no functions for setting the value, so the situation is similar. This means that our 
calculation will have to follow the usual functional pattern and return a new tuple 
formed by the original name of the city copied from the initial tuple and the incre-
mented size of population. 

3 My sincere apologies for the mess of “type arguments,” “method arguments,” and so forth in this sentence. 
Sometimes the terminology defined in specifications doesn’t allow for elegant prose.

Listing 3.8 Improved type inference for tuples (C#)

B

Licensed to   <kr_wilson@hotmail.com>



65Using immutable data structures
 Listing 3.9 shows how this can be done in C#. Rather than adding the method to the 
Type<T1, T2> class from listing 3.7, we implement it as an extension method. This way, 
we can use the method with the sealed tuple type that exists in the .NET 4.0 library.

static class TupleExtensions {
   public static Tuple<T1, T2> WithItem2<T1, T2>
         (this Tuple<T1, T2> tuple, T2 newItem2) {   
      return Tuple.Create(tuple.Item1, newItem2); 
   }
}

var pragueOld = Tuple.Create("Prague", 1188000);
var pragueNew = pragueOld.WithItem2(pragueOld.Item2 + 13195);  
PrintCity(pragueNew);

The WithItem2 method B takes a new value of the second element as an argument 
and uses the Tuple.Create method to create a new tuple with the first element copied 
from the current tuple (this.item1) and the second element set to the new value 
newItem2. The listing also shows how to use the method. We create city information 
about Prague and increment it by 13195 C to get a new value representing the popu-
lation in the next year. 

 Now we’d like to do the same thing in F#. We’ll write a function withItem2 (list-
ing 3.10), which will do exactly the same thing as the WithItem2 method from our 
earlier C# example. 

let withItem2 newItem2 tuple = 
   let (originalItem1, originalItem2) = tuple  
   (originalItem1, newItem2)                     

let pragueOld = ("Prague", 1188000)
let pragueNew = withItem2 (snd(pragueOld) + 13195) pragueOld
printCity(pragueNew)

Listing 3.10 first shows an implementation of the function withItem2. We could 
implement it simply using the fst function, which reads a value of the first element in 
the tuple, but we wanted to demonstrate one more F# feature that can be used with 
tuples: pattern matching. You can see that inside the function, we first decompose the 
tuple given as the argument into two separate values B. This is where the pattern 
matching occurs; on the left-hand side of the equal sign you can see a language con-
struct called a pattern, and on the right-hand side we have an expression that’s 
matched against the pattern. Pattern matching takes the value of an expression and 
decomposes it into values used inside the pattern. 

 On the next line C, we can use originalItem1 extracted from the tuple using pat-
tern matching. We reconstruct the tuple using the original value of the first element 
and the new value of the second element given as an argument (newItem2). (We’ll 

Listing 3.9 Incrementing the population of a city (C#)

Listing 3.10 Incrementing the population of a city (F#)

B

C

B
C

Licensed to   <kr_wilson@hotmail.com>



66 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
look at more examples of pattern matching on tuples in the next section.) Aside from 
using pattern matching, the code doesn’t show us anything new, but pattern matching 
is an important topic and F# provides other ways of using it with tuples, too. Let’s take 
a closer look.

3.2.4 Pattern matching with tuples

In the previous example, we decomposed a tuple using pattern matching in a 
let binding. We can slightly improve the code in listing 3.10. Since we didn’t 
actually use the second element of the tuple, we only need to assign a name to the 
first one. To do this, we can write an underscore for the second value in the pattern 
like this:

let (originalItem1, _) = tuple

The underscore is a special pattern that matches any expression and ignores the 
value assigned to it. Using pattern matching in let bindings is often very useful, but 
there are other places you can use it too. In fact, patterns can occur almost 
anywhere an expression is assigned to some value. Another place where pattern 
matching is extremely useful is when we’re specifying the parameters of a function. 
Instead of parameter names, we can use patterns. This makes our withItem2 func-
tion even simpler:

let withItem2 newItem2 (originalItem1, _) = (originalItem1, newItem2)

Now we’ve shortened our declaration from three lines to one. The result doesn’t use 
any unnecessary values and clearly shows how the data flows in the code. Just from 
looking at the code, you can see that the first element of the original tuple is copied 
(by tracing the use of the symbol originalItem1) and that the second function argu-
ment is used as a second element of the returned tuple (by following the use of 
newItem2). This is the preferred way of working with tuples in most of the F# func-
tions that we’ll write.

 One other common use for pattern matching is in an F# match expression, which 
we saw in section 2.4.3. We could rewrite our withItem2 function to use a match
expression like this:

let withItem2 newItem2 tuple =
   match tuple with
   | (originalItem1, _) -> (originalItem1, newItem2)

The match construct lets us match the specified expression (tuple) against one or 
more patterns starting with the bar symbol. In our example, we have only one pattern, 
and because any tuple with two elements can be deconstructed into two values con-
taining its elements, the execution will always follow this single branch. The F# com-
piler analyzes the pattern matching to deduce that the argument tuple is a tuple type 
containing two elements.
Licensed to   <kr_wilson@hotmail.com>



67Using immutable data structures
NOTE Keep in mind that you can’t use pattern matching to determine whether 
a tuple has two or three elements. This would lead to a compile-time 
error, because the pattern has to have the same type as the expression 
that we’re matching against the pattern and the type of a tuple with three 
elements (such as int * int * int) isn’t compatible with a tuple that has 
two elements (such as int * int). Pattern matching can be used only for 
determining runtime properties of values; the number of elements in a 
tuple is specified by the type of the tuple, which is checked at compile 
time. If you’re wondering how to represent some data type that can have 
several distinct values, you’ll have to wait until chapter 5, where we’ll look 
at discriminated unions.

In the previous example we used a pattern that can’t fail, because all tuples of two ele-
ments can be deconstructed into individual elements. This is called a complete pattern
in F#. The match construct is particularly useful when working with patterns that 
aren’t complete and can fail, because we can specify several different patterns (every 
pattern on a new line, starting with the bar symbol); if the first pattern fails, the next 
one is tried until a successful pattern is found.  

 What would be an incomplete pattern for tuples? Well, we could write a pattern 
that matches only when the first element (a city name) is some specific value. Let’s say 
there are 100 people in New York who are never counted by any statistical study, so 
when setting the second element of a tuple (the population of the city) we want to 
add 100 when the city is New York. You could write this using an if expression, but 
listing 3.11 shows a more elegant solution using pattern matching.

> let setPopulation tuple newPopulation =
     match tuple with
     | ("New York", _) -> ("New York", newPopulation + 100)  
     | (cityName, _) -> (cityName, newPopulation)          
  ;;
val setPopulation : string * 'a -> int -> string * int

> let prague = ("Prague", 123)
  setPopulation prague 10;; 
val it : string * int = ("Prague", 10)  

> let ny = ("New York", 123)
  setPopulation ny 10;;
val it : string * int = ("New York", 110)  

In listing 3.11, the match expression contains two distinct patterns. The first contains a 
tuple with a string “New York” as the first element and an underscore as a second B. 
This means that it only matches tuples with a first element set to “New York” and with 
any value for the second element. When this pattern is matched, we return a tuple 
representing New York, but with a population that’s 100 more than the given argu-
ment. The second pattern C is the same as in previous examples, and it sets the sec-
ond element of the tuple.

Listing 3.11 Pattern matching with multiple patterns (F# Interactive)

B
C

Shows the 
expected result

Returns 
incremented value
Licensed to   <kr_wilson@hotmail.com>



68 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
 The examples following the function declaration show the code behaving as 
expected. If we try to set a new population of Prague, the new value of population is 
used, but when we try to do this for New York, the new value of population is incre-
mented by 100.

 Tuples are used particularly often during the early phase of development, because 
they’re so simple. In the next section, we’ll look at another elementary immutable 
data type: a list. We’ve seen that a tuple represents a known number of elements with 
diverse types. Lists work the other way around: a list represents an unknown number 
of elements of the same type. 

3.3 Lists and recursion
A tuple is a very good example of an immutable functional data type, but there’s one 
more property of many functional data types that’s worth discussing in this chapter: 
recursion. Let’s start with a classic programming joke: what’s the dictionary definition 
of recursion? “Recursion. See recursion.” 

 Recursion appears in functional programming in different forms. It can be present 
in the structure of the type, such as lists. The type that represents functional lists is 
either an empty or is composed from an element and a list. You can see that the type 
list that we’re describing is recursively used in its definition. The second form of recur-
sion is probably more widely know and is used when writing recursive functions. Let’s 
start by looking at one example of the second form; then we’ll focus on lists to demon-
strate the first form. 

3.3.1 Recursive computations

The most common example of a recursive function is calculating the factorial of 
a number. If you’re not already familiar with it, here’s a short definition: the facto-
rial of a non-negative number n is 1 if n is one or zero; for larger n, the result is 
factorial of n – 1 multiplied by n. This function can be implemented essentially in 
two ways. In C# you can do it using a for loop, which iterates over numbers in the 
range between 2 and n and multiplies some temporary variable by the number in 
each iteration:

int Factorial(int n) {
   int res = 1;
   for(int i = 2; i <= n; i++) 
      res = res * i; 
   return res;
}

This is a correct implementation, but it isn’t easy to see that it corresponds to the 
mathematical definition of the function. The second way to implement this function 
is to use recursion and write a method in C# or a function in F# that recursively calls 
itself. These two implementations are surprisingly similar, so you can see both of them 
side by side in listing 3.12.    
Licensed to   <kr_wilson@hotmail.com>



69Lists and recursion
Declaration of recursive function or method B; in F# we have to explicitly declare 
that it’s recursive by using the let rec binding instead of an ordinary let.

 The pattern matching contains two cases. The first case terminates the recursion 
and returns 1 immediately C. The second one performs the recursive call to a facto-
rial function or Factorial method D.

 The C# version of the code is straightforward. The F# version is also quite clear, 
but we have to explicitly state that the function is recursive using the rec keyword. 
This keyword specifies that the let binding is recursive, making it possible to refer to 
the name of the value (factorial) within the declaration of the function.

 In general, every recursive computation should have at least two branches: a branch
where the computation performs a recursive call and a branch where the computation
terminates. You can see both marked in listing 3.12. Usually, the recursive calculation 
performs the recursive call several times until a termination condition occurs (in our 
case, when we’re calculating the factorial of 1) and returns some constant value or cal-
culates the result using nonrecursive code. If the termination condition is incorrect, the 
code can keep looping forever or can eventually crash with a stack overflow exception. 

 Since recursion is absolutely essential for functional programming, functional lan-
guages have developed several ways for avoiding stack overflows even for very deep 
recursive calls and some other optimization mechanisms. This and other advanced 
topics will be discussed in chapter 10.

3.3.2 Introducing functional lists

Now that we’re more comfortable with the general principle of recursion, we can look 
at functional lists in some detail. Earlier we mentioned that a list is either empty or com-
posed from an element and another list. This means that we need a special value to rep-
resent an empty list, and a way of constructing a list by taking an existing list and 
prepending an element at the beginning. The first option (an empty list) is sometimes 
called nil, and the second option produces a cons cell (short for constructed list cell). You 
can see a sample list constructed using an empty list and cons cells in figure 3.1.

Listing 3.12 Recursive implementation of factorial in C# and F#

C# F#

int Factorial(int n) {  let rec factorial(n) =  
   if (n <= 1)    if (n <= 1) then
      return 1;        1                  
   else    else

      return n * Factorial(n - 1);       n * factorial(n - 1)  
}

B B

C C

D D

6 2 7 3 nil

Figure 3.1 A functional list containing 6, 2, 7, and 3. Rectangles represent 
cons cells, which contain a value and a reference to the rest of the list. The 
last cons cell references a special value representing an empty list.
Licensed to   <kr_wilson@hotmail.com>



70 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
As you can see in figure 3.1, every cons cell stores a single value from the list (called 
the head) and a reference to the rest of the list (called the tail), which can be either 
another cons cell or an empty list (nil). Let’s now look at several ways that F# offers for 
creating lists:

> let ls1 = []
val ls1 : 'a list = []

> let ls2 = 6::2::7::3::[]
val ls2 : int list = [6; 2; 7; 3]

> let ls3 = [6; 2; 7; 3]
val ls3 : int list = [6; 2; 7; 3]

> let ls4 = [1 .. 5]
val ls4 : int list = [1; 2; 3; 4; 5]

> let ls5 = 0::ls4
val ls5 : int list = [0; 1; 2; 3; 4; 5]

At first, we created an empty list, which is written as [] in F#. If you look at the result, 
you can see that F# created a value containing no elements. The type of the list is a bit 
unclear, because we don’t yet know the type of values contained in the list, so F# infers 
that the type is a list of “something.” This is called a generic value, and we’ll talk about 
it in chapter 5. 

 The second example is much more interesting. You can see how lists are created 
under the covers: we take an empty list and use a syntax for creating a cons cell ::. 
Unlike operators such as +, the :: construct is right associative, which means that it 
composes values from the right to the left. If you read the expression in that direction, 
you can see that we construct a list cell from a value of 3 and an empty list, then use 
the result together with a value of 7 to construct another cell, and so on. After enter-
ing the expression, F# Interactive reports that we created a list of type int list. This 
means that the type of the ls2 value is a list that contains integers. This is again done 
using generic types that you may know from C# (and you’ll see how to use them in F# 
in detail later).

 In the next two examples, we use a piece of syntactic sugar F# provides for creating 
lists. The first one uses square brackets with list elements separated by a semicolon, 
and the second uses dot-dot to create a list containing a sequence of numbers. 

 The last example shows how we can use cons cells to create a list by appending val-
ues at the beginning of another list. You can see that ls5 contains 0 at the beginning 
and then all elements from the ls4 list.

 An important fact about functional lists is that they’re immutable. This means that 
we can construct a list (as in the previous example) but we can’t take an existing list 
and modify it; we can’t add or remove an element. Functions that need to add new 
elements or remove existing ones always return a new list without modifying the origi-
nal one, because modifying a list is in fact impossible. We’ll see more examples of 
these functions in chapters 5, 6, and 10, but for now, let’s look at processing the ele-
ments in an existing list.
Licensed to   <kr_wilson@hotmail.com>



71Lists and recursion
 When working with lists in functional languages, the typical code for processing a 
list contains two branches: 

■ A branch that performs something when the given list is an empty list
■ A branch that performs an operation when the argument is a cons cell 

The latter branch generally performs a calculation using the head value and recur-
sively processes the tail of the list. We’ll see all these common patterns later in this 
chapter, but first let’s explore how to write code that chooses between these two 
branches using pattern matching.
DECOMPOSING LISTS USING PATTERN MATCHING

When discussing pattern matching on tuples in section 3.2.4, we saw two distinct ways 
for using it. One method was to write the pattern directly in the let binding, either 
when assigning the result of an expression to a value or in the declaration of function 
parameters. The other method was using the match keyword. The important differ-
ence between these two is that using match we can specify multiple patterns with mul-
tiple branches. For lists, we’ll need to use the second option, because we have to 
specify two distinct branches every time we write list processing code (one for an 
empty list and one for a list that was created using cons cell).

 The following code demonstrates pattern matching on lists and prints a message 
with the value of the first element or “Empty list” when the list is empty:

match list with 
| []             -> printfn "Empty list"
| head::tail -> printfn "Starting with %d" head

You can see the pattern that matches an empty list on the second line and a pattern 
that extracts a head (the value of the first element) and a tail (the list appended after 
the head) on the third line. Both of these patterns are written with exactly the same 
syntax that we used earlier for creating the list. An empty list is matched using [] and 
a cons cell is deconstructed using the :: pattern. The second case is much more inter-
esting, because it assigns a value to two new symbols, head and tail. These will con-
tain a number and the rest of the list obtained by decomposing the first cons cell. An 
empty list doesn’t carry any value, so the first pattern doesn’t bind a value to any sym-
bol; it only informs us that the original list was empty.

 If you refer to figure 3.1, you can see that the first pattern corresponds to the nil 
ellipse, which doesn’t contain any value. The second pattern matches the cons cell 
rectangle and takes out the contents of its two parts. 

 As in the example with tuples, the list of patterns is complete, meaning that it can’t 
fail to choose a branch for any given list. Let’s now see what happens if we try using an 
incomplete pattern.

> let squareFirst list =
     match list with
     | head::_ -> head * head

Listing 3.13 An incomplete pattern matching on lists (F# Interactive)
Licensed to   <kr_wilson@hotmail.com>



72 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
  ;;
Warning FS0025: Incomplete pattern matches on this
expression. The value '[]' will not be matched.       
val sqareFirst : int list -> int                 

> squareFirst [4; 5; 6];;  
val it : int = 16

> squareFirst []                                
Exception of type 'Microsoft.FSharp.Core.       
  MatchFailureException' was thrown.              
(...)

We start by declaring a function called squareFirst, which contains a pattern match 
that matches a cons cell and returns a square of the first element from the list. How-
ever, this pattern doesn’t handle the situation when a list is empty. We can see that the 
F# compiler is quite smart, and when we write a pattern match that can possibly fail it 
detects this situation and even gives us an example when the match will fail B. You 
shouldn’t ignore this warning unless you’re absolutely sure that the situation can 
never occur. Even if the function doesn’t have any reasonable meaning for empty lists, 
it’s better to add a handler for the remaining case (you can use an underscore charac-
ter as a pattern that matches any value) and either throw an exception with additional 
information or just do nothing. Of course, if the function’s return type is anything 
other than unit, you’ll have to work out a suitable value to return if you do nothing. 
Throwing an exception is generally a better idea if the function really shouldn’t be 
called with an empty list.

 Even though there was a warning, F# Interactive is willing to crunch the function, 
so we can try calling it. First, we try a case that should work C, and we can see that it 
behaves as expected. If we call the function with an empty list as an argument D, the 
match construct doesn’t contain any matching pattern, so it throws an exception. This 
is a normal .NET exception and can be caught using the try construct in F#.

 You should have some idea what we can expect from functional lists, so in the next 
section we’ll turn our attention to C# and use it to explain lists in detail. We’ll also 
write our first list-processing code. 

3.3.3 Functional lists in C#

To show how a functional list type works, let’s look at how we can implement the same 
functionality in C#. There are several ways for representing the fact that a list can be 
either empty or have a head and a tail. The object-oriented solution would be to write 
an abstract class FuncList<T> with two derived classes for representing the two cases—
for example, EmptyList<T> and ConsCellList<T>. To make the code as simple as pos-
sible, we’ll use a single class, with a property IsEmpty that will tell us whether or not 
the instance contains a value. Note that every instance of the FuncList<T> type 
contains at most one value. When the instance represents an empty list, it doesn’t con-
tain any value and when it’s a cons cell, it stores exactly one value. Listing 3.14 shows 
the implementation.

B

Takes list, 
returns integerC

D
Throws exception 
at runtime
Licensed to   <kr_wilson@hotmail.com>



73Lists and recursion
public class FuncList<T> {
   public FuncList() {      
      IsEmpty = true;
   }
   public FuncList(T head, FuncList<T> tail) {  
      IsEmpty = false;
      Head = head;
      Tail = tail;
   }
   public bool IsEmpty { get; private set; }  
   public T Head { get; private set; }               
   public FuncList<T> Tail { get; private set; }    
}

public static class FuncList {               
   public static FuncList<T> Empty<T>() {
      return new FuncList<T>();
   }
   public static FuncList<T> Cons<T>(T head, FuncList<T> tail) {
      return new FuncList<T>(head, tail);
   }
}

The FuncList<T> class is a generic C# class, so it can store values of any type. It has a 
property called IsEmpty, which is set to true when we’re creating an empty list using 
the parameter-less constructor B. The second constructor C takes two arguments, 
creates a cons cell, and sets IsEmpty to false. The first argument (head) is a value that 
we’re storing in the cons cell. The second argument (tail) is a list following the cons 
cell that we’re creating. The tail has the same type as the list we’re creating, which is 
written as FuncList<T>. The first constructor corresponds to the F# empty list (written 
as []), and the second one creates a cons cell in the same way as the double colon 
operator (head::tail).

 As already mentioned, functional lists are immutable, so all properties of the class 
are read only. We’re implementing all of them using C# 3.0 automatic properties, which 
generate a getter and setter of the property for us, but we’re specifying that the setter 
should be private, so they can’t be modified from outside. To make the type truly read 
only, we set the values of the properties only in constructors, so once a list cell is cre-
ated, none of its properties can change. The fact that there are many different imple-
mentation strategies for declaring immutable types demonstrates that immutability is 
a concept that we can use in different ways and not a language feature. When using 
automatic properties, we’re losing the checking that the C# compiler can do when we 
use fields marked using readonly as a trade-off for a more convenient syntax. 

 Just as in our previous tuple example, we’ve included a nongeneric utility class
FuncList D with static methods that simplify creation of generic lists by providing 
methods for creating an empty list (Empty) and one for creating a cons cell (Cons). 
The advantage of using this class is that C# can infer the type arguments for a method 
call, so we don’t have to specify the type of values carried by the list if it’s obvious from 

Listing 3.14 A functional list (C#)

B

C

Represents whether 
list is empty

Stores properties 
of cons cell

D

Licensed to   <kr_wilson@hotmail.com>



74 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
the context. Now that we have a C# implementation of the list, we can write code that 
uses lists to perform computation.

3.3.4 Functional list processing

So far we’ve discussed what the functional list type looks like and how it can be imple-
mented in C#. Now it’s time to write code that actually does something with functional 
lists. For our example, we want to implement a method SumList in C# (or a sumList
function in F#) that sums all the numbers in a list. 
SUMMING NUMBERS IN A LIST WITH C#

If you’re used to imperative programming in C# and have worked with the standard 
.NET array or the List<T> class from System.Collections.Generic, you’d probably 
create a variable called total initialized to zero and write a for loop that iterates over 
all the elements, adding every element to the total (something like total +=
list[i]). (Alternatively, you could do this using a foreach loop, which is syntactic 
sugar that makes this a bit easier to write, but the idea is still the same.)

 But how can we do this using our functional list, which won’t let us access elements 
by index and that doesn’t support foreach?4 To do this, we can use recursion and 
write a method with code for the two cases: when the list is empty and when the list is 
a cons cell. You can see the code for the C# version of SumList in listing 3.15.

int SumList(FuncList<int> numbers) {
   return numbers.IsEmpty ? 0 :             
      numbers.Head + SumList(numbers.Tail);  
}

var list = FuncList.Cons(1, FuncList.Cons(2,     
   FuncList.Cons(3, FuncList.Cons(4,                  
   FuncList.Cons(5, FuncList.Empty<int>())))));

int sum = SumList(list);
Console.WriteLine(sum);  

The SumList method first checks whether the list is empty. If the list is nonempty, the 
branch that matches the cons cell C is executed. It recursively calls SumList to calcu-
late the sum of elements in the tail (which is a list) and adds this result to the value 
stored in the head. This recursive call is performed until we reach the end of the list 
and find an empty list as a tail. For an empty list B, the function terminates and 
returns zero.

 Next, we create a list using the utility methods Cons and Empty from the 
nongeneric FuncList class. The creation is a bit cumbersome, but you could make it 
less so by implementing a method that creates a functional list from a normal 
.NET collection.

4 We could add support for the foreach statement to our code, and it would be desirable to do so for a real-
world FuncList<T> type. 

Listing 3.15 Summing list elements (C#)

B
C

Creates list 
with 1, 2, 3, 4, 5

Calculates sum, 
prints 15
Licensed to   <kr_wilson@hotmail.com>



75Using functions as values
SUMMING NUMBERS IN A LIST WITH F# 

Now that you know how the code looks in C#, let’s try implementing the same func-
tionality in F#. Listing 3.16 shows an F# function sumList and a few F# Interactive 
commands for testing it. 

> let rec sumList list =
     match list with                                 
     | []             -> 0                      
     | head::tail -> head + sumList(tail)  
  ;;
val sumList : int list -> int  

> let list = [ 1 .. 5 ];;  
val list : int list

> sumList(list);;  
val it : int = 15

If you compare the code with the previous C# implementation, you’ll find many simi-
larities. As in the previous case, there are two branches, one for an empty list B and 
one for a cons cell C. The second branch is again implemented using recursion. The 
notable difference is that in F# we can use pattern matching for selecting an execu-
tion path. Pattern matching also extracts values from the cons cell, so once the execu-
tion enters the second branch, head and tail values are already available. This adds 
to the robustness of the code: you can’t use values that haven’t been matched by a pat-
tern. It sounds trivial, but it prevents the code from accidentally trying to access the 
(nonexistent) elements of an empty list. Pattern matching is a natural construct in 
functional languages and there’s no corresponding feature in C#, so we had to use the 
conditional operator (?:) to implement the same behavior.

 Also, F# type inference was helpful once again: we didn’t have to specify the types 
explicitly anywhere in the code. As you can see, it correctly inferred that the function 
takes a list of integers and returns an integer D. The inference algorithm used the 
fact that we’re testing whether list value is an empty list or a cons cell to deduce that 
the type of the value is a list. Because one branch returns zero, it knows that the whole 
function returns an integer. Because we’re adding elements of the list together, it 
deduces that the argument is a list containing integers. 

 The recursion that we used in this section is important, but writing everything 
using recursion explicitly would be difficult. In the next section we’ll introduce a 
mechanism that allows you to hide the difficult recursive parts of the code. 

3.4 Using functions as values
In the previous section, we talked about immutable lists and you learned how to write 
a function that processes a list recursively. In this section, we’ll look at one more essen-
tial concept of functional programming: treating functions as values. You’ll see why 
it’s so useful to work with functions in this way and what it means to treat a function as 
a value. More information about functions will follow in chapter 5. 

Listing 3.16 Summing list elements (F# Interactive)

Matches list 
against patternsB

C

D
Creates list for testing

Calculates, prints sum
Licensed to   <kr_wilson@hotmail.com>



76 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
3.4.1 Processing lists of numbers

Imagine that we want to write a method similar to SumList but that multiplies 
the numbers rather than adding them. Making this change looks quite easy: we can 
copy the SumList method and tinker with it. There are only two changes in the mod-
ified method:

int MultiplyList(FuncList<int> numbers) {
   if (numbers.IsEmpty) return 1;                             
   else return numbers.Head * MultiplyList(numbers.Tail);  
}

The first change is that we’re using multiplication instead of addition in the branch 
that does the recursive call C. The second change is that the value returned for an 
empty list is now 1 instead of 0 B. As we mentioned in chapter 2, this solution works, 
but copying blocks of code is a bad practice. Instead, we’d like to write a parameter-
ized method or function that can do both adding and multiplying of the list elements 
depending on the parameters. This allows us to hide the difficult recursive part of the 
list processing routine in a reusable function, and writing SumList or MultiplyList
will become a piece of cake. 

 This example is similar to one we discussed in chapter 2 (section 2.3.1). The solu-
tion is to write a method or a function that takes two arguments: the initial value and 
the operation that should be performed when aggregating the elements. Let’s see 
how we can implement this idea in C#.
PASSING A FUNCTION AS AN ARGUMENT IN C#

You’ve seen that in C#, passing a function as an argument can be done using 
delegates, in particular the Func delegate. In listing 3.17, the delegate will have 
two arguments of type int and will return an int as a result. The code shows how 
we can implement the aggregation as a recursive method that takes a delegate as 
a parameter.

int AggregateList(FuncList<int> list, int init, Func<int,int,int> op) {
   if (list.IsEmpty)
      return init;   
   else {
      int rest = AggregateList(list.Tail, init, op);
      return op(rest, list.Head);                            
   }
}

static int Add(int a, int b) { return a + b; }
static int Mul(int a, int b) { return a * b; }  

var list = FuncList.Cons(1, FuncList.Cons(2,    
   FuncList.Cons(3, FuncList.Cons(4,                  
   FuncList.Cons(5, FuncList.Empty<int>())))));

Console.WriteLine(AggregateList(list, 0, Add));
Console.WriteLine(AggregateList(list, 1, Mul));  

Listing 3.17 Adding and multiplying list elements (C#)

B
C

B

C

Declares methods 
for testing

Initializes 
sample list

Prints 15 as sum, 
120 as product
Licensed to   <kr_wilson@hotmail.com>



77Using functions as values
Let’s look at the AggregateList method first. It takes the input list to process as the 
first parameter. The next two parameters specify what should be done with the input. 
The second parameter is the initial value, which is an integer. It’s used when a list is 
empty B and we want to return the initial value from the method.

 The last parameter is a delegate and is used in the other branch C. Here we first 
recursively calculate the aggregate result for the rest of the list and call the op delegate 
to calculate the aggregate of that result and the head of the list. In our later examples, 
it would either add or multiply the given parameters. The delegate type that we’re 
using here is the generic Func<T1, T2, TResult> delegate from .NET 3.5, which is fur-
ther discussed in chapter 5. Briefly, it allows us to specify the number and types of the 
arguments as well as the return type using .NET generics. This means that when we 
call op C the compiler knows we should provide two integers as arguments and it will 
return an integer as a result.

 Later in the code, we declare two simple methods that are compatible with the del-
egate type: one for adding two numbers and one for multiplying them. The rest of the 
code shows how to call the AggregateList method to get the same results as those 
returned by SumList and MultiplyList in our earlier examples.

 Of course, writing the helper methods this way is a bit tedious, because they aren’t 
used anywhere else in the code. In C# 2.0, you can use anonymous methods to make 
the code nicer, and in C# 3.0 we have an even more elegant way for writing this code 
using lambda expressions. Lambda expressions and the corresponding feature in F# 
(called lambda functions) are used almost everywhere in a real functional code, so 
we’ll discuss them much more fully in chapter 5. In the next section, we’re going to 
look at the last code example in this chapter and see how to implement the same 
behavior in F#.
PASSING A FUNCTION AS AN ARGUMENT IN F#

The function aggregateList in F# will be quite similar to the method that we’ve 
already implemented. The important distinction is that F# supports passing functions 
as arguments to other functions naturally, so we don’t have to use delegates for this.

 The function is a special kind of type in F#. Similarly to tuples, the type of a function 
is constructed from other basic types. With a tuple, the type was specified in code using 
an asterisk between the types of the elements (e.g., int * string). In the case of func-
tions, the type is specified in terms of the types of arguments and the return type. This 
provides type safety in the same way delegates do in C#. A function that takes a number 
and adds 1 to it would be of type int -> int, meaning that it takes an integer and 
returns an integer. The type of a function that takes two numbers and returns a number 
would be of type int -> int -> int, and this is exactly the type of the first parameter in 
our aggregateList function. Listing 3.18 shows the F# version of our example.

> let rec aggregateList (op:int -> int -> int) init list =  
     match list with
     | []     -> init   

Listing 3.18 Adding and multiplying list elements (F# Interactive)

Takes function 
as argument

B

Licensed to   <kr_wilson@hotmail.com>



78 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
     | hd::tail ->
         let resultRest = aggregateList op init tail
         op resultRest head                                    
    ;;
val aggregateList : (int -> int -> int) -> int -> int list -> int  

> let add a b = a + b
   let mul a b = a * b 
  ;;
val add : int -> int -> int
val mul : int -> int -> int  

> aggregateList add 0 [ 1 .. 5 ];;
val it : int = 15                         
> aggregateList mul 1 [ 1 .. 5 ];;
val it : int = 120                     

Just like in the C# version, the first two parameters of the function specify how the ele-
ments in the list are aggregated. The second parameter is the initial value, and the 
first one is an F# function. In this example, we wanted to make the function work only 
with integers to make the code more straightforward, so we added a type annotation
for the first parameter. It specifies that the type of the op function is a function taking 
two integers and returning an integer. 

 Next we see the familiar pattern for list processing: one branch for an empty list B
and one for a cons cell c. After entering the code for the aggregateList function in 
F# Interactive, it prints a signature of the function D. This kind of signature may look 
a bit daunting the first time you see it, but you’ll soon become familiar with it. In fig-
ure 3.2 you can see what each part of the signature means. 

 Finally, we write two simple functions (add and mul) that both have a signature cor-
responding to the type of the first parameter of aggregateList and verify that the 
function works as expected. We wrote 
these two functions just to make the 
sample look exactly like the previous 
C# version, but F# allows us to take any 
binary operator and work with it as if it 
were an ordinary function. This means 
that we don’t need to write the add
function and can instead just use the 
plus symbol directly:

> aggregateList (+) 0 [ 1 .. 5 ];;
val it : int = 15

This feature is often quite helpful, and working with operators makes F# code very 
succinct. Note that when using an operator in place of a function, we have to enclose 
it in parentheses, so instead of just writing +, we have to write (+).

 You may be thinking that aggregateList isn’t a particularly useful function and 
that there aren’t many other uses for it other than adding and multiplying elements in 
a list, but the next section shows one surprising example.

C

D

Shows type compatible 
with op parameter 

Tests function 
immediately

(int -> int -> int) -> int -> int list -> int

Function taking two numbers 
and returning a number

Initial value of type int Returns the aggregated value

List to be processed

Figure 3.2 The type signature of the aggregate-
List function in detail. The first argument specifies 
how two numbers are aggregated, the second is an 
initial value, and the third is an input list.
Licensed to   <kr_wilson@hotmail.com>



79Summary
3.4.2 Benefits of parameterized functions

Let’s look at one additional example that will use this function for another purpose—
something that at first glance seems very different from adding or multiplying the ele-
ments of a list. Let’s see if we can work out the largest value:

> aggregateList max (-1) [ 4; 1; 5; 2; 8; 3 ];;
val it : int = 8

The function that we used as a first argument (max) is a built-in F# function that 
returns the larger from two numbers given as arguments. We used –1 as an initial 
value, because we expect that the list contains only positive numbers. The program 
first compares –1 with 3 and returns the larger of these two. In the next iteration it 
takes the current value (the result of the previous comparison, which is 3), com-
pares it with 8, and returns the larger. In the next step, 8 is compared with 2, then 
with 5, and so on. Similarly, you could easily find the smallest element in a list by 
using min as a first argument and some large number (such as Int32.MaxValue) as 
the second argument.

 In fact, the function can be made even more useful by allowing the caller to use 
something other than an integer during the aggregation. You can see that the body of 
aggregateList function doesn’t state anywhere that the aggregated value should be 
integer; the only place where this is specified is in the type annotation for the op
parameter. It specifies that the function returns an integer, so F# knows that the aggre-
gated value will be an integer, but we could simply remove the type annotation and 
make the code more general. This powerful feature of the F# language is called auto-
matic generalization and we’ll see how to use it in chapter 6. 

3.5 Summary
In this chapter we explored essential functional constructs and techniques in practice. 
We started with value and function declarations using let bindings, and you learned 
how F# minimizes the number of concepts that you have to work with—from a strictly 
mathematical point of view, an immutable value is just a function with no arguments.

 Next, we looked at the simplest immutable data structure used in functional lan-
guages: the tuple. We used it to demonstrate how you can work with immutable data 
structures. When you perform a calculation with an immutable data structure, you 
can’t modify the existing instance, but you can create a new instance by copying the 
original values and replacing those that were newly calculated. The next interesting 
immutable data type that we encountered was a list. Working with lists helped us to 
explore recursion, both in terms of how to construct one list from another and in 
using pattern matching to process a list recursively.

 Writing the same recursive processing whenever we want to perform an operation 
on lists would be inconvenient, so we looked at a mechanism that allows us to make the 
code general, so that it can be used for a broader range of similar use cases. In the pre-
vious chapter, we called this mechanism higher-order functions. It means that a func-
tion can be simply parameterized by another function that’s given to it as an argument.
Licensed to   <kr_wilson@hotmail.com>



80 CHAPTER 3 Meet tuples, lists, and functions in F# and C#
 This chapter served as a sneak preview showing some of the most important func-
tional techniques in action in their most simplistic form. Most of them can be quite 
well written in C# too. Now that you have an idea of the look and feel of functional 
programming, we’ll examine the F# language and tools in more detail, so that you can 
play with them and try writing some code on your own. 

 The examples from this chapter are just an overview, and we’ll get back to all the 
concepts mentioned here later in the book. Other common functional data types will 
be discussed in chapter 5, and in chapter 6 we’ll talk mostly about higher-order func-
tions that can be used for working with them. In these two chapters, we’ll also see how 
to make the code more general by using not only generic types but generic functions 
as well.

 

Licensed to   <kr_wilson@hotmail.com>



Exploring F# and 
 .NET libraries by example
Even though we’ve looked at only the most basic F# language features so far, you 
should already know enough to write a simple application. In this chapter we won’t 
introduce any new functional language constructs; instead we’ll look at practical 
aspects of developing .NET applications in F#. You probably know how to write a 
similar application in C#, so all code in this chapter will be in F#. 

 As we write our first real-world application in F#, we’ll explore several functions 
from the F# library and also see how to access .NET classes. The .NET platform con-
tains many libraries and all of them can be used from F#. In this chapter we’ll look 
at several examples, mainly in order to work with files and create the UI for our 
application. We’ll come across several other .NET libraries in the subsequent chap-
ters, but after reading this one you’ll be able to use most of the functionality pro-
vided by .NET from your F# programs, because the technique is often the same. 

This chapter covers
■ Working with common .NET and F# libraries
■ Implementing our first real-world application in F#
■ Developing code using F# Interactive
■ Loading data from file and drawing charts
81

Licensed to   <kr_wilson@hotmail.com>



82 CHAPTER 4 Exploring F# and .NET libraries by example
4.1 Drawing pie charts in F#
We’ll develop an application for drawing pie charts, as shown in figure 4.1. The appli-
cation loads data from a comma-separated value (CSV) file and performs preprocessing 
in order to calculate the percentage of every item in the data source. Then it plots the 
chart and allows the user to save the chart as a bitmap file. We could use a library to dis-
play the chart (and we’ll do that in chapter 13), but by implementing the functionality 
ourselves, we’ll learn a lot about F# programming and using .NET libraries from F# code.

 We’ll implement the application in three parts:

■ Section 4.2—We’ll implement loading information from a file and perform 
basic calculations on the data. We’ll use the tuple and list types that we intro-
duced in the previous chapter. 

■ Section 4.3—We’ll add simple console-based output, so we can see the results of 
the calculations in a human-readable form. 

■ Section 4.4—We’ll add a graphical user interface (GUI), drawing charts of the 
data. We’ll use the standard .NET Windows Forms library to implement the UI
and the System.Drawing namespace for drawing.

Even though you’re only a quarter of the way through this book, the code that we’ll 
write will be very close to what you’d do if you wanted to develop an application like 
this after reading the entire book. This is because F# code is developed in an iterative
way: you start with the simplest possible way to solve the problem and later refine it to 
fit your advanced needs. Many people prefer developing F# code like this because it 
allows you to get interesting results as soon as possible, and because F# makes it easy 
to refactor code later to improve its organization and readability. The ability to quickly 
write a working prototype for a problem is extremely useful.

 One benefit of iterative development is that you can interactively test your applica-
tion when writing the first version, as you’ll see in this chapter. In the early phase, you 

Figure 4.1  
Running the F# 
application for drawing 
pie charts developed in 
this chapter. The chart 
shows distribution of the 
world population among 
continents.
Licensed to   <kr_wilson@hotmail.com>



83Writing and testing code in FSI
can also easily author unit tests (learn more in chapter 11). Another benefit is that it’s 
easier to correctly design the whole application if you already know how the core parts 
look in the prototype. Also, F# and Visual Studio are perfect tools for this kind of 
development. You can start writing the code in Visual Studio and execute it using F# 
Interactive to see whether it works as you expected and later start wrapping this exper-
imental code in modules or types. 

4.2 Writing and testing code in FSI
From the description in section 4.1, you should have a good idea of what kind of data 
we’ll be using. The application works with a series of elements containing a title to be 
displayed in the chart and a number. It will load the data from a simplified CSV file,
which contains a single element per line. Listing 4.1 shows a sample file with world 
population distribution in millions. 

Asia,3634
Australia/Oceania,30
Africa,767
South America,511
Europe,729
North America,307

CSV files like this one are supported by many spreadsheet editors, including Microsoft 
Excel, so if you save the file with the .csv extension, you can easily edit it. Our applica-
tion will only support basic files, so we’ll assume that values are separated using com-
mas and that there are no commas or quotation marks in the titles. Those extra 
elements would make the file format more complicated, leading to more complex 
parsing code.

 Let’s start by writing F# functions to read the file and perform basic calculations on 
the loaded data. We’ll develop the code interactively, which will allow us to test every 
single function immediately after writing it. 

4.2.1 Loading and parsing data

As a first step, we’ll implement a function called convertDataRow, which takes a single 
row from the CSV file as a string and returns two components from the row in a tuple. 
Immediately after implementing the function, we test it by giving it a sample input 
that should be correctly parsed (a string “Testing reading,1234”). You can see the 
code for this function and the result of our test in listing 4.2.

> open System;;
> let convertDataRow(csvLine:string) =          
     let cells = List.ofseq(csvLine.Split(','))  
     match cells with
     | title::number::_ ->   

Listing 4.1 Our CSV file with population information 

Listing 4.2 Parsing a row from the CSV file (F# Interactive)

B
C

Should have two or more cells
Licensed to   <kr_wilson@hotmail.com>



84 CHAPTER 4 Exploring F# and .NET libraries by example
        let parsedNumber = Int32.Parse(number)
        (title, parsedNumber)
     | _ -> failwith "Incorrect data format!"   
  ;;
val convertDataRow : string -> string * int

> convertDataRow("Testing reading,1234");;      
val it : string * int = ("Testing reading", 1234) 

After starting F# Interactive, we import functionality from the System namespace. We 
need to open the namespace because the code uses the Int32.Parse method. This 
has to be imported explicitly, whereas the functions from the core F# libraries, such as 
List.ofseq, are available implicitly.

 The function convertDataRow B takes a string as an argument and splits it into a 
list of values using a comma as a separator. We’re using the standard.NET Split
method to do this. When invoking an instance method on a value, the F# compiler 
needs to know the type of the value in advance. Unfortunately, the type inference 
doesn’t have any other way to infer the type in this case, so we need to use type anno-
tation to explicitly state that the type of csvLine is a string C. 

 The Split method is declared using the C# params keyword and takes a variable 
number of characters as arguments. We specify only a single separator: the comma 
character. The result of this method is an array of strings, but we want to work with 
lists, so we convert the result to a list using the ofseq function from the F# List mod-
ule. We’ll talk about arrays and other collection types in chapters 10 and 12.

 Once we have the list, we use the match construct to test whether it’s in the correct 
format. If it contains two or more values, it will match the first case (title::number::_). 
The title will be assigned to a value title, the numeric value to number, and the remain-
ing columns (if any) will be ignored. In this branch we use Int32.Parse to convert a 
string to an integer and return a tuple containing the title and the value. The second 
branch throws a standard .NET exception.

 If you look at the signature, you can see that the function takes a string and returns 
a tuple containing a string as the first value and an integer as the second value. This is 
exactly what we expected: the title is returned as a string and the numeric value from 
the second column is converted to an integer. The next line demonstrates how easy it 
is to test the function using F# Interactive D. The result of our sample call is a tuple 
containing “Testing reading” as a title and “1234” as a numeric value.  

Reports an error

D

Working with .NET strings in F#
When working with strings in F#, you’ll usually use the normal .NET methods. Let’s 
see how we can use them in F#, starting with a few selected static methods available 
in the String class. We can use these as if they were ordinary F# functions (using 
the String class name). The arguments to these functions must be specified in pa-
rentheses as a comma-separated tuple. In the type signatures, tuples are written us-
ing asterisks:
Licensed to   <kr_wilson@hotmail.com>



85Writing and testing code in FSI
In the previous listing we implemented the convertDataRow function, which takes a 
string containing a line from the CSV file and returns a tuple containing a label and a 
numeric value. As a next step we’ll implement a function that takes a list of strings and 
converts each string to a tuple using convertDataRow. Listing 4.3 shows the function—
and a test immediately afterward, parsing a sample list of strings.

> let rec processLines(lines) =
     match lines with
     | [] -> []                       
     | currentLine::remaining ->  
        let parsedLine = convertDataRow(currentLine)  
        let parsedRest = processLines(remaining)  
        parsedLine :: parsedRest

Listing 4.3 Parsing multiple lines from the input file (F# Interactive)

(continued)
■ String.Concat (overloaded)—Accepts a variable number of arguments of type 

string or object and returns a string obtained by concatenating all of them:

    > String.Concat("1 + 3", 3);;
    val it : string = "1 + 33"

■ String.Join (sep:string * strs:string[]) : string—Concatenates an 
array of strings supplied as the strs parameter using a separator specified by 
sep; we can use the [| ... |] syntax to construct an array literal:

    > String.Join(", ", [| "1"; "2"; "3" |]);;
    val it : string = "1, 2, 3"

Strings in .NET are also objects and they also have instance members too. These can 
be used in F# using the typical dot notation. We’ve already seen this in the previous 
example when splitting a string using str.Split. The following examples assume 
that we have a string value str containing "Hello World!":

■ str.Length—Property that returns the length of the string; properties are 
accessed in F# the same way as in C#, so the call reading the property isn’t fol-
lowed by braces:

    > str.Length;;
    val it : int = 12

■ str.[index:int]—Indexing into a string, which can be written using square 
braces; returns the character at the location specified by the index value. Note 
that you still need the dot before the opening brace, unlike in C#:

    > str.[str.Length - 1];;
    val it : char = '!'

We can also use functions available in the FSharp.PowerPack.dll library. Most of the 
string processing code in F# can be implemented using .NET methods.

B
C Processes 

head of list

Recursively 
processes tail
Licensed to   <kr_wilson@hotmail.com>



86 CHAPTER 4 Exploring F# and .NET libraries by example
  ;;
val processLines : string list -> (string * int) list

> let testData = processLines ["Test1,123"; "Test2,456"];;  
val testData : (string * int) list = 
    [("Test1", 123); ("Test2", 456)]

This function is in many ways similar to those for processing lists that we imple-
mented in the previous chapter. As you can see, the function is declared using the 
let rec keyword, so it’s recursive. It takes a list of strings as an argument (lines) 
and uses pattern matching to test whether the list is an empty list or a cons cell. For 
an empty list, it directly returns an empty list of tuples B. If the pattern matching
executes the branch for a cons cell C, it assigns a value of the first element from the 
list to the value currentLine and list containing the remaining elements to the value 
remaining. The code for this branch first processes a single row using the convert-
DataRow function from listing 4.2 and then recursively processes the rest of the list. 
Finally the code constructs a new cons cell: it contains the processed row as a head 
and the recursively processed remainder of the list as a tail. This means that the 
function executes convertDataRow for each string in the list and collects the results 
into a new list.

 To better understand what the processLines function does, we can also look at 
the type signature printed by F# Interactive. It says that the function takes a list of 
strings (string list type) as an argument and returns a list containing tuples of type 
string * int. This is exactly the type returned by the function that parses a row, so it 
seems that the function does the right thing. We verify this by calling it with a sample 
list as an argument D. You can see the result of the call printed by F# Interactive: it’s a 
list containing two tuples with a string and a number, so the function works well.

 Now we have a function for converting a list of strings to a data structure that we’ll 
use in our chart-drawing application. Before we can implement the key data process-
ing part, we need to look at one simple utility.

4.2.2 Calculating with the data

In the first version of the application, we’ll simply print labels together with the pro-
portion of the chart occupied by each item (as a percentage). 

 To calculate the percentage, we need to know the sum of the numeric values of all 
the items in the list. This value is calculated by the function calculateSum in listing 4.4. 

> let rec calculateSum(rows) =
     match rows with
     | [] -> 0                      
     | (_, value)::tail ->                       
        let remainingSum = calculateSum(tail)   
        value + remainingSum 
  ;;
val calculateSum : ('a * int) list -> int

Listing 4.4 Calculating a sum of numeric values in the list (F# Interactive)

D

Returns zero 
for empty list

B
Recursively sums 
elements of tail
Licensed to   <kr_wilson@hotmail.com>



87Writing and testing code in FSI
> let sum = calculateSum(testData);;
val sum : int = 579
> 123.0 / float(sum) * 100.0;;  
val it : float = 21.24352332

This function exhibits the recurring pattern for working with lists yet again. Writing 
code that follows the same pattern over and over may suggest that we’re doing some-
thing wrong (as well as being boring—repetition is rarely fun). Ideally, we should only 
write the part that makes each version of the code unique without repeating ourselves. 
This objection is valid for the previous example, and we can write it in a more elegant 
way. We’ll learn how to do this in upcoming chapters. You’ll still need both recursion 
and pattern matching in many functional programs, so it’s useful to look at one more 
example and become familiar with these concepts.

 For an empty list, the function calculateSum simply returns 0. For a cons cell, it 
recursively sums values from the tail (the original list minus the first element) and 
adds the result to a value from the head (the first item from the list). The pattern 
matching in this code demonstrates one interesting pattern that’s worth discussing. In 
the second branch B, we need to decompose the cons cell, so we match the list
against the head::tail pattern. The code is more complicated than that, since at the 
same time, it also matches the head against pattern for decomposing tuples, which is 
written as (first, second). This is because the list contains tuples storing the title as 
the first argument and the numeric value as the second argument. In our example, we 
want to read the numeric value and ignore the title, so we can use the underscore pat-
tern to ignore the first member of the tuple. If we compose all these patterns into a 
single one, we get (_, value)::tail, which is what we used in the code. 

 If we look at the function signature printed by F# Interactive, we can see that the func-
tion takes a list of tuples as an input and returns an integer. The type of the input tuple 
is 'a * int, which means that the function is generic and works on lists containing any 
tuple whose second element is an integer. The first type is not relevant, because the value 
is ignored in the pattern matching. The F# compiler makes the code generic automat-
ically in situations like this using a feature called automatic generalization. You’ll learn 
more about writing generic functions and automatic generalization in chapters 5 and 6.

 The last command C from listing 4.3 prepared the way for the test in listing 4.4: 
why enter test data more than once? Having calculated the sum to test the function, 
we finally calculate the percentage occupied by the record with a value 123. Because 
we want to get the precise result (21.24 percent), we convert the obtained integer to a 
floating point number using a function called float.    

C

Converting and parsing numbers
F# is a .NET language, so it works with the standard set of numeric types available 
within the platform. The following list shows the most useful types that we’ll work 
with. You can see the name of the .NET class in italics and the short name used in 
F# in parentheses:
Licensed to   <kr_wilson@hotmail.com>



88 CHAPTER 4 Exploring F# and .NET libraries by example
(continued)

■ Int32, UInt32 (int, uint32)—Standard 32-bit integer types; literals are written in 
F# as 42 (signed) or 42u (unsigned); there are also 16- and 64-bit variants 
written as 42s and 42us for 16-bit (int16, uint16) and 1L or 1UL for 64-bit 
(int64, uint64).

■ Double, Single (float, float32)—Represent a double-precision and a single-preci-
sion floating-point number; the literals are written as 3.14 and 3.14f, respec-
tively. Note the difference between F# and C# here—double in C# is float in 
F#; float in C# is float32 in F#.

■ SByte, Byte (sbyte, byte)—Signed and unsigned 8-bit integers; the literals are 
written as 1y (signed) and 1uy (unsigned).

■ Decimal (decimal)—Floating decimal point type, appropriate for financial calcula-
tions requiring large numbers of significant integral and fractional digits. Literals 
are written as 3.14M.

■ BigInteger (bigint)—A type for representing integers of arbitrary size. This is a 
new type in .NET 4.0 and is available in the System.Numerics namespace; ear-
lier versions of F# contain their own implementation of the type, so you can use 
it when targeting earlier versions of the .NET Framework in Visual Studio 2008. 
In F#, the literals of this type are written as 1I.

Unlike C#, the F# compiler doesn’t insert automatic conversions between distinct nu-
meric types when precision can’t be lost. F# also doesn’t use a type-cast syntax for 
explicit conversions, so we have to write all conversions as function calls. The F# li-
brary contains a set of conversion functions that typically have the same name as the 
F# name of the target type. The following list shows a few of the most useful conver-
sion functions:

■ int—Converts any numeric value to an integer; the function is polymorphic, 
which means that it works on different argument types. We can, for example, 
write (int 3.14), for converting a float value to an integer, or (int 42uy), for 
converting a byte value to an integer.

■ float, float32—Converts a numeric value to a double-precision or a single-preci-
sion floating-point number; it’s sometimes confusing that float corresponds to 
.NET Double type and float32 to .NET Single type.

These functions can be also used when converting strings to numbers. If you need 
more control over the conversion and specify for example the culture information, you 
can use the Parse method. This method is available in a .NET class corresponding 
to the numeric type that can be found in a System namespace. For example, to con-
vert a string to an integer you can write Int32.Parse("42"). This method throws an 
exception on failure, so there’s also a second method called TryParse. Using this 
method, we can easily test whether or not the conversion succeeded. The method 
returns the Boolean flag and gives us the parsed number via an out parameter, but 
it can be accessed in a simpler way in F#. We’ll talk about the details in chapter 5, 
but as you can see, the usage is straightforward: 
Licensed to   <kr_wilson@hotmail.com>



89Creating a console application
In listing 4.4 we ended with an equation that calculates the percentage of one item in 
our test data set. This is another example of iterative development in F#, because we’ll 
need exactly this equation in the next section. We tried writing the difficult part of the 
computation to make sure we could do it in isolation: now we can use it in the next 
section. We’ll start by writing code to read the data from a file and then use this equa-
tion as a basis for code to print the data set to the console.

4.3 Creating a console application
Writing a simple console-based output for our application is a good start, because we 
can do it relatively easily and we’ll see the results quickly. In this section, we’ll use sev-
eral techniques that will be important for the later graphical version as well. Even if 
you don’t need console-based output for your program, you can still start with it and 
later adapt it into a more advanced, graphical version as we’ll do in this chapter.

 We’ve already finished most of the program in the previous section by writing com-
mon functionality shared by both the console and graphical versions. We have a func-
tion, processLines, that takes a list of strings loaded from the CSV file and returns a 
list of parsed tuples, and a function, calculateSum, that sums the numerical values 
from the data set. In listing 4.4, we also wrote the equation for calculating the percent-
age, so the only remaining tasks are reading data from a file and printing output to a 
console window. You can see how to put everything together in listing 4.5.

> open System.IO;;

> let lines = List.ofseq(File.ReadAllLines(@"C:\Ch03\data.csv"));;  
val lines : string list

> let data = processLines(lines);;  
val data : (string * int) list =
  [("Asia", 3634); ("Australia/Oceania", 30); ("Africa", 767);
    ("South America", 511); ("Europe", 729); ("North America", 307)]

> let sum = float(calculateSum(data));;  
val sum : float = 5978.0

> for (title, value) in data do  

Listing 4.5 Putting the console-based version together (F# Interactive)

(continued)

let (succ, num) = Int32.TryParse (str)
if succ then Console.Write("Succeeded: {0}", num) 
else Console.Write("Failed")

This is by no means a comprehensive reference for working with numbers in F# and 
.NET. We’ve discussed only the most commonly used numeric types and functions. 
To learn more, refer to the standard .NET reference or the F# online reference 
[F# website].

B
Converts lines 
to list of tuples

Sums numeric 
values

C

Licensed to   <kr_wilson@hotmail.com>



90 CHAPTER 4 Exploring F# and .NET libraries by example
     let percentage = int((float(value)) / sum * 100.0)
     Console.WriteLine("{0,-18} - {1,8} ({2}%)",           
                                 title, value, percentage)   
  ;;
Asia - 3634 (60%)
Australia/Oceania -    30 (0%)
Africa - 767 (12%)
South America - 511 (8%)
Europe - 729 (12%)
North America - 307 (5%)

Listing 4.5 starts by opening the System.IO namespace, which contains .NET classes 
for working with the filesystem. Next, we use the class File from this namespace and 
its method ReadAllLines B, which provides a simple way for reading text content 
from a file, returning an array of strings. Again we use the ofseq function to convert 
the array to a list of strings. The next two steps are fairly easy, because they use the two 
functions we implemented and tested in previous sections of this chapter—we process 
the lines and sum the resulting values.

 Let’s now look at the last piece of code C. It uses a for loop to iterate over all ele-
ments in the parsed data set. This is similar to the foreach statement in C#. The 
expression between keywords for and in isn’t just a variable; it’s a pattern. As you can 
see, pattern matching is more common in F# than you might expect! This particular 
pattern decomposes a tuple into a title (the value called title) and the numeric value 
(called value). In the body of the loop, we first calculate the percentage using the 
equation that we tested in listing 4.4 and then output the result using the familiar 
.NET Console.WriteLine method.      

Calculates 
percentage, prints it

Formatting strings in F# and .NET
String formatting is an example of a problem that can be solved in two ways in F#. 
The first option is to use functionality included in the F# libraries. This is compatible 
with F# predecessors (the OCaml language), but it’s also designed to work extremely 
well with F#. The other way is to use functionality available in the .NET Framework, 
which is sometimes richer than the corresponding F# functions. The printfn func-
tion, which we’ve used in earlier examples, represents the first group, and Con-
sole.WriteLine from the last listing is a standard .NET method.

When formatting strings in .NET, we need to specify a composite format string as the 
first argument. This contains placeholders that are filled with the values specified by 
the remaining arguments. The placeholders contain an index of the argument and op-
tionally specify alignment and format. Two of the most frequently used formatting 
methods are Console.WriteLine (for printing to the console) and String.Format
(which returns the formatted string):

> let name, date = "Tomas", DateTime.Now;;
> let s = String.Format("Hello {0}! Today is: {1:D}", name, date);;
val s : string = "Hello Tomas! Today is: Sunday, 15 March 2009"
Licensed to   <kr_wilson@hotmail.com>



91Creating a console application
(continued)
The format string is specified after the colon; for example, {0:D} for a date formatted 
using the long date format, {0:e} for the scientific floating point, or {0:x} for a hexa-
decimal integer. In the last listing, we also specified alignment and padding of the 
printed value, which is done by adding a number after the comma: 

> Console.WriteLine("Number with spaces: {0,10}!", 42);;
Number with spaces:         42!
> Console.WriteLine("Number with spaces: {0,-10}!", 42);;
Number with spaces: 42        !

Aside from the specification of alignment and padding, the .NET libraries are frequent-
ly used from F# when formatting standard .NET data types (such as the DateTime
type or the DateTimeOffset type, which represents the time relatively to the UTC 
time zone). The following example briefly recapitulates some of the useful formatting 
strings. Note that the output is culture-sensitive, so it can vary depending on your sys-
tem settings:

> let date = DateTimeOffset.Now;;
val date : DateTimeOffset = 03/15/2009 16:37:53 +00:00
> String.Format("{0:D}", date);;
val it : string = "Sunday, 15 March 2009"
> String.Format("{0:T}", date);;
val it : string = "16:36:09"
> String.Format("{0:yyyy-MM-dd}", date);;
val it : string = "2009-03-15"

The F#-specific functions for formatting strings are treated specially by the compiler, 
which has the benefit that it can check that we’re working correctly with types. Just 
like in .NET formatting, we specify the format as a first argument, but the placehold-
ers in the format specify the type of the argument. There’s no index, so placeholders 
have to be in the same order as the arguments. In F#, you’ll often work with printf
and printfn to output the string to the console (printfn adds a line break) and 
sprintf, which returns a formatted string:

printfn "Hello %s! Today is: %A" name date
let s = sprintf "Hello %s! Today is: %A" name date

The following list shows the most common types of placeholders:

■ %s—The argument is of type string.
■ %d—Any signed or unsigned integer type (e.g., byte, int, or ulong)
■ %f—A floating-point number of type float or float32
■ %A—Outputs the value of any type using a combination of F# reflection and .NET 

ToString method. This prints the most readable debug information about any 
value.

Choosing between the .NET and F# approach is sometimes difficult. In general, it’s 
usually better to use the F# function, because it has been designed to work well with 
F# and checks the types of arguments based on the format string. If you need func-
tionality that isn’t available or is hard to achieve using F# functions, you can switch 
to .NET formatting methods, because both can be easily used in F#.
Licensed to   <kr_wilson@hotmail.com>



92 CHAPTER 4 Exploring F# and .NET libraries by example
Instead of running everything in F# Interactive, we could turn the code from listing 4.5 
into a standard console application. If you’re writing the code in Visual Studio and exe-
cuting it in F# Interactive by pressing Alt+Enter, you already have the complete source 
code for the application. The only change that will make it more useful is the ability to 
read the filename from the command line. In F#, we can read command-line arguments 
using the standard .NET Environment.GetCommandLineArgs method. Alternatively, you 
can write an entry-point function that takes a string array as an argument and mark it 
using the EntryPoint attribute. The first element of the array is the name of the running 
executable, so to read the first argument, we can write args.[1].

 In this section, we added a simple console-based output for our data processing 
application. Now it’s time to implement the GUI using the Windows Forms library and 
then draw the pie chart using classes from the System.Drawing namespace. Thanks to 
our earlier experiments and the use of F# Interactive during the development, we 
already know that a significant part of our code works correctly. If we were to write the 
whole application from scratch, we’d quite possibly already have several minor, but 
hard-to-find, bugs in the code. Of course, in a later phase of the development process, 
we should turn these interactive experiments into unit tests. We’ll talk about this topic 
in chapter 11.

4.4 Creating a Windows Forms application
Windows Forms is a standard library for developing GUI applications for Windows and 
is nicely integrated with functionality from the System.Drawing namespace. These two 
libraries allow us, among other things, to draw graphics and display them on the screen. 
The .NET ecosystem is quite rich, so we could use other technologies as well. We can use 
Windows Presentation Foundation (WPF), which is part of .NET 3.0, for creating visually 
attractive UIs that use animations, rich graphics, or even 3D visualizations.

4.4.1 Creating the user interface

For this chapter we’re using Windows Forms, which is in many ways simpler, but using 
other technologies from F# shouldn’t be a problem for you. The UI in Windows 
Forms is constructed using components (like Form, Button, or PictureBox), so we’re 
going to start by writing code that builds the UI controls. This task can be simplified by 
using a graphical designer, but our application is quite simple, so we’ll write the code 
by hand. In some UI frameworks (including WPF), the structure of controls can be 
described in an XML-based file, but in Windows Forms, we’re going to construct the 
appropriate classes and configure them by specifying their properties. 

 Before we can start, we need to configure the project in Visual Studio. By default, 
the F# project doesn’t contain references to the required .NET assemblies, so we need 
to add references to System.Windows.Forms and System.Drawing. We can do this 
using the Add Reference option in Solution Explorer. Also, we don’t want to display 
the console window when the application starts. You can open the project properties 
and select the Windows Application option from the Output Type drop-down list. 
Licensed to   <kr_wilson@hotmail.com>



93Creating a Windows Forms application
After configuring the project, we can write the first part of the application, as shown 
in listing 4.6.

open System 
open System.Drawing
open System.Windows.Forms

let mainForm = new Form(Width = 620, Height = 450, Text = "Pie Chart")  

let menu = new ToolStrip()                                            
let btnOpen = new ToolStripButton("Open")                         
let btnSave = new ToolStripButton("Save", Enabled = false)
ignore(menu.Items.Add(btnOpen))                                   
ignore(menu.Items.Add(btnSave))                                   

let boxChart = 
   new PictureBox                                                  
      (BackColor = Color.White, Dock = DockStyle.Fill,  
       SizeMode = PictureBoxSizeMode.CenterImage)      

mainForm.Controls.Add(menu)
mainForm.Controls.Add(boxChart)

// TODO: Drawing of the chart & user interface interactions

[<STAThread>]  
do
   Application.Run(mainForm)  

The listing starts by opening .NET namespaces that contain classes used in our pro-
gram. Next, we start creating the controls that represent the UI. We start with con-
structing the main window (also called the form). We’re using an F# syntax that allows 
us to specify properties of the object directly during the initialization B. This makes 
the code shorter, but also hides side effects in the code. Internally, the code first cre-
ates the object using a constructor and then sets the properties of the object specified 
using this syntax, but we can view it as single operation that creates the object. When 
creating the form, we’re using a parameterless constructor, but it’s possible to specify 
arguments to the constructor too. You can see this later in the code when we create 
btnSave, whose constructor takes a string as an argument. A similar syntax for creat-
ing objects is now available in C# 3.0 as well and has an interesting history on the .NET
platform (for more information, see the sidebar “Constructing classes in F#, C# 3.0, 
and Cω”).

 When adding the toolbar buttons to the collection of menu items, we call the Add
method, which returns an index of the added item. In C#, you can call this method 
and ignore the return value, but F# is stricter. In functional programming, return val-
ues are much more important, so it is usually a mistake to ignore them. For this rea-
son, F# compiler reports a warning when we ignore a return value. Fixing the code is 
quite easy, we can wrap the call inside a call to the ignore function. The function 
takes any value as an argument and returns unit (representing no return value) so 
that the compiler stops complaining.

Listing 4.6 Building the user interface (F#)

B

Constructs 
application menu

Constructs control 
to display pie chart

C Starts application 
with main form
Licensed to   <kr_wilson@hotmail.com>



94 CHAPTER 4 Exploring F# and .NET libraries by example
 The listing continues by constructing the menu and PictureBox control, which 
we’ll use for showing the pie chart. We’re not using F# Interactive this time, so there’s 
a placeholder in the listing marking the spot where we’ll add code for drawing the 
charts and for connecting the drawing functionality to the UI. 

 The final part of listing 4.6 is a standard block of code for running Windows Forms 
applications C. It starts with a specification of threading model for COM technology, 
which is internally used by Windows Forms. This is specified using a standard .NET
attribute (STAThreadAttribute) so you can find more information about it in the 
.NET reference. In C# we’d place this attribute before the Main method, but in F# the 
source can contain code to be executed in any place. Since we need to apply this attri-
bute, we’re using a do block, which groups together the code to be executed when the 
application starts.  

Constructing classes in F#, C# 3.0, and Cω
We already mentioned that some GUI frameworks use XML to specify how the con-
trols should be constructed. This is a common approach, because constructing ob-
jects and setting their properties is similar to constructing an XML node and setting 
its attributes. This similarity was a motivation for researchers working on a language 
Cω [Meijer, Schulte, and Bierman, 2003] in Microsoft Research in 2003, which later 
motivated many features that are now present in C# 3.0. In Cω, we could write a 
code to construct ToolStripButton control like this:

ToolStripButton btn = <ToolStripButton>
                                 <Text>Save</Text>
                                 <Enabled>True</Enabled>
                                 <Image>{saveIco}</Image>
                               </ToolStripButton>

In Cω, the XML syntax was integrated directly in the language. The elements nested 
in the ToolStripButton node specify properties of the object, and the syntax using 
curly braces allows us to embed usual non-XML expressions in the XML-like code. The 
ease of constructing objects in this way probably inspired the designers of XAML, 
which is an XML-based language used in WPF for describing UIs. On the language 
side, it motivated C# 3.0 feature called object initializers:

var btn = new ToolStripButton("Save"){ Enabled = false, Image = saveIco };

It no longer uses XML-based syntax, but the general idea to construct the object and 
specify its properties is essentially the same. We can also specify arguments of the 
constructor using this syntax, because the properties are specified separately in curly 
braces. Listing 4.6 shows that the same feature is available in F# as well:

let btn = new ToolStripButton("Save", Enabled = false, Image = saveIco)

The only difference from C# 3.0 is that in F# we specify properties directly in the con-
structor call. The arguments of the constructor are followed by a set of key-value pairs 
specifying the properties of the object.
Licensed to   <kr_wilson@hotmail.com>



95Creating a Windows Forms application
So far, we’ve implemented a skeleton of the application, but it doesn’t do anything 
yet—at least, it doesn’t do anything with our data. In the next section, we’re going to 
fill in the missing part of the code to draw the chart and display it in the existing Pic-
tureBox called boxChart.

4.4.2 Drawing graphics

The application will draw the pie chart in two steps: it will draw the filled pie and it 
will add the text labels. This way, we can be sure that the labels are never covered by 
the pie.

 A large part of the code that performs the drawing can be shared by both steps. 
For each step, we need to iterate over all items in the list to calculate the angle occu-
pied by the segment of the pie chart. The solution to this problem is to write a func-
tion that performs the shared operations and takes a drawing function as an 
argument. The code calls this function twice. The drawing function in the first step 
fills segments of the pie chart, and the one in the second step draws the text label.
CREATING RANDOM COLOR BRUSHES

Let’s start by drawing the pie. We want to fill specified segments of the pie chart using 
random colors, so first we’ll write a simple utility function that creates a randomly col-
ored brush that we can use for filling the region, as shown in listing 4.7.

let rnd = new Random()
let randomBrush() = 
   let r, g, b = rnd.Next(256), rnd.Next(256), rnd.Next(256)      
   new SolidBrush(Color.FromArgb(r,g,b))                          

The code declares two top-level values. The first is an instance of a .NET class Random, 
which is used for generating random numbers. The second is a function randomBrush. 
It has a unit type as a parameter, which is an F# way of saying that it doesn’t take any 
meaningful arguments. Thanks to this parameter, we’re declaring a function that can 
be run several times giving a different result. If we omitted it, we’d create a value that 
would be evaluated only once when the application starts. The only possible unit

Listing 4.7 Creating brush with random color (F#)

(continued)
Another way to parameterize construction of a class, but also any ordinary method 
call, is to use named arguments. The key difference is that names of the parameters 
are part of the constructor or method declaration. Named parameters can also be 
used to initialize immutable classes, because they don’t rely on setting a property 
after the class is created. This feature is available in F#, and you can find more infor-
mation in the F# documentation. In C#, named arguments are being introduced in ver-
sion 4.0 and the syntax is similar to specification of properties in F#. However, it’s 
important to keep in mind that the meaning is quite different.
Licensed to   <kr_wilson@hotmail.com>



96 CHAPTER 4 Exploring F# and .NET libraries by example
value is (), so when calling the function later in the code, we’re actually giving it unit
as an argument, even though it looks like a function call with no arguments at all. The 
randomBrush function uses the rnd value and generates SolidBrush object, which can 
be used for filling of specified regions. It has side effects and as you already know, we 
should be careful when using side effects in functional programs.

Now that you know how to create brushes for filling the chart, we can take a look at 
the first of the drawing functions. 
DRAWING THE PIE CHART SEGMENTS

Listing 4.8 implements a function called drawPieSegment. It fills the specified seg-
ment of the chart using a random color. This function will be used from a function 
that performs the drawing in two phases later in the application. The processing 
function will call it for every segment, and it will get all the information it needs 
as arguments.

let drawPieSegment(gr:Graphics, title, startAngle, occupiedAngle) =  
   let br = randomBrush()
   gr.FillPie

Listing 4.8 Drawing a segment of the pie chart (F#)

Hiding the side effects
The function randomBrush is an example of a function with side effects. This means 
that the function may return a different result every time it’s called, because it relies 
on some changing value, other than the function arguments. In this example, the 
changing value is the value rnd, which represents a random number generator and 
changes its internal state after each call to the Next method. Listing 4.7 declares 
rnd as a global value despite the fact that it’s used only in the function randomBrush. 
Of course, this is a hint that we should declare it locally to minimize the number of 
global values. We could try rewriting the code as follows:

let randomBrush() =
   let rnd = new Random()
   let r, g, b = rnd.Next(256), rnd.Next(256), rnd.Next(256)
   new SolidBrush(Color.FromArgb(r,g,b))

But this code doesn’t work! The problem is that we’re creating a new Random object 
every time the function is called and the change of the internal state isn’t preserved. 
When created, Random initializes the internal state using the current time, but since 
the drawing is performed quickly the “current time” doesn’t change enough and we 
end up with the whole chart being drawn in the same color.

Not surprisingly, there’s a way to write the code without declaring rnd as a global val-
ue, but that allows us to keep the mutable state represented by it between the func-
tion calls. To write this, we need two concepts that will be discussed in chapter 5: a 
closure and a lambda function. We’ll see a similar example showing a frequent pat-
tern for hiding side effects like this one in chapter 8.
Licensed to   <kr_wilson@hotmail.com>



97Creating a Windows Forms application
      (br, 170, 70, 260, 260,        
       startAngle, occupiedAngle)
   br.Dispose()                                                      

The function parameters are written as one big tuple containing four elements, 
because this helps to make the code more readable. The first argument of the func-
tion is written with a type annotation specifying that its type is Graphics. This is a Sys-
tem.Drawing class, which contains functionality for drawing. We use its FillPie
method within the function, but that’s all that the compiler can tell about the gr
value. It can’t infer the type from that information, which is why we need the type 
annotation. The next three tuple elements specify the title text (which isn’t used any-
where in the code but will be important for drawing labels), the starting angle of the 
segment, and the total angle occupied by the segment (in degrees). Note that we also 
dispose of the brush once the drawing is finished. F# has a nicer way to do this, and 
we’ll talk about it in chapter 9.

The drawPieSegment function from the previous listing is one of the two drawing 
functions that we’ll use as an argument to the function drawStep, which iterates over 
all the segments of the pie chart and draws them. Before looking at the code for draw-
Step, let’s look at its type. Even though we don’t need to write the types in the code, 
it’s useful to see the types of values used in the code.

Specifies center 
and size of pie

Choosing a syntax when writing functions
We’ve seen two ways for writing functions with multiple arguments so far: we can 
write the function arguments either as a comma-separated list in parentheses or as 
a list of values separated by spaces. Note that the first style isn’t really special in 
any way:

let add(a, b) = a + b

This is a function that takes a tuple as an argument. The expression (a, b) is the 
usual pattern, which we used for deconstructing tuples in chapter 3. The question is 
which option is better. Unfortunately there isn’t an authoritative answer and this is a 
personal choice. The only important thing is to use the choice consistently.

In this book, we’ll usually write function arguments using tuples, especially when writ-
ing some more complicated utility functions that work with .NET libraries. This will 
keep the code consistent with the syntax you use when calling .NET methods. We’ll 
use spaces when writing simple utility functions that deal primarily with F# values. 

We’ll write parentheses when calling or declaring a function that takes a single argu-
ment, so for example we’ll write sin(x) even though parentheses are optional and 
we could write sin x. This decision follows the way functions are usually written in 
mathematics and also when calling .NET methods with multiple arguments. We’ll get 
back to this topic in chapters 5 and 6, when we discuss functions in more detail and 
also look at implementing and using higher-order functions.
Licensed to   <kr_wilson@hotmail.com>



98 CHAPTER 4 Exploring F# and .NET libraries by example
DRAWING USING FUNCTIONS

The first argument to the drawStep function is one of the two drawing functions, so 
we’ll use a name DrawingFunc for the type of drawing functions for now and define 
what it is later. Before discussing the remaining arguments, let’s look at the signature
of the function:

drawStep : (DrawingFunc * Graphics * float * (string * int) list) -> unit

We’re again using the tuple syntax to specify the arguments, so the function takes a 
single big tuple. The second argument is the Graphics object for drawing, which will 
be passed to the drawing function. The next two arguments specify the data set used 
for the drawing—a float value is the sum of all the numeric values, so we can calcu-
late the angle for each segment, and a value of type (string * int) list is our famil-
iar data set from the console version of the application. It stores the labels and values 
for each item to be plotted. 

 Let’s look at the DrawingFunc type. It should be same as the signature of the 
drawPieSegment function from listing 4.8. The second drawing function is drawLabel, 
which we’ll see shortly has exactly the same signature. We can look at the signatures 
and declare the DrawingFunc type to be exactly the same type as the types of these 
two functions:

drawPieSegment : (Graphics * string * int * int) -> unit
drawLabel         : (Graphics * string * int * int) -> unit

type DrawingFunc = (Graphics * string * int * int) -> unit

The last line is a type declaration that declares a type alias. This means that we’re 
assigning a name to a complicated type that could be written in some other way. We’re 
using the DrawingFunc name only in this explanation, but we could use it, for exam-
ple, in a type annotation if we wanted to guide the type inference or make the code 
more readable.

 As I mentioned earlier, we don’t need to write these types in the code, but it will 
help us understand what the code does. The most important thing that we already 
know is that the drawStep function takes a drawing function as a first argument. List-
ing 4.9 shows the code of the drawStep function.

let drawStep(drawingFunc, gr:Graphics, sum, data) = 
   let rec drawStepUtil(data, angleSoFar) =             
      match data with 
      | [] -> ()             
      | [title, value] ->              
         let angle = 360 - angleSoFar                  
         drawingFunc(gr, title, angleSoFar, angle)      
      | (title, value)::tail ->                          
         let angle = int(float(value) / sum * 360.0) 
         drawingFunc(gr, title, angleSoFar, angle)
         drawStepUtil(tail, angleSoFar + angle)     
   drawStepUtil(data, 0)                          

Listing 4.9 Drawing items using specified drawing function (F#)

B

C
D Calculates angle 

to add up to 360

E

Recursively 
draws the rest

Runs utility function
Licensed to   <kr_wilson@hotmail.com>



99Creating a Windows Forms application
To make the code more readable, we implement the function that does the actual 
work as a nested function B. It iterates over all items that should be drawn on the 
chart. The items are stored in a standard F# list, so the code is quite like the familiar 
list processing pattern. There is one notable difference, because the list is matched 
against three patterns instead of the usual two cases matching an empty list and a 
cons cell.

 The first branch in the pattern matching C matches an empty list and doesn’t do 
anything. As we’ve already seen, “doing nothing” is in F# expressed as a unit value, so 
the code returns a unit value, written as (). This is because F# treats every construct 
as an expression and expressions always have to return a value. If the branch for the 
empty list were empty, it wouldn’t be a valid expression.

 The second branch D is what makes the list processing code unusual. As you can 
see, the pattern used in this branch is [title, value]. This is a nested pattern com-
posed from a pattern that matches a list containing a single item [it] and a pattern 
that matches the item with a tuple containing two elements: (title, value). The syn-
tax we’re using is shorthand for [(title, value)], but it means the same thing. The 
first pattern is written using the usual syntax for creating lists, so if you wanted to write 
a pattern to match lists with three items, you could write [a; b; c]. We included this 
special case, because we want to correct the rounding error: if we’re processing the 
last item in the list, we want to make sure that the total angle will be exactly 360 
degrees. In this branch we simply calculate the angle and call the drawingFunc func-
tion, which was passed to us as an argument.

 The last branch processes a list that didn’t match any of the previous two patterns. 
The order of the patterns is important in this case, because any list matching the sec-
ond pattern D would also match the last one E but with an empty list as the tail. The 
order of the patterns in the code guarantees that the last branch won’t be called for 
the last item.

 The code for the last branch calculates the angle and draws the segment using the 
specified drawing function. This is the only branch that doesn’t stop the recursive pro-
cessing of the list, because it’s used until there’s a last element in the list, so the last 
line of the code is a recursive call. The only arguments that change during the recur-
sion are the list of remaining elements to draw and the angleSoFar, which is an angle 
occupied by all the already processed segments. Thanks to the use of local function, 
we don’t need to pass along the other arguments that don’t change. Only one thing is 
done in the drawStep function itself: it invokes the utility function with all the data 
and the argument angleSoFar set to 0. 
DRAWING THE WHOLE CHART

Before looking at the second drawing function, let’s see how to put things together. 
Figure 4.2 shows each of the layers separately: the code that we’ve already written 
draws the left part of the figure; we still need to implement the function to draw the 
labels shown on the right part.

 The code that draws the chart first loads data from a file, then processes it is the 
same as in the console application. Instead of printing data to the console, we now use 
Licensed to   <kr_wilson@hotmail.com>



100 CHAPTER 4 Exploring F# and .NET libraries by example
the functions described earlier to draw the chart. You can see the function drawChart
that does the drawing in listing 4.10.

let drawChart(file) = 
   let lines = List.ofSeq(File.ReadAllLines(file))
   let data = processLines(lines)                          
   let sum = float(calculateSum(data))                     

   let pieChart = new Bitmap(600, 400)               
   let gr = Graphics.FromImage(pieChart)            
   gr.Clear(Color.White)  
   drawStep(drawPieSegment, gr, sum, data)         
   drawStep(drawLabel, gr, sum, data)     

   gr.Dispose()  
   pieChart

The function takes a name of the CSV file as an argument and returns an in-memory 
bitmap with the pie chart. In the code, we first load the file and process it using our 
existing processLines and calculateSum functions. We then draw the chart, and on 
the last line we return the created bitmap as a result of the function.

 To draw anything at all, we first need to create a Bitmap object and then an associ-
ated Graphics object. We’ve used Graphics for drawing in all the previous functions, 
so once it’s created we can fill the bitmap with a white background and draw the chart 
using the drawStep function. The first call B draws the pie using drawPieSegment, 
and the second call C draws the text labels using drawLabel. You can try commenting 
out one of these two lines to draw only one of the steps and get the same results shown 
in figure 4.2. We haven’t implemented the drawLabel function yet, because we wanted 
to show how the whole drawing works first, but now we’re ready to finish this part of 
the application. 

Listing 4.10 Drawing the chart (F#)

Figure 4.2 Two phases of drawing the chart: the first phase using drawPieSegment (left) 
and the second using the drawLabel function (right). The chart shows distribution of the world 
population in 1900.

Loads, 
processes data

Creates bitmap and 
object for drawing

B
C

Finalizes drawing
Licensed to   <kr_wilson@hotmail.com>



101Creating a Windows Forms application
ADDING TEXT LABELS

We’ve already implemented the first drawing function and the second one should 
have the same signature, so that we can use each of them as an argument to the uni-
versal drawStep function. The only thing that we have to fill in is the code for drawing 
the label and calculating its position, as you can see in listing 4.11.

let fnt = new Font("Times New Roman", 11.0f)

let centerX, centerY = 300.0, 200.0            
let labelDistance = 150.0                          

let drawLabel(gr:Graphics, title, startAngle, angle) =                      
   let lblAngle = float(startAngle + angle/2)             
   let ra = Math.PI * 2.0 * lblAngle / 360.0     
   let x = centerX + labelDistance * cos(ra) 
   let y = centerY + labelDistance * sin(ra) 
   let size = gr.MeasureString(lbl, fnt)                                         
   let rc = new PointF(float32(x) - size.Width / 2.0f,                       
                              float32(y) - size.Height / 2.0f)                            
   gr.DrawString(title, fnt, Brushes.Black, new RectangleF(rc, size))  

We first declare a top-level font value used for drawing the text. We do this because 
we don’t want to initialize a new instance of the font every time the function is 
called. Since the font will be needed during the whole lifetime of the application, we 
don’t dispose of it explicitly; we rely on .NET to dispose of it when the application 
quits. The function itself starts with several lines of code that calculate location of 
the label. 

 The first line B calculates the angle in degrees that specifies the center of the pie 
chart sector occupied by the segment. We take the starting angle of the segment and 
add half of the segment size to move the label to the center. The second line C con-
verts the angle to radians. Once we have the angle in radians, we can compute the X 
and Y coordinates of the label using trigonometric functions cos and sin. We use 
MeasureString method to estimate the size of the text label and calculate the location 
of the bounding box in which the text is drawn. The X and Y coordinates calculated 
earlier are used as a center of the bounding box.

 Now that we’ve finished the code for drawing text labels, we’re done with the 
whole code for drawing the pie chart. We implemented the key function (drawChart), 
which performs the drawing of the chart earlier in listing 4.10. The function takes a 
filename of the CSV file as an argument and returns a bitmap with the chart. All we 
have to do now is add code that will call this function from our UI.

4.4.3 Creating the Windows application

We started creating the GUI of the application earlier, so we already have code to cre-
ate UI controls. However we still have to specify user interaction logic for our controls.

 The user can control the application using two buttons. The first one (btnOpen) 
loads a CSV file, and the second one (btnSave) saves the chart into an image file. We 

Listing 4.11 Drawing text labels (F#)

Defines properties 
of pie chart

Gets bounding 
box, draws label

B
C

Licensed to   <kr_wilson@hotmail.com>



102 CHAPTER 4 Exploring F# and .NET libraries by example
also have a PictureBox control called boxChart, which is where we’ll show the chart. 
Listing 4.12 shows how to connect the drawing code with our UI.

let openAndDrawChart(e) =                                         
   let dlg = new OpenFileDialog(Filter="CSV Files|*.csv")     
   if (dlg.ShowDialog() = DialogResult.OK) then
      let pieChart = drawChart(dlg.FileName)     
      boxChart.Image <- pieChart                            
      btnSave.Enabled <- true       

let saveDrawing(e) =                                                 
    let dlg = new SaveFileDialog(Filter="PNG Files|*.png")
    if (dlg.ShowDialog() = DialogResult.OK) then
        boxChart.Image.Save(dlg.FileName)          

[<STAThread>]
do                                                 
   btnOpen.Click.Add(openAndDrawChart)
   btnSave.Click.Add(saveDrawing)           
   Application.Run(mainForm)

The code first declares two functions that will be invoked when the user clicks the 
Open and Save buttons, respectively. For opening a file, we have a function openAnd-
DrawChart B. The function first creates an OpenFileDialog, which is a Windows 
Forms class that shows standard dialog for selecting a file. If the user selects a file, the 
function calls drawChart C, which we implemented earlier. A result of this call is an 
in-memory bitmap, which can be assigned to the Image property of the PictureBox
control. The second function is simpler, because it doesn’t need to draw the chart. It 
saves the image currently displayed in the PictureBox to a file, which is specified by 
the user using SaveFileDialog D.

 We’ve already talked about the code to execute a standard Windows application, but 
listing 4.12 shows it again E because we’ve added two lines of code. Before running the 
application, we specify that the openAndDrawChart function should be called when the 
user clicks the btnOpen button and likewise for the second button. This is done by reg-
istering a function as a handler of the Click event using the Add method. Unlike in C#, 
where events are special language constructs, F# treats events as normal objects that 
have an Add method. Events in F# also have AddHandler and RemoveHandler methods 
that serve exactly the same purpose as += and –= operators for events in C#. We’ll talk 
about this topic in more detail in chapter 16, but in most of the cases you can use the 
Add method. 

4.5 Summary
In this chapter we developed a simple but real-world application for drawing pie 
charts. We discussed basic F# and .NET numeric data types and explored both F# and 
.NET functionality for working with strings. We also demonstrated how to use usual 

Listing 4.12 Adding user interaction (F#)

B

C Displays 
bitmap

Enables button 
for saving image D

Saves current 
chart

E
Registers 
event handlers
Licensed to   <kr_wilson@hotmail.com>



103Summary
.NET libraries from F#, and you saw examples using Windows Forms, System.Drawing
as well as basic I/O. 

 What we wanted to demonstrate in this chapter was a typical F# development pro-
cess. In the beginning we started writing functions for working with the data, and we 
immediately tested them in F# Interactive. As we progressed, we implemented a func-
tion to load the real data from a file and a simple console application to verify that the 
core functions work correctly. Finally, we added a GUI and drew the chart using the 
functionality that we’d already implemented and tested. 

 We were able to implement the application in this way so early in the book mainly 
because it doesn’t work with data extensively. The only data structures that we’ve used 
are tuples and lists, which were both introduced in chapter 2. Most real-world applica-
tions need to work with more complex data sets. This is a topic for part 2, where we’ll 
see how to represent more complicated and structured data in a functional way and 
how to process it elegantly.

 Of course, the application is still quite simple and extending it (for example, by 
adding different types of charts) would be difficult at this point. To make the applica-
tion more extensible, we need to perform one more iteration in our development 
approach. This requires many of the advanced functional techniques discussed in the 
rest of the book.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Licensed to   <kr_wilson@hotmail.com>



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Licensed to   <kr_wilson@hotmail.com>



Part 2

Fundamental 
 functional techniques

At the beginning of this book, we said functional programming is built on 
top of very different foundations than those you were used to. After reading 
part 1, you should have an idea of how to build programs using principles like 
immutability and recursion. We’ve also seen basic types such as tuples and lists 
and used them to write our first larger functional application. Now that you 
know how functional concepts fit together, we can take a more systematic look 
at the basic building blocks that F# and other functional languages provide.

 In F# you often start by experimenting  using only basic functional features. 
This way, you can quickly get to code that works and try various approaches 
before choosing the best solution. In part 2 we’ll review all the basic functional 
features that make it possible to write the first version of program. We’ve seen 
the tuple type as one example of a simple functional data structure, but there 
are other types and other ways of working with them. 

 In part 2 we’ll review all the basic functional features that make it possible to 
write the first version of program. 

 In chapter 5, we’ll  distinguish between values and data. Values are used 
locally in the program, such as a tuple returned from a function that performs 
division with a remainder. A list of tuples storing items in a pie chart (from chap-
ter 4) is an example of data, because it’s a major data structure used by the 
whole application.

 We’ll also review the data types used for declaring and creating functional 
values and explore how to work with these values. 
Licensed to   <kr_wilson@hotmail.com>



 In chapter 6, we’ll still focus on values, but look at a more convenient way of calcu-
lating with them using higher-order functions: functions that take other functions as an 
argument. 

 In chapters 7 and 8, we’ll shift focus to architectural aspects of functional program-
ming, exploring ways for representing and working with data. We’ll make a distinction 
between data-centric and behavior-centric applications. In chapter 7, we’ll discuss 
applications whose design is determined by the data they work with, and in chapter 8 
we’ll discuss applications whose primary data structure represents some form of 
behavior. We’ll see connections between structural object-oriented design patterns 
and the data-centric programs in chapter 7, as well as between behavioral patterns and 
behavior-centric applications in chapter 8.

 By the end of part 2, you’ll understand all functional types and how to use them in 
real-world functional design. You’ll be able to think differently about your program-
ming tasks, because you’ll be familiar with all the functional constructs that determine 
the way applications are structured and written. 

 In parts 3 and 4, we’ll look at what can be improved and at more real-world exam-
ples, but the concepts from this part will remain as solid foundations.
Licensed to   <kr_wilson@hotmail.com>



Using functional 
 values locally
This chapter is about values. It’s a term that’s used a lot in different programming 
languages, so we ought to first define what we mean. When we discuss the concepts 
of functional programming, we describe functional programs as a computation
that takes inputs and returns a result. In simple terms, a value is what you can use as 
input or receive as a result. This means that everything you’ll work with inside the 
computations you implement is a value. 

 When writing a function that performs a calculation, we can give it all the input 
values as input parameters, but what if the function needs to return multiple values 
as a result? In C#, we can use out parameters or define a new class to group the val-
ues into a single object. Either approach seems inconsistent, because handling of 
input and output in this scenario is quite different. What we need is a way to 

This chapter covers
■ Understanding the role of values
■ Representing values with discriminated unions
■ Using generic types and type inference
■ Creating functions using lambda syntax
107

Licensed to   <kr_wilson@hotmail.com>



108 CHAPTER 5 Using functional values locally
combine multiple values (for example, an item name of type string and a count of type 
integer) into a single value that can be used both as an input argument and a result. In 
chapter 3, we briefly talked about tuples, which can be used for this purpose; we’ll look 
at tuples in more detail here. 

 Another example is when a computation can take an option as an input. A search 
function could, for example, take a name or an ID of the item. In C#, we’d likely write 
a function that takes two parameters and set one argument to an invalid value (–1 as 
an ID or null instead of a name). There’s a more elegant solution to this problem. 
We’ll show you how to combine values into an alternative value that can carry one of 
several options but not both. 

 In functional languages, a function is another (very important) kind of value. Val-
ues are fundamental to understanding functional programming, which is why we’ll 
start with them.

5.1 What are values?
Before we look at how to create values and how to use them for controlling the pro-
gram flow, let’s clarify what a value is. There’s no simple definition, so the best way to 
understand is to read this chapter. This section draws a distinction between values and 
data and explains how values in functional languages relate to primitive types, value 
types, and objects in languages like C#.

5.1.1 Primitive types, value types, and objects

In C#, we can work with primitive value types (such as integers or characters), a custom 
value type declared using the struct keyword (such as DateTime), and classes. The dif-
ference between value types and reference types is primarily in their behavior, but that’s 
observable only when the class is mutable. For example, string is a reference type that 
appears to be a value type because it’s immutable, meaning that by using only immuta-
ble types, we can almost eliminate the difference between value and reference types. 
There are differences only in the performance; the behavior will be the same.

 We can also look at the types’ complexity. In C#, this distinction isn’t that obvious, 
because even primitive types are standard value types that have methods and can 
implement interfaces. Immutable value types are considerably simpler than objects 
that have virtual methods and mutable state.

 In functional languages, we start with a set of primitive types, and we can build 
more complicated types by composing the primitive types in various ways. This is dif-
ferent from object-oriented languages, where we create types by defining their state in 
terms of primitive types and specify their behavior using methods. 

 The functional approach makes the whole type system a lot easier, because there’s 
in principle no distinction between value types and reference types. It also makes the 
transition from simple types to complex composed types very smooth. In this range, 
values are all the primitive types and also most of the simple composed types. To 
understand when a composed type becomes too complex to be considered a value, we 
need to look at what we’ll call data.
Licensed to   <kr_wilson@hotmail.com>



109Multiple values
5.1.2 Recognizing values and data 

Values are usually used locally, and you need to create and use them all the time. 
We’ve already mentioned a tuple as one of the composed values that is used fre-
quently. Another example is the option type that we’ll discuss in section 5.3.4. It con-
sists of two alternatives: one is an actual value and the other specifies that the value is 
missing. When working with option values, the compiler warns us if we don’t check 
for both of the cases, so there’s no danger of getting NullReferenceException.

 Values are typically used for solving general programming tasks such as expressing 
that some argument is missing. They can also be very simple (and locally used) utili-
ties, such as a value that would contain either an ID or a name given as an argument to 
a search function. On the other hand, data is usually something large and represents 
information that’s shared between parts of the program. The programming language 
doesn’t differentiate between the two, but in our description we occasionally will.

 In this chapter, we’ll look at ways of working with values locally, which will include 
basic F# type declarations. We’ll come back to this discussion in chapter 7 when we 
introduce the remaining type declarations that are typically used to represent data for 
the whole application.

NOTE We’ve been using the terms value and type quite vaguely until now, so we’d 
like to specify what we mean. To take a numeric example, integer is a type, 
whereas 43 is a value of that type. A type specifies an entire domain of values,
and a value is always an element within the domain specified by its type. 

That’s enough theory. Let’s look at our first way of composing values together. It 
should be familiar—it’s time to revisit tuples.

5.2 Multiple values
We’ve said that returning multiple values from a function is the primary motivation 
for using tuples. We’ve seen that they can also be used to combine several values into a 
single argument for a function. This can make the code more readable, and more 
composable, as we’ll see shortly.

5.2.1 Multiple values in F# and C#

When we discussed tuples in chapter 3, we implemented a Tuple class in C# with the 
same behavior as F# tuples. Using tuples isn’t the normal way to return multiple values 
from a C# method, although you may still find it useful when writing C# code in a 
functional way. If you want to write this in C# without using tuples or declaring a new 
class for every method that returns multiple values, you’d probably use out parame-
ters. You can see both approaches in listing 5.1, where we implement a simple func-
tion performing division with a remainder.

// F# version using tuples
> let divRem(a, b) = (a / b, a % b);;  
val divRem : int * int -> int * int

Listing 5.1 Division with a remainder (F# and C#)

Returns values 
as tuple
Licensed to   <kr_wilson@hotmail.com>



110 CHAPTER 5 Using functional values locally
> let (res, rem) = divRem(10, 3);;
val res : int = 3
val rem : int = 1

// C# version using out parameter
int DivRem(int a, int b, out int rem) {
   rem = a % b;                             
   return a / b;
}

int rem;
int res = DivRem(10, 3, out rem);

The F# version of the code shows the F# Interactive output, but as you can see, the 
code is shorter. This is because returning multiple values from a function is much 
more important in F# than in C#. C# 3.0 adds one more way for representing multiple 
values called anonymous types. It’s somehow limited because it can be easily used only 
inside a single method, but it’s still interesting.

We’ve seen that in C# out parameters are often used for the same purpose as tuples in 
F#. You may be wondering how to use existing .NET methods with out parameters 
from F#, and fortunately the language has a nifty feature for exactly this purpose.

Returns remainder 
in output parameter

Anonymous types in C# 3.0
The key feature added by Language Integrated Query (LINQ) is the ability to write que-
ries. (We’ll talk in depth about queries in chapter 11.) Queries work with collections, 
so for example, we might filter a collection of products and select only products from 
a particular category, then return the name and price of each product. This is where 
anonymous types are needed, because when returning the name and price, we effec-
tively have to return multiple values:

var query = from p in data.Products
                where p.CategoryID == 1
                select new { Name = p.ProductName, Price = p.UnitPrice };
foreach(var result in query) 
   Console.WriteLine(result.Name);

The difference between anonymous types and tuples is that elements of an anony-
mous type are named. The names are specified by the code creating the anonymous 
type in the query and can be used later to read the values of elements. We can rewrite 
the previous example using anonymous types:

int a = 10, b = 3;
var r = new { Remainder = a % b, Result = a / b };
Console.WriteLine("result={0}, remainder={1}", r.Result, r.Remainder);

This isn’t particularly useful, because anonymous types can be used only locally. 
When we return them from the method, we lose the compile-time type information 
and we can’t easily access the properties anymore.
Licensed to   <kr_wilson@hotmail.com>

http://www.functional-programming.net/library
http://www.functional-programming.net/library
http://www.manning.com/FunctionalProgrammingfortheRealWorld
http://www.manning.com/FunctionalProgrammingfortheRealWorld


111Multiple values
USING TUPLES INSTEAD OF OUT PARAMETERS 

Even though you can use out parameters from F# if you really want to, tuples are gen-
erally preferred and so F# automatically exposes .NET methods with out parameters as 
methods that return a tuple. You don’t have to do anything—it’s transparent. This 
means that your F# code can still look like idiomatic functional code even if it’s calling 
into .NET code that has no concept of tuples. The most widely used method with an out
parameter in .NET is probably TryParse, which is available in all of the numeric types 
such as Int32. To use the method in F# Interactive, you’ll need to open the System
namespace first. Let’s look at examples of using it from C# (using an out parameter):

int parsed;
bool success = Int32.TryParse("41", out parsed);

and F# (using tuples)

let (success, parsed) = Int32.TryParse("41");;

The F# version is quite easy to write and it looks more “functional,” because it avoids 
passing a reference to a mutable variable as an argument. In this example, we’re using 
pattern matching to decompose the returned tuple, but if you wanted to ignore the 
success flag altogether, you could also use the snd function and pick only the numeric 
value from the returned tuple. When the parsing fails, the returned number would be 
the default value of the type, which is 0. Alternatively, we could write a utility function 
that would allow us to specify the default value. We’ll learn how to write functions like 
this in the next chapter. 

 Now, before looking at the best practices for using tuples in F#, let’s return briefly 
to the discussion about values and types and revisit how tuple types and values of these 
types are constructed.

5.2.2 Tuple type and value constructors

You already know what the type of a tuple value looks like and we’ve seen it again in 
listing 5.1. The type is written using an asterisk, so for example a type of a tuple stor-
ing an integer and a string is written as int * string. In the introduction to this 
chapter, we talked about values and their types, and we explained that a type is a 
domain of all possible values. Let’s use this point of view to look at the tuple type: 
how does this notation reflect the fact that the tuple type is composed from several 
primitive types?

 The asterisk plays a key role in this notation, because it serves as a type constructor.1

This means that you can use the asterisk to construct tuple types from any other 
types. We mentioned earlier that a type specifies the domain of all possible values. 
Using this terminology, the domain specifying values of the type int * string
contains all possible combinations of integers and strings. In F# you don’t have to 

1 In the .NET terminology, the type constructor is used when referring to a static class constructor that initializes 
static data in a type. Here, we’re using the functional programming terminology, where a type constructor is 
used to construct new types from given ones.
Licensed to   <kr_wilson@hotmail.com>

http://www.functional-programming.net
http://www.functional-programming.net
http://www.manning.com/FunctionalProgrammingfortheRealWorld


112 CHAPTER 5 Using functional values locally
explicitly write types very often thanks to the wonders of type inference, but it’s useful 
to see how types are constructed.

 On the other hand, you’ll work with value constructors when writing any code that 
uses a tuple. This kind of constructor is much closer to the constructors that you’re used 
to in C#. A value constructor creates new functional values similar to the way in which 
an object-oriented constructor creates a new instance of a class. This is the syntax that 
allows you to create values of tuple types from other, simpler values. For example (1,
"hello") demonstrates the use of a value constructor. It creates one particular value 
that belongs to the domain specifying all possible combinations of integers and strings. 
To demonstrate the relation between value and type constructors, let’s look at one 
more example. The following code snippet shows how we could use tuples to represent 
a message and X, Y coordinates indicating where on the screen it should be displayed:

> let msgAt1 = (50, 100, "Hello world!");;
val msgAt1 : int * int * string

> let msgAt2 = ((50, 100), "Hello world!");;
val msgAt2 : (int * int) * string

The code shows two different representations. In the first case we’re using a single tuple 
with three elements to store all the basic values together. As you can see, the printed 
type signature reflects this and shows three basic types separated by asterisks. In the sec-
ond case, we first construct a tuple to store the X and Y coordinates, then we compose 
another tuple from this value and the message. As you can see, the type again reflects 
this construction scheme. It’s also worth noting that the types are different. The first 
one is a tuple of three elements, while the second one is a tuple containing tuple and 
a string. This means that you should always consider the available options when you 
construct tuples. In this case, we prefer the second option, because it seems logical that 
the X and Y values form a single composed value for representing coordinates. On the 
other hand, the string value representing the message is somewhat unrelated to the 
coordinates. Let’s look at a few more guidelines of how to use tuples appropriately.

5.2.3 Using tuples compositionally

The key concern when considering what kind of a tuple should be returned from a 
function is compositionality. How do you expect the tuple to be used? What other func-
tions might use a tuple of the same type? Is this consistent with similar situations in the 
rest of the program? 

 Let’s demonstrate this using an example. We’ll use the two ways of representing 
screen coordinates and the message from the previous example and we’ll assume that 
we already have a function for printing the message. We’ll omit the implementation, 
but the declaration of the function printMessage might look like this:

> let printMessage (x, y) message =
     printfn "[%d, %d] %s" x y message
  ;;
val printMessage : int * int -> string -> unit
Licensed to   <kr_wilson@hotmail.com>



113Multiple values
The type signature tells us that the function takes two arguments: a tuple containing 
the coordinates and the message. Now, we want to print the string “Test!” to a location 
specified by a tuple that we used earlier, which contains a message that we’re not inter-
ested in. Listing 5.2 shows several ways of doing this, depending on which representa-
tion we use for the message and coordinates.

> let msgAt1 = (50, 100, "Hello!");;  
val msgAt1 : int * int * string

> let (x, y, _) = msgAt1
  printMessage (x, y) "Test!";; 
[50, 100] Test!

> let msgAt2 = ((50, 100), "Hello!");;  
val msgAt2 : (int * int) * string

> let (coords, _) = msgAt2
  printMessage coords "Test!";; 
[50, 100] Test!

> printMessage (fst(msgAt2)) "Test!";;
[50, 100] Test!

As you can see, the tuple that we created in the first case B isn’t compatible with the 
printMessage function, so when we want to compose the code, we first have to decon-
struct the tuple into elements and then build a new tuple value when calling the func-
tion. Using the second representation, we can do much better C. The first element of 
the tuple is itself a tuple and is compatible with the first parameter of printMessage. 

 This is very helpful, because when we’re deconstructing the tuple later, we can take 
the first element and use it directly as the first argument. As the last line demonstrates, 
we can do even better and use the fst function to get the first element of the tuple 
directly when calling the function. This clearly shows why it’s important to structure 
tuples logically. You also need to consider the complexity of the tuples you create.
AVOIDING COMPLICATED TUPLES

Obviously, returning the results as tuples with an extremely large number of elements 
makes the code hard to read. In F#, you can replace tuples with too many elements 
with record types. Records provide a simple way to create a type with labeled mem-
bers. Records are usually used for storing program data, so we’ll talk about them in 
chapter 7.

 The point at which a function becomes hard to use based on the number of ele-
ments in its return type will vary from person to person, but we recommend avoiding 
returning tuples with more than three or four elements. Of course there are excep-
tions, and in the early phases of development it may be worth prototyping with large 
tuples, refactoring later when you have a clearer idea of how the values should be 
structured. Also, if the tuple is only used internally, using a larger tuple may be a bet-
ter option than declaring a record type only for a single use.

Listing 5.2 Representations of a message with coordinates (F# Interactive)

B
Tuple with 
three elements

C
Tuple containing 
nested tuple
Licensed to   <kr_wilson@hotmail.com>



114 CHAPTER 5 Using functional values locally
 Now that you know everything you need to about tuples, let’s move on. In the next 
section, we’ll introduce a way of constructing values that can be used for representing 
types with several alternative values. 

5.3 Alternative values
In the previous section, we looked at how to create values that combine several values 
into one. For example, we took a string value and a numeric value and created a com-
posed value that contains both a string and a number. In this section, you’ll see how to 
construct a value that can contain either a string or a number.

 First, let’s look at an example of when this could be useful. Imagine that we’re writ-
ing an application to schedule tasks and meetings, and we want to have several ways to 
specify the calendar. For an event that happens only once, we’d like to store the date 
and time. We also want to allow events that occur repeatedly. For this kind of event, 
we’ll need to store the date and time of the first occurrence and the time span 
between repetitions of the event. We’ll also support events that don’t have specified 
times yet, which we’ll call unscheduled events.

 This means we want to create a value with three different options to specify the 
schedule: never, once, or repeatedly. A typical way to represent several options in OOP
is to use a hierarchy of classes with some base class that contains all the important 
abstract methods. At this point, we don’t know how we’ll use the Schedule type, but 
one useful abstract method could return the date of the next scheduled occurrence. 
Figure 5.1 shows a diagram of the class hierarchy with an abstract class Schedule and 
with an inherited class for every of the three options.

 When using this representation, we can easily add new types of schedules later dur-
ing the development, but in this case we don’t expect to do that very often. On the 
other hand, it’s quite likely that we’ll want to add a new operation for working with 
schedules. For example, we may want to get the previous occurrence or get the 
sequence number of some specified occurrence. All of these operations can’t be done 
just using the virtual method GetNextOccurrence. We can keep modifying the base 
class, but what if we wanted to move it to some shared library and make the codebase 
more stable? This example is somewhat simplified, but it shows that there are situa-
tions where it makes good sense to reveal the whole structure of the class hierarchy.

 In C#, we could implement that either using type tests or more efficiently by add-
ing a Tag property to the base class. Its type would be an enumeration (called, for 
example, ScheduleType) with three possible values (Never, Once, and Repeatedly). 

GetNextOccurrence() : DateTime

Schedule

Never

Repeatedly
StartDate : DateTime
Interval : TimeSpan

Once
EventDate : DateTime

Figure 5.1 A class hierarchy for 
representing three different types of 
schedule with different properties 
for every case
Licensed to   <kr_wilson@hotmail.com>



115Alternative values
This makes the code less extensible in one way (by adding new types of schedules), 
but it allows us to easily write methods that work with schedules. In C# 3.0, we could 
even write extension methods to make the added functionality nicely accessible using 
dot notation. 

 If you’re a veteran of OOP, you’re probably finding this idea a bit unusual, but 
once you become more familiar with it, you’ll start to recognize situations where it 
would help more often. On the other hand, a similar principle is quite common in 
database design. When storing schedules in a database, it wouldn’t be possible to add 
new types of schedules, but you’d certainly be able to add new stored procedures for 
processing the data. We’ll talk about pros and cons of the object-oriented and func-
tional design shortly, but first let’s look at representing alternatives in F# using dis-
criminated unions. 

5.3.1 Discriminated unions in F#

Types like this crop up quite frequently in functional programming, so functional lan-
guages tend to make it easy to create and use them. In F# the supporting feature is 
called discriminated unions. Unlike tuples, discriminated unions have to be declared in 
advance, so before we can create a value representing the schedule, we have to declare 
the type with its name and, most importantly, the options it can represent. Listing 5.3 
shows a type for representing schedules in F#.

type Schedule =
   | Never                               
   | Once of DateTime                    
   | Repeatedly of DateTime * TimeSpan   

When creating the Schedule type, we combine several cases. We need to be able to dis-
tinguish between the alternatives, so we also specify a name for each of them (Never, 
Once, and Repeatedly). These names are usually called discriminators, because they 
discriminate between the cases. This means that every value of the Schedule type will 
carry its discriminator and the values stored for the selected option (such as DateTime
and TimeSpan in the last case of our example). As you can see, we’re using an asterisk 
when storing multiple values for a single option. This is analogous to the syntax for 
creating tuples, so you can see how the two concepts (multiple and alternative values) 
play nicely together.

 We’ll also need discriminators when creating values of the Schedule type, because 
the discriminator specifies which case we’re using. Listing 5.4 shows several examples.

> open System;;

> let tomorrow = DateTime.Now.AddDays(1.0)
  let noon = new DateTime(2008, 8, 1, 12, 0, 0)
  let daySpan = new TimeSpan(24, 0, 0);;

Listing 5.3 Schedule type using discriminated union (F#)

Listing 5.4 Creating values of discriminated union (F# Interactive)
Licensed to   <kr_wilson@hotmail.com>



116 CHAPTER 5 Using functional values locally
val tomorrow : DateTime
val noon : DateTime
val daySpan : TimeSpan

> let schedule1 = Never;;        
val schedule1 : Schedule = Never

> let schedule2 = Once(tomorrow);;                    
val schedule2 : Schedule = Once(2.8.2008 17:29:07)

> let schedule3 = Repeatedly(noon, daySpan);;                           
val schedule3 : Schedule = Repeatedly(1.8.2008 12:00:00, 1.00:00:00)

As you can see, creating values of the Schedule type is quite easy. We’re using discrim-
inators as value constructors. This is similar to our previous use of value constructors 
for creating tuples such as (7, "seven"). In this case, the syntax looks almost like call-
ing a function. For an option with no additional arguments, we write the discrimina-
tor name, and for an option with more arguments, we write the arguments as if they 
were a single tuple. 

 Of course, creating a value is pointless unless we can actually use it. Let’s try calcu-
lating something useful with a schedule.

5.3.2 Working with alternatives

So far we’ve seen how to declare a discriminated union type and how to create values 
using discriminators. Now we’ll learn how to write code that reads the value. After see-
ing the F# example, we’ll implement the same code in C# using the representation 
with the Tag property that we mentioned earlier.
MATCHING ON DISCRIMINATED UNIONS IN F#

When working with discriminated unions, we always have to write code for all possible 
alternatives, because we don’t know which one is represented by the value. Recall a 
similar situation from earlier on—we had to test whether a list was an empty list or a 
cons cell. We’ve used pattern matching to do this: the match construct allows us to test 
the value against several patterns. We can use the same feature to work with discrimi-
nated unions, except this time we use discriminators to write the patterns. Listing 5.5 
shows an example that gets the next occurrence of a scheduled event. 

let getNextOccurrence(schedule) =
   match schedule with
   | Never -> DateTime.MaxValue  
   | Once(eventDate) ->                                   
      if (eventDate > DateTime.Now) then eventDate
      else DateTime.MaxValue
   | Repeatedly(startDate, interval) ->                                     
      let secondsFromFirst = (DateTime.Now - startDate).TotalSeconds
      let q = secondsFromFirst / interval.TotalSeconds
      let q = max q 0.0                                              
      startDate.AddSeconds
         (interval.TotalSeconds * (Math.Floor(q) + 1.0))

Listing 5.5 Calculating the next occurrence of an event (F#)

Unscheduled 
event

Event 
occurring 
once

Event 
occurring 
every day

B
C

D

E

Licensed to   <kr_wilson@hotmail.com>



117Alternative values
This example is a bit complicated, but it shows the typical structure of an F# program. 
We’re using the standard .NET DateTime and TimeSpan structures to work with dates 
and times. We use pattern matching to test which of the alternative schedule represen-
tations has been given to us. In the first case B, we return DateTime.MaxValue, which 
is a special value that we use to represent the fact that the event isn’t scheduled for any 
future date. In the second case C we return the date of the event if it didn’t occur 
already. The last case (repeated event) is more complicated D. We first calculate how 
many times the event occurred in past and return the next occurrence. You can see 
that we declare the value q twice in the code E. This is called hiding a value, and it’s 
useful if we want to split a complicated calculation into two or more steps and make 
sure that we won’t accidentally use the intermediate values.

 As you can see, the pattern used for testing whether a value matches a specific dis-
criminator is exactly the same as we’ve used to construct the value in the first place. 
The pattern also extracts the values stored as arguments and assigns them to new val-
ues (called eventDate and startDate with interval, respectively), so we can immedi-
ately use them. 
MIMICKING DISCRIMINATED UNIONS IN C#

Next, we’ll look at the same functionality implemented in C#. We’ve already talked 
about the classes involved earlier, so we’ll assume they’ve already been implemented 
and look at only the code that uses them. Later in the chapter we’ll look at another 
example of alternative values, including the complete C# implementation, so you’ll see 
how to write a C# class hierarchy with the same properties as an F# discriminated union.

TIP If you want to see the complete source code for this example, including 
class declarations, you can download it from the book’s website, http://
www.functional-programming.net, or from the publisher’s website at 
http://www.manning.com/Real-WorldFunctionalProgramming.

There’s one important thing to note before we look at the C# version of the example 
in listing 5.6. It shows a situation when we already have the class hierarchy represent-
ing schedules implemented (for example, in a shared library) and it doesn’t already 
contain a method to get the next occurrence. We need to add the new functionality to 
a module in our application, and we can’t easily add a virtual method to the base class 
Schedule. Also, we want to keep the functionality localized in a single place in the 
code, to keep everything related to the calculation in a same place and the same file.

DateTime GetNextOccurrence(Schedule schedule) {
   switch(schedule.Tag) {                              
   case ScheduleType.Never:
      return DateTime.MaxValue;
   case ScheduleType.Once:
      var once = (Once)schedule;
      return once.EventDate > DateTime.Now ? 
         once.EventDate : DateTime.MaxValue;

Listing 5.6 Calculating the next occurrence of an event (C#)

B

Licensed to   <kr_wilson@hotmail.com>

http://www.functional-programming.net
http://www.functional-programming.net
http://www.manning.com/Real-WorldFunctionalProgramming


118 CHAPTER 5 Using functional values locally
   case ScheduleType.Repeatedly:
      var rp = (Repeatedly)schedule;                   
      var secondsFromFirst = (DateTime.Now - rp.StartDate).TotalSeconds;
      double q = secondsFromFirst / rp.Interval.TotalSeconds;
      q = Math.Max(q, 0.0);
      return rp.StartDate.AddSeconds
         (rp.Interval.TotalSeconds * (Math.Floor(q) + 1.0));
   default:
      throw new InvalidOperationException();  
   }
}

The algorithm used in the C# version is the same as in the F# version, so the only dif-
ference is how we distinguish between the options and how we read values stored for 
the option. In F#, this was done using pattern matching. In the C# version we’re using 
switch, which is a C# analogy of the match construct from F#. This is possible because 
we have a Tag property in the base class and an enumeration that tells us what kind of 
schedule the object represents B. Otherwise, we’d have to use an if statement with a 
sequence of dynamic type tests. Also, reading of values, which was done automatically 
in F#, is now a bit difficult. We have to cast the schedule to the concrete class to read 
its properties.

 In fact, the C# version of the code is very close to the .NET representation used by 
the F# compiler for discriminated unions. This means that the previous two examples 
are essentially the same after compilation. However, functional programming puts a 
stronger emphasis on this kind of data type, which is why it was much easier to write 
this code in F#. 

5.3.3 Adding types vs. functions

As we mentioned earlier, our functional Schedule data type in both F# and C# isn’t 
extensible in one direction: it’s difficult to add a new type of event. In F#, the difficulty 
occurs because you have to modify the type declaration; if it’s in a shared library you 
must recompile the shared library. Similarly, in the C# version, we have a Tag property, 
which makes adding new types difficult. On the other hand, the benefit of this design 
is that it allows us to easily add new functionality for working with schedules.

 Let’s explore the difference between functional and object-oriented solutions. 
Figure 5.2 shows two class hierarchies representing the two possible approaches. In 
the object-oriented version, all the functionality is enclosed in virtual methods. The 

Accessed properties 
of repeated event

Handles 
unreachable case

GetNextOccurrence() : DateTime

Schedule

Never RepeatedlyOnce

Schedule
Tag : ScheduleType

Never RepeatedlyOnce

Figure 5.2 Representation of schedule using the usual object-oriented design (left) and using the 
functional approach with a Tag property (right)
Licensed to   <kr_wilson@hotmail.com>



119Alternative values
functional version exposes the Tag property that can be used to identify which option 
the value represents.

 The following list shows the key differences between the functional programming 
style (FP) that we’ve seen in the code samples and the usual object-oriented style.

■ The FP version makes it easier to add new functionality that works with the data 
type. This is done by writing a function using pattern matching. Adding a new 
kind of representation to the type is difficult.

■ The object-oriented version makes it easier to add new types of representation. 
This is done by writing a new inherited class and implementing its virtual meth-
ods. Adding a new virtual method is difficult.

■ In the FP version the code for a single functionality is localized, so all code 
related to one kind of computation is in a single function.

■ In the object-oriented version the code for a single type is localized, meaning that 
all code that works with the specific representation is inside one class declaration.

As you can see, the key question is whether we want to make it easier to add new types 
or new functions. Experience shows that in functional programming, it’s more com-
mon to add new functionality to an existing type.

 If you’re familiar with common design patterns, you may remember the visitor pat-
tern, which is an object-oriented way of processing data structures like discriminated 
unions. We’ll talk about it when we look at recursive discriminated unions in chapter 7, 
because it’s usually used when working with complex program data rather than simple 
values. We’ll also delay the discussion of whether or not to choose a discriminated 
union until chapter 7, because this question is more relevant when talking about pro-
gram data, but you can check out the sidebar “Discriminated unions in the real world” 
for a couple of examples where discriminated unions are useful. 

Discriminated unions in the real world
One example of a class hierarchy that could be more elegantly implemented using 
discriminated unions is the Expression type introduced as part of the LINQ project 
in .NET 3.5. It’s used to store expression trees, which are data structures that rep-
resent parsed source code of an expression (such as 1 + x). The type has an inher-
ited class for each possible type of expression such as BinaryExpression that can 
represent addition and other binary operations or, for example, ConstantExpres-
sion, which is used to store literals. The type also has a property analogous to our 
Tag property, but it uses the name NodeType. Generally speaking, whenever you work 
with some form of source code or simple expression entered by the user, discrimi-
nated union may be the right choice.

Another example where discriminated unions are quite useful is when representing 
data structures such as binary trees. A tree can be either a leaf carrying some val-
ue or an inner node of the tree that’s composed from two binary trees. Trees are 
an often-used data structure in functional programming, so you’ll see them in chap-
ters 8, 10, and 15.
Licensed to   <kr_wilson@hotmail.com>



120 CHAPTER 5 Using functional values locally
In this chapter, we’re talking about simple values: for any simple general-purpose 
value that’s represented as limited set of alternatives, you should always choose dis-
criminated union. This is because for this kind of value, you almost certainly want to 
add new functionality instead of adding new types. There’s one discriminated union 
that’s particularly useful in functional programming and that’s present in all func-
tional languages: in F# it’s called the option type.

5.3.4 Using the option type in F#

We often need to represent the idea that some computation may return an undefined 
value. In C#, this is usually done by returning null. Unfortunately, using null is a fre-
quent cause of bugs: you can easily write code that assumes that a method doesn’t return 
null and when this assumption is false, you’ll see the infamous NullReference-
Exception. Of course, properly written code always checks for null values where appro-
priate, and when writing unit tests for the application, a large number of tests verify the 
behavior in this corner case.

 In F# use of the null value is minimized; it’s often used only when interoperating 
with .NET types. For representing computations that may return an undefined result, 
we instead use the option type. When we use this as the return type of a function, it’s 
an explicit statement that the result may be undefined; this also lets the compiler
force the caller to handle an undefined result.

 The option type is a discriminated union with two alternatives. The discriminator 
Some is used for creating an option that carries a value, and None is used for represent-
ing an undefined value. Listing 5.7 shows a function that reads an input from the con-
sole and returns an undefined value when the user doesn’t enter a number.

> open System;;
> let readInput() =
     let s = Console.ReadLine()
     match Int32.TryParse(s) with  
     | true, parsed -> Some(parsed)
     | _                 -> None
  ;;
val readInput : unit -> int option

The code is quite simple: it reads the input, parses it using the TryParse method, and 
constructs the return value using one of the option type’s cases. We’re using one 
interesting and powerful aspect of pattern matching to implement the function. The 
input for the match construct is a tuple returned by the TryParse method. When the 
parsing succeeds, the first value of the tuple will be true and the second one will be 
the number we’re interested in. To handle this case inside pattern matching, we spec-
ify the true constant as the first pattern and a new value parsed as the second pattern. 
When the first element of the tuple is true, the pattern matching assigns the parsed 
number to the value parsed and we can return the result using the Some case.

 The second branch uses the underscore pattern to handle all remaining situations. 
In that case, we know that the parsing failed, so we return an undefined result using 

Listing 5.7 Reading input as an option value (F# Interactive)

Tries to 
parse input
Licensed to   <kr_wilson@hotmail.com>



121Alternative values
the None case. You can also see the signature printed by the F# Interactive: it says that 
the method returns int option. This means that the option type is generic and in 
this case carries an integer as a value. We’ll see how a generic type like this can be 
defined in section 5.4.2. 

 First, let’s look at the code that uses this function. Here we’ll see the real benefit of 
using the option type: we’re forced by the language to write code to handle the unde-
fined value. This is because the only way to access the value is by using pattern match-
ing. You can see the example in listing 5.8.

> let testInput() =
     let input = readInput()  
     match input with     
     | Some(number) ->                       
        printfn "You entered: %d" number
     | None ->                                  
        printfn "Incorrect input!";;
val testInput : unit -> unit

> testInput();;
42                     
You entered: 42

> testInput();;  
fortytwo             
Incorrect input!

As you can see, we can’t use the value directly after we call the readInput function B. 
This is the key difference that makes the program safer, because when a function 
returns a null value, you don’t have to check this possibility. To read the value in F#, 
we have to use pattern matching C, and we write a branch for each of the option type 
cases. We already saw that F# verifies whether pattern matching is complete; that is, 
whether it covers all possible options. This guarantees that we can’t accidentally write 
code that only contains a branch for the Some discriminator. Listing 5.8 also follows F# 
best practices by testing the code in F# Interactive right away, checking that it behaves 
correctly in both cases. 

Listing 5.8 Processing input using the option type (F# Interactive)

B
C Contains 

correct input

Contains 
undefined input

Tests first 
case

Tests second 
case

Nullable and option types
The F# option type is in some ways similar to the Nullable<T> type in C#, but it’s 
more universal and safer. When we want to represent a missing value in C#, we usu-
ally use the null value, but this is possible only for reference types. Nullable types
can be used to create value type that also has null as a valid value.

In F# null isn’t a valid value of any type declared in F# (though it is still valid for ex-
isting .NET reference types). This means that whenever we need to create any value 
that may be empty we wrap the actual type into the option type. Thanks to the pat-
tern matching, the compiler can also ensure that we always implement code that han-
dles the case when the value is missing.
Licensed to   <kr_wilson@hotmail.com>



122 CHAPTER 5 Using functional values locally
Now that we’ve seen how to use option types and how they are important for F# pro-
gramming, we’ll discuss how to implement them.
IMPLEMENTING THE SIMPLE OPTION IN F#

In the previous example, we were working with an option type carrying integers, so 
let’s first look at a somewhat simplified type, IntOption, which can carry only integer 
values. We’re sure you could write the declaration for the type on your own already, 
but here it is:

> type IntOption =                  
      | SomeInt of int
      | NoneInt;;
(...)
> SomeInt(10);;                     
val it : IntOption = SomeInt 10

There’s one big difference between our declaration and the option type from the F# 
library: the library type is generic, which means that you can use it to store any type of 
value, including .NET object references such as Some(new Button()). Writing generic 
types is very important, because it makes the code more widely applicable. Let’s take a 
closer look now.

5.4 Generic values
In this section we’ll talk about generic type declarations, and you’ll see that in many 
ways generic types in F# are similar to generic types in C#. We’ve only seen one kind of 
type declaration so far—the discriminated union, declared with the type construct. 
We’ll see other type declarations that can be written using the same construct later (in 
particular, in chapters 7 and 9), but the syntax for making them generic is exactly the 
same as the syntax we’ll see now.

 Types that don’t need prior declaration, such as tuples, are naturally generic. We can 
use the type constructor with any other types such as int * int or string * int. When 
creating tuples, we can use the value constructor with any values and write (12, 34) as 
well as ("Pi", 3.14). In this section you’ll learn how to make your own type construc-
tors generic as well. We’ll start by looking at how we can implement a generic option 
type in C#.

5.4.1 Implementing the option type in C#

As we’ve seen, option types are very important in functional programming, and since 
we want to be able to code in a functional style in C# too, we need a proper C# imple-
mentation for the option type. We’ve already discussed how to encode discriminated 
unions in object-oriented languages, so the code has a structure similar to the Sched-
ule type we talked about earlier. In the case of Option<T>, we could create a single 
class (or value type) with the HasValue property, which would be a bit simpler. How-
ever, we want to demonstrate the idea of encoding discriminated unions in general, so 
we’ll create a base class, Option<T>, with a Tag property and two inherited classes for 
the two possible alternatives.
Licensed to   <kr_wilson@hotmail.com>



123Generic values
TIP We’ll use this type in some of the later chapters, so we’ll also add several 
utility methods that make it easier to use in routine C# programming. 
This makes the code slightly longer, so you can download it from the 
book’s website. Moreover, you can also download a .NET library with this 
and several other classes that are discussed in this book directly from 
http://www.functional-programming.net/library or from the source 
code package available from Manning at http://www.manning.com/
Real-WorldFunctionalProgramming. 

To make the type reusable, we’ll implement it as a generic C# class, Option<T>. An 
inherited class, Some<T>, represents an alternative with a value of type T, and a 
None<T> class represents an alternative with no value. You can see the source code in 
listing 5.9.

enum OptionType { Some, None };  

abstract class Option<T> {
   private readonly OptionType tag;
   protected Option(OptionType tag) {
      this.tag = tag;
   }
   public OptionType Tag { get { return tag; } }  
}
class None<T> : Option<T> {                      
   public None() : base(OptionType.None) { }
}
class Some<T> : Option<T> {                              
   public Some(T value) : base(OptionType.Some) {
      this.value = value;
   }
   private readonly T value;
   public T Value { get { return value; } }  
}

static class Option {                     
   public static Option<T> None<T>() {       
      return new None<T>();
   }
   public static Option<T> Some<T>(T value) {  
      return new Some<T>(value);
   }
}

The generic base class contains only the Tag property, which can have one of two val-
ues specified by the enumeration OptionType B. The tag is set in the constructors of 
the two derived classes, None<T> C and Some<T> D. The second derived class carries a 
value, so it has a property called Value of type T. As usual in functional programming, 
this property is immutable, so it’s set only once in the constructor. 

 The code also includes a nongeneric utility class, Option E. We’ve already imple-
mented similar classes in chapter 3 when implementing functional tuple and list types 

Listing 5.9 Generic option type using classes (C#)

B

Specifies type 
of option

C

D

Carries actual 
value

E Creates empty 
option

Creates option 
with value
Licensed to   <kr_wilson@hotmail.com>

http://www.functional-programming.net/library
http://www.manning.com/Real-WorldFunctionalProgramming
http://www.manning.com/Real-WorldFunctionalProgramming


124 CHAPTER 5 Using functional values locally
in C#. The purpose of this class is to simplify the construction of option values. 
Instead of using a constructor directly (new Some<int>(10)), we can leverage C# type 
inference when calling generic methods and write Option.Some(10). 

 Now, how can we work with our Option<T> type in C#? The following snippet 
shows the C# version of code from listing 5.7, which tries to read a number from the 
console:

Option<int> ReadInput() {
   string s = Console.ReadLine();
   int parsed;
   if (Int32.TryParse(s, out parsed)) 
      return Option.Some(parsed);
   else 
      return Option.None<int>();
}

Thanks to the use of our new Option<T> class, the method can return a single result, 
which may or may not contain a value. Before we look at how we can work with the 
returned value, we’re going to add two useful methods to the Option<T> class. In F#, 
we used pattern matching to tell the options apart; the methods in listing 5.10 allow us 
to write similar code in C#.

public bool MatchNone() {
   return Tag == OptionType.None;     
}
public bool MatchSome(out T value) {
   if (Tag == OptionType.Some) value = ((Some<T>)this).Value;  
   else value = default(T);
   return Tag == OptionType.Some; 
}

Both of the methods return a Boolean that tells us whether the instance represents 
the tested alternative. The second one has also one out parameter, which is set to 
the value carried by the Option<T> type when the object is an instance of the Some
class B; otherwise the out parameter is set to a default value and false is returned. 
Listing 5.11 shows how we can work with the ReadInput method using these two 
utility methods.

void TestInput() {
   Option<int> inp = ReadInput();
   int parsed;
   if (inp.MatchSome(out parsed))                        
      Console.WriteLine("You entered: {0}", parsed);
   else if (inp.MatchNone())                               
      Console.WriteLine("Incorrect input!");
}

Listing 5.10 Pattern-matching methods for the Option class (C#)

Listing 5.11 Working with the option type (C#)

Returns true when 
value is None

B

Pattern 
for Some

Pattern 
for None
Licensed to   <kr_wilson@hotmail.com>



125Generic values
Thanks to the MatchSome and MatchNone utilities, we don’t have to explicitly cast the 
value to the inherited class (e.g., Some<T>) to access the value. However, it still lacks many 
useful features of pattern matching. The compiler doesn’t verify that we’re providing 
code for all of the branches. More importantly, it isn’t possible to write nested patterns, 
which is a common trick in F#. For example, you might want to create an option type 
carrying a tuple. This would be written simply as Some(1, "One") and the pattern used 
with the match construct could read values directly from the tuple: Some(num, str).

Now that you’ve seen how to implement an option type using generics in C#, we can 
turn our attention back to F# and show how the built-in option type is declared in the 
F# library.

5.4.2 Generic option type in F#

Generic types in F# are essentially the same as generic classes in C#. They allow us to 
write more general and reusable types. We’ve seen this need in the case of the option
type, because we’d like to be able to use exactly the same generic type for creating 
options that carry different types as a value. But of course, we want to write type-safe
code, so we need to know what type is carried by the option type.

Discriminated unions and object-oriented principles
If you’re an experienced object-oriented programmer, you probably noticed that the 
Option<T> class we’ve just implemented doesn’t follow the best object-oriented 
practices. In particular, we’re using the Tag property as a type code with extension 
methods instead of using virtual methods and polymorphism.

The first reason for using type code is educational. Discriminated unions in F# are 
compiled to the .NET assembly code in a very similar way. When you declare a dis-
criminated union in F#, the compiler creates a single base class with a type code and 
an inherited class for every discriminated union case. The code that works with dis-
criminated unions, such as pattern matching, first determines which of the inherited 
classes it got as an argument. Then it can cast the instance to the specific class and 
access the parameters of the discriminated union case.

The second reason why we’re not using virtual methods is that the Option<T> type, 
like most of the discriminated unions, isn’t a typical object-oriented class. It is by de-
sign not extensible, which means that we don’t expect anybody to add new cases. 
We also won’t have to change the OptionType enumeration.

If we wanted to avoid type codes, we could implement MatchNone and MatchSome as 
virtual methods. This would work, because these two methods reveal full information 
about the class hierarchy, just like the type code. We’ll need the full information in 
the next chapter, where we’ll add a few methods for working with options. These 
methods will be more additional utilities than an intrinsic part of the type, so we’ll 
want to implement them using extension methods.
Licensed to   <kr_wilson@hotmail.com>



126 CHAPTER 5 Using functional values locally
 Just as in C#, we declare the type with a type parameter and use that as the type of 
the value stored in the Some alternative. You can enter the code into F# Interactive, 
but if you do that, you’ll have to restart it, because you’ll hide the system implementa-
tion of the type:

type Option<'T> =
   | Some of 'T 
   | None

The syntax for declaring a generic type is similar to that used in C#: we write type 
parameters in angle brackets. Unlike in C#, we have to use special names for type 
parameters so the name of the type parameter always starts with an apostrophe. 

 When creating an instance of a generic class in C# or a value of the generic type in 
F#, the type parameter is “replaced” by the actual type used when creating the value. 
In C#, you have to specify the type explicitly when calling the constructor, but in F# 
the type argument is usually inferred by the compiler. Let’s look at an example:

> Some("Hi there!");;
val it : Option<string> = Some "Hi there!"

In this example, the compiler deduces that we’re creating an option containing a 
string because we’re giving it a string literal as the argument. It then deduces that the 
type argument is string and the inferred type is Option<string>. We’ll talk about 
type inference in some more detail in the next section.

 We’ve seen other syntax for writing generic types. This is because F# is compatible 
with OCaml, which uses different notation. We’ll use the .NET syntax when writing 
generic types, but it’s useful to understand both forms because you’ll occasionally 
encounter the OCaml syntax. 

The OCaml syntax for writing generic types
In OCaml syntax, type parameters are written before the name of the type, so our pre-
vious example of the generic option type could be written like this:

type 'T Option = (...)

When creating a value of this type, F# also prints its type using this notation. The type 
of Some(10) would be displayed as int Option. When declaring types with more 
than one type argument, the arguments are written in braces (which resembles the 
syntax for creating tuple values):

type ('T1, 'T2) OptionallyLabeledTuple = (...)

Note that this is a syntactical difference and F# treats both declarations equally. If 
you declare a type using OCaml syntax and later use the .NET syntax when working 
with it (or vice versa), your code is still absolutely correct. It’s a matter of style—but 
it’s a good idea to be consistent for the sake of readability. The style compatible with 
OCaml is used in many of the primitive type declarations in the F# library, but in this 
book, we’ll always use the .NET style when declaring our generic types.
Licensed to   <kr_wilson@hotmail.com>



127Generic values
We can declare generic types with more than one type parameter in exactly the same 
way as in C#. The following example shows how to create a generic discriminated union 
with two cases that allows us to store two values and optionally specify labels for them:

> type OptionallyLabeledTuple<'T1, 'T2> = 
      | LabeledTuple of string * 'T1 * string * 'T2
      | UnlabeledTuple of 'T1 * 'T2;;
(...)

> LabeledTuple("Seven", 7, "Pi", 3.14);;
val it : OptionallyLabeledTuple<int, float> = 
             LabeledTuple ("Seven", 7, "Pi", 3.14)

You can see that when we create the value, the F# compiler correctly infers a type for 
both of the type arguments. Type inference is one of the cornerstones of F#, so let’s 
look at some more examples and compare it with the inference available in C# 3.0. 

5.4.3 Type inference for values

In general, type inference is a mechanism that deduces types from the code. Its purpose 
is to simplify code by removing the need to specify all types explicitly. In this section, we’ll 
look at type inference for values, which lets us create values easily without writing their 
types. This isn’t the only place where type inference occurs—especially in F#—this is the 
first part of description of the type inference. We’ll talk about type inference for func-
tions (and methods) and about automatic generalization in the next chapter.
TYPE INFERENCE IN C# 3.0

In C#, type inference for values is primarily represented by the var keyword, which is a 
new feature in C# 3.0. We’ve seen it already, but listing 5.12 shows a few examples so 
we can discuss it in more detail.

var num = 10 + (2 * 16);                                      
var str = String.Concat(new string[] {"Hello ", "world!"});     
var unk = null;                                                           

The type inference mechanism simply looks at the right side of the assignment opera-
tor and works out the type of the expression. It has to do this even when you’re not 
using var, to make sure that the variable you’re assigning to is compatible with the 
value you’re trying to assign. In the last case B, the C# compiler refuses to infer the 
type and reports an error message. While the null literal can be implicitly converted 
to any .NET reference type (or even a nullable value type), it doesn’t have a real .NET
type itself. The compiler doesn’t know which type we want for the unk variable, so we 
have to specify the type explicitly. We’ve been using the var keyword with our option
type earlier, so let’s analyze several examples in detail:

var s1 = Option.Some<int>(10);
var s2 = Option.Some(10);            
var n1 = Option.None<int>();
var n2 = Option.None();              

Listing 5.12 Type inference using the var keyword (C#)

Error 
CS0815!

B

Licensed to   <kr_wilson@hotmail.com>



128 CHAPTER 5 Using functional values locally
The first and third lines aren’t surprising: we’re calling a generic method and specify-
ing its type arguments explicitly, so the compiler deduces the return type. On the sec-
ond line, we’re not specifying a type argument for the method, but the compiler 
knows that the type of the first argument has to be compatible with the type argu-
ment, and it correctly deduces that we want to create a value of type Option<int>.2 On 
the last line, we get an error saying “The type arguments for method ‘…’ cannot be 
inferred from the usage.” This is because here, the compiler doesn’t have enough 
clues to know what the type should be.

 Type inference in C# is limited in many ways, but it’s still pretty useful. In F#, the 
algorithm is smarter and can infer the type in more cases, so let’s look at some F# 
examples.
TYPE INFERENCE IN F#

In F#, we can often write large swathes of code without explicitly specifying any types, 
because the type inference mechanism is more sophisticated. When creating values, 
we use the let keyword, and in fact, we haven’t yet seen any example where we would 
need to specify the type explicitly in a value binding written using let. Listing 5.13 
shows some examples that you’d probably expect to work.

let num = 123                                     
let tup = (123, "Hello world")                    
let opt = Some(10)                                
let input = printfn "Calculating..."              
                if (num = 0) then None
                else Some(num.ToString())

The first case declares a value of primitive type int. In the second case, we’re using a 
tuple value constructor, so we’ll get a value of type int * string. The next two bind-
ings in listing 5.13 create values of the option type, more specifically int option and 
string option. 

 Out of these bindings, only the last example is particularly interesting or surprising. 
As we already know, everything in F# is an expression, so type inference has to work 
with any F# expressions (meaning any F# code, because everything is an expression). In 
this case, we have code that first prints something to screen and returns an option type 
using a conditional expression. Note that whitespace is significant in F#’s lightweight 
syntax, so the if expression should start at the same offset as the printfn call.

 The F# compiler sees that the value assigned to input is returned from a condi-
tional branch. From the true branch, it can see that the type will be the generic 'a
option type (because we’re returning None), but it doesn’t yet know what is the type 
instantiation. That’s inferred from the false branch, where we’re returning Some value 
containing a string.

2 That’s not the only type that could be valid here: we could want Option<long>, for example. The rules for 
type inference with generic methods in C# 3.0 are long and complicated, but in situations where the compiler 
is willing to perform the inference, it usually gets the desired result.

Listing 5.13 Type inference for basic values (F#)
Licensed to   <kr_wilson@hotmail.com>



129Generic values
 We mentioned that the F# type inference is more sophisticated, so let’s now look at 
several slightly tricky examples:

> let (n : option<System.Random>) = None;;
val n : System.Random option                     
> let n = (None : option<System.Random>);;
val n : System.Random option                   
> let n = None;;
val n : 'a option  

The first two examples B show two different ways for adding a type annotation. In 
general, you can place type annotation around any block of F# code if you need to. 
The next example C is more interesting. F# can’t infer the full type of the value. It 
knows that we’re creating a value of the generic option type, but it doesn’t know what 
generic type parameter we want to use. Interestingly, this doesn’t cause an error and 
instead F# creates a generic value. This construct doesn’t have a C# equivalent; it’s a 
value with only a partially specified type. Instead of a concrete type (such as int or 
System.Object), F# uses a type parameter (and you can see that F# automatically 
names the type parameters using letters starting with “a”). The type is fully specified 
later when using the value. We can, for example, compare the value with different 
types of option values without getting an error:

> Some("testing...") = n;;
val it : bool = false
> Some(123) = n;;
val it : bool = false

Now that we know how to declare and create generic values, we should discuss how to 
write functions that use them! We’ll talk about generic functions in detail them later, 
but for now we’ll whet your appetite with one example. 

5.4.4 Writing generic functions

Most of the functions or methods that work with generic types are higher order, which 
means that they take another function as an argument. This is such an important 
topic that we’ve devoted an entire chapter to it (chapter 6), but we can already write a 
generic function without straying into higher-order territory. We’ll create a function 
that takes an option type and returns the contained value. If the option type doesn’t
contain a value, the function throws an exception. We can start by looking at the 
C# version: 

T ReadValue<T>(Option<T> opt) {                 
   T v; 
   if (opt.MatchSome(out v)) return v; 
   else throw new InvalidOperationException();
}

As you can see, we’ve created a generic method with a single type parameter. The type 
parameter is used in the method signature as a return value and also as a parameter to 
the generic Option<T> type. Inside the body, we use it once again to declare a local 
variable of this type. In total, we had to mention T four times.

B

C

Licensed to   <kr_wilson@hotmail.com>



130 CHAPTER 5 Using functional values locally
 This is exactly the kind of situation where F#’s type inference really shines. Take a 
look at the same thing implemented in F#. Interestingly, we still don’t have to specify 
any types:

> let readValue(opt) =
     match opt with
     | Some(v) -> v
     | None -> failwith "No value!";;
val readValue : 'a option -> 'a           

As you can see from the inferred type signature, the function is generic in exactly the 
same way as the C# version. The feature that allows this is called automatic generalization
and we’ll discuss it in depth later, but for the moment, here’s a 20-second description: 
The F# type inference algorithm searches for the most general way to assign the types 
and leaves everything else as a generic type parameter. In this case, it knows that the 
argument (opt) is an option type, because we’re matching it against Some and None
discriminators. It also knows that the function returns a value contained in the option
type, but it doesn’t know what type it is, so it makes this type a generic type parameter.

 Hopefully this has piqued your interest and you’re looking forward to hearing 
more about both automatic generalization and higher-order functions—but first let’s 
finish our tour of common functional values. In other languages you wouldn’t nor-
mally think of a function as a value, but that’s one of the essential aspects that make 
functional programming so powerful and elegant.

5.5 Function values
We’ve already seen an example of using functions as values (chapter 3), where we 
wrote a function to aggregate list elements using another function given as an argu-
ment. In this way, we were able to use the same aggregation for different purposes: 
once we used it to calculate the sum of all the elements in a list, and later we found 
the largest element in a collection.

 Working with collections of data is probably the best way of showing why using 
functions as values is important. Having said that, it’s far from the only scenario where 
this concept is useful, as you’ll see in the rest of the book. Let’s start by looking at an 
example of imperative code that selects even numbers from the given collection and 
returns them in another collection:

var numbers = new [] {3,9,1,8,4};
var evens = new List<int>();
foreach(var n in numbers)
if (n%2 == 0)
    evens.Add(n);
return evens;

Imagine which lines of this code you’d need to modify if you wanted to filter the col-
lection differently, such as to return all positive numbers. Three of the four lines shown 
(not counting the first one, which initializes data and the last one, which returns the 
result) are boilerplate code that would stay exactly the same (the varying part of the 
code is highlighted in bold). By using a function as a value and by accepting it as a 
Licensed to   <kr_wilson@hotmail.com>



131Function values
parameter, we can extract the common parts of the code as a reusable method. The 
calling code then has to specify an argument that describes the part that varies for dif-
ferent filters: the predicate to apply to each element.

 In fact, many standard functions such as filtering are already available in F#, and in 
.NET 3.5 LINQ added almost the same functions for working with collections. Some of 
them are named differently. In F# a function that takes a predicate and performs filter-
ing is called filter, whereas in LINQ it’s called Where (similar to an SQL WHERE clause). 
Listing 5.14 shows an implementation of the previous example using these functions.

// C# version
using System.Linq;             

var nums = new [] {4,9,1,8,6};
var evens = nums.Where(n => n%2 == 0);  
PrintNumbers(evens);                                 

// F# version with output from F# Interactive
> let nums = [ 4; 9; 1; 8; 6 ];;
val nums : int list
> let evens = List.filter (fun n -> n%2 = 0) nums;;  
val evens : int list = [ 4; 8; 6 ]

If we had to write the predicate as a normal method in C# or function (written using 
let) in F#, it wouldn’t make the code any shorter than in the previous version. The key 
feature that makes the code brief is the ability to write the function (in this case the 
predicate) inline directly when calling the Where method B or filter function C. 

 In C#, this notation is called a lambda expression and in F# it’s a lambda function. As 
most of this book is about F#, we’ll use the F# name consistently throughout. In both 
cases, the word “lambda” refers to the Greek letter from lambda calculus, which we 
mentioned in chapter 2.   

Listing 5.14 Filtering using a predicate

Imports Where 
extension method

B
Prints results 
to console

C

What’s a function value?
In functional programming languages, the existence of functions is motivated by math-
ematical notion of a function. This is in many ways different from the way that pro-
grammers with an imperative background intuitively think about functions. In imperative 
programming, a function is a routine that takes arguments, executes code, and returns 
the result. A function in this sense can do anything. Most importantly, it can use and 
modify global state , so the result of calling the same function with the same arguments 
can differ. The most obvious example of this is probably a pseudo-random number
generator—it wouldn’t be very random if it always returned the same result!

In math, a function is more a relation between the arguments and the result. This 
means that a mathematical function always returns the same result given the same 
arguments. Clearly, this is the way our predicate from the previous example works. It 
always returns the same result for the same argument (true for even numbers and 
false for odd ones).
Licensed to   <kr_wilson@hotmail.com>



132 CHAPTER 5 Using functional values locally
In the earlier examples, we’ve seen that lambda functions are a key element that 
makes concise functional style of programming possible. We’ll work with them 
through the entire book, so let’s look at lambda functions in more detail.

5.5.1 Lambda functions

In F#, lambda functions create the same function as the usual declaration using a let
binding. In C# there’s no built-in concept of a function, so we work either with meth-
ods or with delegates. When you write a lambda function, it’s converted into a dele-
gate or an expression tree (you can find more information about expression trees in 
the sidebar “From delegates to functions in C#”), but you can’t use a lambda function 
in C# to declare an ordinary method. Delegates can be also used like any other value, 
so you can pass them as arguments to other methods, which in turn means we can use 
them to write higher-order functions in C#. Let’s start by looking at an F# Interactive 
session, then we’ll write similar code in C#. Listing 5.15 shows how we can write a func-
tion in F# using a let binding and lambda function syntax. 

> let square1(a) = a * a;;  
val square1 : int -> int

> let square2 = fun a -> a * a;;  
val square2 : int -> int

> let add = fun a b -> a + b;;  
val add : int -> int -> int

> add 2 3
val it : int = 5

Listing 5.15 Using lambda functions and let bindings (F# Interactive)

(continued)
Functions that behave in this mathematical way are called pure functions. Most of the 
functions we’ll write will be pure, but we’ll see interesting and useful exceptions to 
this rule at the end of the next chapter. You might like to think about what a mathe-
matical pseudo-random number generator function would have to look like.

For those who come from an object-oriented background, there’s one more way to 
look at functions: you can think of a function value as an object implementing a really 
simple interface with a single method. Using this understanding, the predicate from 
the previous example corresponds to the following interface:

interface Function_Int_Bool {
    bool Execute(int arg);
}

In C#, delegates are somewhat similar to functions and C# 3.0 moves them very 
close to this simple concept. However, the concept of a function as it’s used in F# 
and functional programming is based primarily on the notion from mathematics. In 
this sense, F# functions are a lot more straightforward than interfaces or delegates—
they’re just functions.

Uses let binding

Uses lambda notation

B

Licensed to   <kr_wilson@hotmail.com>



133Function values
We started off by writing a simple function called square1 that calculates the square of 
the given number, in the same way we’ve seen several times before. After we’ve 
entered it, F# prints its signature (the type of the value), which tells us that it takes an 
integer and returns an integer. Next, we declare another value called square2 and ini-
tialize it to a function using lambda notation. As you can see by looking at the output, 
the two declarations are equivalent. Finally, we declare another value B that shows 
the syntax for a lambda function with two parameters. After seeing these examples, 
you could probably rewrite any F# function with a let binding to use the lambda nota-
tion, and vice versa.

 Now, let’s see how we can write the same thing using lambda functions in C#: 

Func<int, int> square =       
    a => a * a;
Func<int, int, int> add =     
   (a, b) => a + b;

We’re using a delegate type called Func, which is available in .NET 3.5. This delegate rep-
resents a function, and its type arguments specify the types of the parameters and the 
return type. Technically speaking, Func isn’t a single delegate but a family of delegates
overloaded by the number of type parameters. Each represents a function with different 
number of parameters. Here are the notable differences between the C# and F# syntax:

■ The F# lambda expression declaration starts with the fun keyword. 
■ In C# you specify multiple arguments in parentheses, separated by commas. In 

F#, the parameters are separated by spaces.
■ In C# you have to specify the type explicitly when declaring a delegate value.   

From delegates to functions in C#
As already mentioned, functions in C# are represented using delegates and in partic-
ular the new Func family of delegates. In one sense, lambda functions and this del-
egate are a revolutionary change, adding functional programming to C#, but it can 
also be seen as a natural evolution of features that were already available in C#. This 
book usually takes the former view, but we’ll look at the evolutionary aspect next.

In the first version of C#, we already had delegates, but without generics, we had to 
declare a separate delegate for every combination of return and parameter types. 
When creating delegates, we also had to write the code inside a named method, so 
we could write code like this:

delegate int FuncIntInt(int a, int b);
FuncIntInt add = new FuncIntInt(Add);

The code assumes that there’s an Add method with two integer parameters and an 
integer return type. C# 2.0 was a big step forward. It added generics, so we could 
declare a generic delegate like Func (though it wasn’t included in the base class li-
brary yet) and use the new anonymous methods feature to create them instead of 
writing a named method:
Licensed to   <kr_wilson@hotmail.com>



134 CHAPTER 5 Using functional values locally
We’ve looked at a few examples of lambda functions in both F# and C#, but there are 
still a few important things to explore. 
TYPE ANNOTATIONS, ACTIONS, AND STATEMENT BLOCKS

In the previous examples, we didn’t have to specify the parameter types explicitly. This 
is the normal behavior in F#, because its type inference capabilities are very powerful 
and in the previous examples it had enough clues to deduce the type. The situation in 
C# is quite interesting in a different way:

Func<int, string> toStr1 = num => num.ToString();
Func<int, string> toStr2 = (int num) => num.ToString();

Both lines show the same code, with the sole difference being that the second line 
explicitly specifies the type of the num parameter. Both lines are correct, so how does 
C# know the type of num in the first line? The answer is that it uses the type from the 
variable declaration. It knows that Func<int, string> is a delegate that takes an inte-
ger as an argument, so it infers that the type of num should be integer.

 Explicit parameter typing is rarely needed in C#. You can’t use the var keyword to 
declare lambda functions anyway, so C# will usually be able to deduce the type. One 
exception is where we’re using the lambda function as an argument to a specific 
generic method. Even in F# we may occasionally need to give the compiler more 
information, which we do with type annotations. Listing 5.16 shows the lambda function 
with a type annotation to explicitly state the type of its parameter.

(continued)
delegate R Func<T1, T2, R>(T1 arg1, T2 arg2);
Func<int, int, int> add = delegate(int a, int b) { return a + b; }

Finally, .NET 3.5 and C# 3.0 came with several other changes. The Func delegate 
was added to the system libraries, and C# added lambda expressions that allow us 
to write the same code in a much more succinct way:

Func<int, int, int> add = (a, b) => a + b;

Lambda expressions have another interesting feature: they can be converted into ex-
pression trees when we declare them as the Expression type. This allows us to treat 
the code of the lambda expression as data and obtain some representation of the 
source code of the lambda expression. This is important for using LINQ with data-
bases, but it isn’t a key feature for us now. Also, because of this feature, we can’t 
use the var keyword when declaring lambda expressions, because the compiler 
needs to decide whether to compile it as a delegate (Func) or store the expression 
tree (Expression).

The Func delegate and lambda expressions in C# are similar to functions in F#, but 
F# had functions right from its inception, so it has little need for delegates. It sup-
ports using delegates mainly for interoperability reasons, but you probably won’t use 
them very often. 
Licensed to   <kr_wilson@hotmail.com>



135Function values
// F# version of the code (using F# Interactive)
> let sayHello = 
     (fun (str:string) ->                  
        let msg = str.Insert(0, "Hello ")
        Console.WriteLine(msg)      
     )
val sayHello : string -> unit

// C# version of the code
Action<string> sayHello =   
   str => {                                    
      var msg = str.Insert(0, "Hello ");
      Console.WriteLine(msg);
   };

This example shows several interesting things. The first is the use of a type annotation 
in the F# version B. The syntax for type annotations in lambda functions is the same 
as anywhere else in the F# code. The reason why we have to use it in this case is that 
we’re calling an instance method Insert of the value str, which doesn’t give the com-
piler enough information to determine the type of the value.

 Another notable thing is that the body of the lambda function isn’t only a single 
expression. In F#, we added a single let binding and enclosed the whole lambda 
function in parentheses. In the C# version, we added a variable declaration and 
changed the syntax to use statement block. A statement block means that the body of the 
lambda function is enclosed in curly braces D, which allows us to write several state-
ments inside the body. To return a result from a lambda function using a statement 
block, you use the return keyword as if you were returning a result from a method.

 In this example the lambda function doesn’t return a result. In F# where unit is 
an ordinary type, the inferred signature of the function is string -> unit. This is an 
ordinary F# function that, in principle, returns unit value (that is, nothing) as a 
result. In C#, we can’t write Func<string, void> because void isn’t a real type. For 
this reason, C# has another family of delegate types called Action C, which repre-
sents lambda functions with no return type. The Action and Func delegates are very 
useful and correspond to the F# function type, so let’s look at the type of a function 
value in more detail. 

5.5.2 The function type

We’ve seen that the type of function values in F# is written using the arrow symbol. 
This is in many ways similar to the way tuples are constructed. Earlier, we saw that a 
tuple type can be constructed from other simpler types using a type constructor with 
an asterisk (int * string). The function type is constructed in a similar way, but using 
the function type constructor (int -> string). In a mathematical sense, a function is 
a relation that specifies return value for every possible input, so instead of specifying 
an enormous number of all combinations of this relation, we specify code that calcu-
lates the result using lambda functions. 

Listing 5.16 Advanced lambda functions (F# Interactive, C#)

B
Type 
annotation

Action 
delegate

C

D
Statement 
block syntax
Licensed to   <kr_wilson@hotmail.com>



136 CHAPTER 5 Using functional values locally
 In C#, you can see this similarity as well. If we use our generic Tuple type and Func
delegate, we can rewrite the examples from the previous paragraph as Tuple<int, 
string> and Func<int, string>. Instead of using built-in types as we can in F#, we have 
similar constructs implemented as ordinary C# types using generics. There’s a very 
important difference between the F# function type and C# Func (or Action) delegate: 
the type of an ordinary F# function is the same as the type of an equivalent function writ-
ten as a lambda function. In C#, lambda functions are converted into delegates, and a 
delegate isn’t the same thing as a method. The distinction is subtle but important: we’ll 
see it more clearly when we consider functions with multiple parameters in F#. Before 
that, let’s explore how we can use a function value as an argument or return value.
FUNCTIONS AS AN ARGUMENT AND RETURN VALUE

We’ve already used a function as an argument in C# and F# in chapter 3, so the basic 
idea shouldn’t be new to you. However, we haven’t used lambda functions in that way 
yet. Lambda functions are the easiest way to write a function that’s used as an argu-
ment to another function. Listing 5.17 provides a simple example. The function at the 
start of the listing takes a number and a function as arguments and calls the function 
twice, using the result of the first call as an argument for the second.

// C# version
int Twice(int input, Func<int,int> f) {  
   return f(f(input));
}
var result = Twice(2, n => n * n);  

// F# version
> let twice (input:int) f = f(f(input));;  
val twice : int -> (int -> int) -> int  

> twice 2 (fun n -> n * n);;  
val it : int = 16

In this example, we can see all the important features in a single place. It shows how to 
declare a C# method and an F# function that takes a function as an argument (B, D) 
and how to call them using lambda functions (C, F). In F# we use type annotations to 
tell the F# compiler that we want to work only with integers. As we’ll see in the next 
chapter, without this annotation it would automatically make the function more gen-
eral. This is usually desirable, but we wanted to keep this example as simple as possible. 

 In the C# version, Twice is a method with a delegate as a parameter and in the F# 
version it’s a function. When we look at the F# signature E, we can see that it’s con-
structed with just a function type constructor (the arrow). The second parameter is a 
function taking an integer and returning an integer; the overall type is a function with 
two parameters.

 Since a function is an ordinary value, we can also write a function (or method in C#) 
that returns a function as a result. Listing 5.18 shows a function that takes a number as 
an argument and returns a function that adds this number to any given argument.  

Listing 5.17 Using a function as an argument in C# and F#

B

C

D
E

F

Licensed to   <kr_wilson@hotmail.com>



137Function values
Adder takes an int as an argument B and returns a function as a result. In C# the 
return type is specified explicitly and it’s a Func delegate, while in F# the return type is 
deduced by type inference and it’s a function with type int -> int.

 As we’ll see later, the printed type signature represents a function C taking an 
integer and returning a function. We can see it more clearly if we add braces to the 
printed signature. Then it would be written as int -> (int -> int). 

 Calling the function (or C# method) that returns a function D. In C# the result is 
a delegate and in F# it’s an ordinary function. As the printed type signature shows E, 
it takes integer as an argument and returns an integer.

 Calling the returned function (or Func delegate in C#) F; in F# we’re using it as 
an ordinary function, and in C# we’re calling it as a delegate.

 Listing 5.18 shows how to use a function as a return value using a simple example, 
but we’ll see in the next few chapters that returning one function from another can 
be useful. There is one thing about the code that deserves further explanation. If we 
look at the type signature of the F# adder function, we can see that its type is int ->
int -> int. This looks like a function with two arguments, but it’s probably easier to 
think of it as int -> (int -> int). They mean the same thing, because F# and func-
tional languages in general have a different notion of functions with multiple parame-
ters to the normal object-oriented understanding.

5.5.3 Functions of multiple arguments

Let’s review what options we have when writing a function. In F#, we can use tuples 
when writing functions with multiple arguments. Our next example shows a function 
that adds two integers written in this style. We’ll use the lambda function syntax, but 
you could get the same results using simple let binding in F# as well:

> let add = fun (a, b) -> a + b;;
val add : int * int -> int 

As you can see by looking at the type signature, the function takes a single argument, 
which is a tuple of the form (int * int), and the return type is int. This corresponds 
to the C# lambda function written in this form:

Func<int, int, int> add = 
    (a, b) => a + b

Listing 5.18 Using a function as a return value in C# and F#

C# F#

Func<int, int> Adder(int n) { > let adder(n) =
   return (a) => a + n;            (fun a -> a + n);;         
} val adder : int -> int -> int   

Func<int, int> add10 =   > let addTen = adder 10;;    
   Adder(10); val addTen : (int -> int)  

var r = add10(15);   > addTen 15;;     
// Result: r == 25 val it : int = 25

B B
C

D D
E

F F
Licensed to   <kr_wilson@hotmail.com>



138 CHAPTER 5 Using functional values locally
The Func<int, int, int> delegate represents a method that has two arguments of 
type int and returns an int, so this is similar to the F# version written using tuples. 
You can see this similarity when calling the functions as well:

let n = add(39, 44)                   
var n = add(39, 44)                   

The syntax is the same to call an F# function with a tuple as an argument (the first 
line) as it is to call a C# Func delegate (the second line). Now, let’s write the same code 
in F# using the traditional F# style for writing functions with multiple arguments:

> let add = fun a b -> a + b;;
val add : int -> int -> int 

Surprisingly, this is the same signature we saw earlier when we were returning a func-
tion. We can read it as int -> (int -> int). That would be a function that takes the 
first argument for the addition and returns a function. The result is then a function 
taking the second argument. We can rewrite the code in this way using two lambda 
functions, nesting one inside the other:

> let add = fun a -> fun b -> a + b;;
val add : int -> int -> int

If this is the first time you’ve come across this idea, it can seem very odd. How can a func-
tion returning another function be the same as a function taking one more parameter 
and returning an integer? How can a function with one parameter be the same as a func-
tion with two parameters? Don’t worry too much if it doesn’t make sense right away—
we promise it will make sense eventually. After we’ll look at some more examples, you 
may want to go back to this section and you’ll grasp the idea more easily.

Tuples with more elements
If you want to create tuples with more than two elements in C# using .NET 4.0, you 
can use the overloaded Tuple class, which provides overloads for representing tu-
ples containing from one up to eight elements. The C# class we implemented in chap-
ter 3 is even more limited and supports only 2 elements. No matter how many 
overloads we’ll implement there will always be some limitation. 

However, there is a way to overcome this limitation. Let’s look how we can use the 
type Tuple<A, B> from chapter 3 to represent F# type int * string * bool. The so-
lution is simple. To store multiple elements than our tuple type supports, we can nest 
the tuples: 

Tuple<int, Tuple<string, bool>> tup = (...);

When we declare a variable like this, it carries three values. To get the integer value, 
we can write tup.Item1. The string value can be accessed by writing 
tup.Item2.Item1 and finally, the Boolean value is stored in tup.Item2.Item2.

This is similar to nested functions, such as F# type int -> (string -> bool). There’s 
a difference between tuples and functions. The function type shown here means the 
same thing as int -> string -> bool, while an F# tuple with three elements (int *
string * bool) is different from a nested tuple type such as int * (string * bool).
Licensed to   <kr_wilson@hotmail.com>



139Function values
You may be wondering if there’s any way of rewriting our previous example in C# 3.0—
and indeed we can. Instead of creating a delegate of type Func<int, int, int>, we can 
create a delegate of type Func<int, Func<int, int>>. This is closer to the F# under-
standing of a function with a signature of int -> (int -> int):

Func<int, Func<int, int>> add = 
    a => b => a + b;
int n = add(39)(44);

The declaration is written using two lambda functions just like our previous F# exam-
ple. When adding numbers using this delegate, we have to invoke the first delegate, 
which returns another delegate. We then invoke the second delegate. In F#, where 
this is an entirely normal way of working with functions, the compiler optimizes it to 
make it more efficient.

 This is all very interesting, you may be thinking, but what’s the point of taking 
functions apart in this way? It turns out to be surprisingly powerful.
PARTIAL FUNCTION APPLICATION

To show a situation where this new understanding of functions is useful, let’s turn our 
attention back to lists. Imagine that we have a list of numbers and we want to add 10 to 
every number in the list. In F# this can be accomplished using the List.map function; 
in C# we’d use the Select method from LINQ:

list.Select(n => n + 10)      
List.map (fun n -> n + 10) list  

That’s pretty brief already, but we can be even more concise if we already have the 
add function from the previous examples. The function that List.map expects as a 
first argument is of type int -> int; that is, a function taking an integer as an argu-
ment and returning another integer. The technique that we can use is called partial 
function application:

> let add a b = a + b;;
val add : int -> int -> int  

> let addTen = add 10;;
val addTen : (int -> int)  

> List.map addTen [ 1 .. 10 ];;                                     
val it : int list = [11; 12; 13; 14; 15; 16; 17; 18; 19; 20]

> List.map (add 10) [ 1 .. 10 ];;                                   
val it : int list = [11; 12; 13; 14; 15; 16; 17; 18; 19; 20]

The add function has a type int -> int -> int B. Since we now know that it actually 
means that the function takes an integer and returns a function, we can create a func-
tion addTen C that adds 10 to a given argument by calling add with only the first argu-
ment. We can then use this function as an argument to the List.map function D. This 
is sometimes useful, but what’s more interesting is that we can use partial function 
application directly when specifying the first argument for List.map F.

 The type of the add function is int -> (int -> int), and by calling it with a single 
number as an argument, we get the result of type int -> int—which is what the 

C#
F#

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



140 CHAPTER 5 Using functional values locally
List.map function expects. Of course, we can write the same code in C# as well if we 
declare the add function using nested lambda functions:

Func<int, Func<int, int>> add =     
    a => b => a + b;

list.Select(add(10));               

As we saw in the F# version, we call the add delegate and get a result of type Func<int,
int>, which is compatible with the Select method. In C# it’s more convenient to use 
the Func delegate with multiple arguments and specify the argument to the Select
method using another lambda function, because the language supports this better. 

NOTE A term that you can sometimes hear when using the partial function 
application is currying. This refers to converting a function that takes mul-
tiple arguments (as a tuple) into a function that takes the first argument 
and returns a function taking the next argument, and so on. So, for 
example, the function of type int -> int -> int is a curried form of a 
function that has a type (int * int) -> int. Partial function application 
is then the use of a curried function without specifying all the arguments.

As we’ve mentioned, choosing the right style in F# can be difficult. Code that’s written 
using tuples is sometimes easier to read for a large number of arguments, but it can’t 
be used with partial function application. In the rest of the book, we’ll use the style 
that feels more appropriate in each case, so you can get an intuitive understanding of 
which one is better. Most importantly, we’ll use tuples in cases where it makes the code 
more readable and the style allowing partial function application in situations where 
that gives us clear benefits. We’ll see plenty of examples of the latter when we look at 
higher-order functions in the next chapter. 

5.6 Summary
In this chapter we talked about values; the fact that the discussion went into a lot of 
detail about functions highlights the fact that in F# functions are values! We saw sev-
eral ways of creating different values and corresponding composed types. We began by 
looking at tuples, which gave us a way to store multiple values as one. Next, we exam-
ined discriminated unions that allow us to represent values consisting of various alter-
natives. When declaring discriminated unions, we specify what the cases are and a 
value can then be one of the declared options. We also looked at generic types that 
are similar to generic classes in C#. We used them to declare types that can be used for 
carrying different values, which makes the code more general and reusable.

 As well as looking at the theory behind these types, we looked at some of their 
common uses in F#. We saw that multiple values (tuples) are useful for returning mul-
tiple results from a single function, and how this can be more appealing than using C# 
out parameters. A particularly interesting alternative value (discriminated union) is 
the option type, which can represent values that can be undefined. This is a safer 
Licensed to   <kr_wilson@hotmail.com>



141Summary
alternative to using null values, as the language forces the calling code to write a case 
that handles the “undefined” case when we use pattern matching.

 Finally, we looked at the function type in F# and its equivalent in C#, the Func del-
egate. You learned how functions can be created using lambda function syntax and 
how they can be used as arguments as well as return values from another function or a 
method. In one last twist to function values, we also described a useful technique 
called partial function application.

 In this chapter you’ve seen only the basic ways of working with values. This is 
because many of the operations aren’t usually written directly and instead use higher-
order functions. Working with values in this way is the main topic for our next chapter. 
Using higher-order functions, we’ll be able to hide the logic for working with the 
value in a function and specify the most important part of the operation using a func-
tion value given as an argument.
Licensed to   <kr_wilson@hotmail.com>



Processing values using 
 higher-order functions
In the previous chapter, we introduced the most common functional values. You’ve 
seen how these values can be constructed and how to work with them using pattern 
matching. Expressing all of the logic explicitly like this can be tedious, especially if 
the type has a complicated structure.

 The types of values composed from one or several simpler values include tuples 
and options from the previous chapter, but also lists from chapter 3. In general, 
tuples are formed from values of several types. They contain exactly one value of 
each type. Options can contain zero or one value, and lists contain any finite num-
ber of elements. When working with these composed values, we often want to apply 

This chapter covers
■ Working with tuples options and lists
■ Writing higher-order functions for our types
■ Using automatic generalization in F#
■ Composing functions and partial application
142

Licensed to   <kr_wilson@hotmail.com>



143Generic higher-order functions
some operation to the underlying values. Doing so involves the recurring and boiler-
plate task of deconstructing the composed value into its components and reconstruct-
ing it after we apply the operation.

 In this chapter, we’ll see how to process values in an easier way. We’ll do this by writ-
ing functions that abstract us from the underlying structure of the value and can be sim-
ply parameterized to perform a particular operation with some part of the value. We’ll 
see that this approach is more concise than using pattern matching explicitly.

 We’ll first look at higher-order and generic functions from a technical point of 
view, to provide background for our discussion on value processing. Then we’ll talk 
about processing functions for all of the values that we’ve discussed so far, and explore 
relationships between processing functions for various kinds of values.

6.1 Generic higher-order functions
Higher-order functions are a way to write generic functional code, which means that 
the same code can be reused for many similar but distinct purposes. This is a key of 
modern programming, because it allows us to write fewer lines of code by factoring 
out the common part of the computation.  

Generic code in functional programming and OOP
When writing generic code, we usually want to perform some operation on the value 
that we obtain, but since the code should be generic, we don’t want to restrict the 
type of the value too much: we want to allow further extension of the code. 

The elementary (but not always the best) solution to this problem using OOP is to de-
clare an interface. The actual value given to a method will have all operations required 
by the interface, so it will be possible to perform needed operations on the value. A 
trivial example in C# might look like this:

interface ITestAndFormat { 
   bool Test();
   string Format();
}
void CondPrint(ITestAndFormat tf) {
   if (tf.Test()) Console.WriteLine(tf.Format());
}

In functional programming, the general approach is to work with generic methods that 
use type parameters and can work with any type. However, we don’t know what op-
erations can be performed on the value, since the type parameter can be substituted 
by any actual type. As a result, functional languages use a different method for spec-
ifying operations: they pass functions for working with the value as additional argu-
ments. The functional version of the previous example in C# would look like this:

void CondPrint<T>(T value, Func<T, bool> test, Func<T, string> format) {
   if (test(value)) Console.WriteLine(format(value));
}

Licensed to   <kr_wilson@hotmail.com>



144 CHAPTER 6 Processing values using higher-order functions
Higher-order functions are very important for functional programming, and we’ll see 
shortly how they can be used for working with several functional values. Methods like 
CondPrint from the sidebar “Generic code in functional programming and OOP” will 
be quite important for us, so let’s look how we can implement same functionality in F#.

6.1.1 Writing generic functions in F#

We saw a simple generic function in chapter 5, but it only used a single argument that 
was a generic option type. Listing 6.1 shows an F# implementation of the CondPrint
method from the “Generic code in functional programming and OOP” sidebar. It 
takes three arguments: a value, a function that tests whether the value should be 
printed, and a function for formatting the value.

> let condPrint value test format =                        
     if (test(value)) then printfn "%s" (format(value))         
  ;;
val condPrint : 'a -> ('a -> bool) -> ('a -> string) -> unit  

> condPrint 10 (fun n -> n > 5)                                 
                    (fun n -> "Number: " + n.ToString());;           
Number: 10

We’ve declared a function with three parameters using a let binding B, but we didn’t 
need to specify the type of any of the parameters. This is because F# type inference
works for functions too. We’ll see later just how sophisticated it can be. For now, we 
can say that it automatically infers the type signature of the function C, which corre-
sponds to our previous generic method in C#.

NOTE In chapter 4, we discussed whether it’s better to pass multiple inputs to a 
function as separate arguments (for example, add 2 3) or as a tuple (for 
example add(2, 3)). When writing higher-order functions, we’ll use the 
first style, because this makes it easier to use lambda functions as argu-
ments. It also supports the pipelining operator, which we’ll introduce 
shortly and other functional techniques like partial function application. 

Another way of representing generic functionality in F# is to write custom operators. 
We’ll want to use these later, so let’s take a brief look now, and also introduce the pipe-
lining operator, a particularly useful operator from the F# library.

Listing 6.1 Generic function condPrint (F# Interactive)

(continued)
For a small number of functions, this is a very efficient method, because we don’t 
need to declare the interface in advance. For more complicated processing functions 
we can still use interfaces, as we’ll see in chapter 9. Also calling the function is easier, 
because we can implement the operations using lambda functions. As we’ll see in 
section 6.6, writing code like this in F# is largely simplified by the use of type inference.

B

C

Licensed to   <kr_wilson@hotmail.com>



145Generic higher-order functions
6.1.2 Custom operators

Custom operators are defined using let bindings in a similar way to functions. They can 
use any characters from the usual F# mathematical (+/-*<>) or logical operators (&|=) 
and also several other characters ($%.?@^~!). When declaring an operator, you enclose 
its name in parentheses, which is the only difference from a normal let binding. Be 
careful when using an asterisk, because (* is used to begin a multiline F# comment. The 
solution in that case is to include additional space between the parenthesis and asterisk. 
Listing 6.2 shows how to declare and use a simple operator for working with strings.

> let (+>) a b = a + "\n>> " + b;;               
val ( +> ) : string -> string -> string

> printfn ">> %s" ("Hello world!" +>             
                          "How are you today?" +>       
                          "I'm fine!");;                
>> Hello world!
>> How are you today?
>> I'm fine!

The benefit of using a custom operator instead of a function is that you can use it with 
infix notation. This means that instead of concat "A" (concat "B" "C"), we can write "A"
+> "B" +> "C". This is particularly useful when applying the operator several times as in 
our previous example, because then you don’t have to wrap each call in parentheses.

 In listing 6.2, we declared an infix operator, which takes two parameters. F# also 
allows you to define unary operators that take only a single parameter and are used 
with the prefix notation. An example of built-in prefix operator is unary minus, which 
is written as -1. The kind of the operator isn’t based on the number of parameters in 
the declaration, because that can be ambiguous. It’s a bit tricky, but you can write a 
unary operator that returns a function, so based purely on the type signature it looks 
like a binary operator (thanks to currying, which we discussed in chapter 5). The dis-
tinction between prefix and infix operators is based on the first symbol. When you’re 
defining a prefix operator it has to start with a ~ or ! symbol.
SIMULATING CUSTOM OPERATORS IN C#

In C# you can’t declare new operators, although you can overload existing ones. How-
ever, the same pattern can be achieved to some extent using extension methods. This 
is a new feature in C# 3.0, so we’ll briefly introduce them next.   

Listing 6.2 Working with strings using a custom operator (F# Interactive)

Extension methods
In C#, every method has to be wrapped in a class, and operations that work with ob-
jects are part of the class declaration and can be called using dot notation. Extension 
methods give us a way to add new methods for working with an object without modi-
fying the original class declaration. Previously, this could be done by writing static 
methods like this:

StringUtils.Reverse(str);
Licensed to   <kr_wilson@hotmail.com>



146 CHAPTER 6 Processing values using higher-order functions
If we implement the string concatenation in the previous example as an extension 
method, we’ll get syntax very similar to the original F# version. Listing 6.3 shows the 
same code written using a standard static method call and extension methods.

public static string AddLine(this string str, string next) { 
   return str + "\n>>" + next;
}

Console.WriteLine(
   StringUtils.AddLine(                       
      StringUtils.AddLine("Hello world!", "How are you today"),                 
      "I'm fine!"));                                            

Console.WriteLine("Hello world!"                             
          .AddLine("How are you today")                       
          .AddLine("I'm fine!"));                             

The benefits are purely in terms of readability: we can write the method calls in the 
same order in which we want them to occur, we don’t need to specify the class imple-
menting the method, and we don’t need extra braces. As is often the case, syntax 
makes quite an important difference. 
THE F# PIPELINING OPERATOR

The pipelining operator (|>) allows us to write the first argument for a function on 
the left side—that is, before the function name itself. This is useful if we want to 
invoke several processing functions on some value in sequence and we want to write 
the value that’s being processed first. The following example shows how to reverse a 
list in F# and then take its first element:

List.hd(List.rev [1 .. 5])

Listing 6.3 Working with strings using extension methods (C#)

(continued)
This is very impractical because finding a static method in some “Utils” class is quite 
difficult. In C# 3.0 we can implement Reverse as an extension method and call it this 
way:

str.Reverse();

Implementing an extension method is quite easy, because it’s an ordinary static 
method with a special modifier. The only difference is that it can be invoked as an 
instance method using dot notation. It’s still a static method, so it can neither add 
new fields nor access private state of the object:

static class StringUtils {
   public static string Reverse(this string str) { /* ... */ }
}

All extension methods have to be enclosed in a non-nested static class, and they 
have to be static methods. The modifier this is used before the first parameter to 
tell the compiler to make it an extension method.
Licensed to   <kr_wilson@hotmail.com>



147Working with tuples
This isn’t very elegant, because the operations are written in the opposite order in 
which they’re performed and the value that’s being processed is on the right side, sur-
rounded by several braces. Using extension methods in C#, we’d write

list.Reverse().Head();

In F#, we can get the same result by using the pipelining operator:

[1 .. 5] |> List.rev |> List.hd

Even though this may look tricky, the operator is very simple. It has two arguments: 
the second one (on the right side) is a function and the first one (on the left side) is 
a value. The operator gives the value as an argument to the function and returns 
the result. 

 In some senses, pipelining is similar to calling methods using dot notation on an 
object, but it isn’t limited to intrinsic methods of an object. This is similar to extension 
methods, so when we write a C# alternative of an F# function that’s usually used with 
the pipelining operator, we’ll implement it as an extension method.

 Now that we’ve finished our short introduction to generic higher-order functions 
and operators, we can finally look at how they can be used for solving daily functional 
programming problems. The first topic that we’ll discuss is using higher-order func-
tions for working with tuples.

6.2 Working with tuples
We’ve been working with tuples from our first functional code in chapter 3, so you’re 
already quite familiar with them. We haven’t looked at how we can work with them 
using higher-order functions. Tuples are really simple, so you can often use them 
directly, but in some cases the code isn’t as concise as it could be. Tuples are a good 
starting point for exploring higher-order functions because they’re so simple. The 
principles we’ll see here apply to other types as well. 

6.2.1 Working with tuples using functions

In chapter 3, we used tuples to represent a city and its population. When we wanted to 
increment the population, we had to write something like this:

let (name, population) = oldPrague
let newPrague = (name, population + 13195)

This is very clear but a bit longwinded. The first line deconstructs the tuple, and the 
second one performs a calculation with the second element and then builds a new 
tuple. Ideally, we’d like to say that we want to perform a calculation on the second ele-
ment deconstructing and then reconstructing the tuple. First let’s look at the code we 
want to be able to write, in both F# and C#, and then we’ll implement the methods 
that make it all work. This is what we’re aiming for:  

let newPrague = oldPrague |> mapSecond ((+) 13195)    //F#
var newPrague = oldPrague.MapSecond(n => n + 13195); //C#
Licensed to   <kr_wilson@hotmail.com>



148 CHAPTER 6 Processing values using higher-order functions
This version removes all the additional code to reconstruct the tuple and specifies the 
core idea—that is, we want to add some number to the second element from the 
tuple. The idea that we want to perform a calculation on the second element is 
expressed by using the mapSecond function in F#. Listing 6.4 shows the implementa-
tion of both this and the similar mapFirst function.

> let mapFirst  f (a, b) = (f(a), b)    
  let mapSecond f (a, b) = (a, f(b))  
  ;;
val mapFirst  : ('a -> 'b) -> 'a * 'c -> 'b * 'c 
val mapSecond : ('a -> 'b) -> 'c * 'a -> 'c * 'b  

Listing 6.4 implements two functions: one that performs an operation on the first ele-
ment of the tuple B and one that acts on the second element C. The implementa-
tion of these functions is simple: we use pattern matching in the parameter list to 
deconstruct the given tuple, then call the function on one of the elements. Finally, we 
return a new tuple with the result of the function call and the original value of the 
other element. Even though the body doesn’t look difficult, the inferred type signa-
tures D look rather complicated when you see them for the first time. We’ll come 
back to them shortly.

The signatures of these functions are useful for understanding what they do. Figure 6.1 
disassembles the signature of mapFirst and shows what each part of it means.

Listing 6.4 Higher-order functions for working with tuples (F# Interactive)

B
C

D

Map operation
I used the term map in the name of the functions we just discussed. A map (also called 
a projection) is a common operation, and as you’ll see, we can use it with many data 
types. In general, it takes a function as an argument and applies this function to one, 
or sometimes more, values that are stored in the data type. The result is then wrapped 
in a data type with the same structure and returned as a result of the map operation. 
The structure isn’t changed, because the operation we specify doesn’t tell us what 
to do with the composed value. It specifies only what to do with the component of 
the value, and without knowing anything else, the projection has to keep the original 
structure. This description may not be fully clear now, because it largely depends on 
the intuitive sense that you’ll get after more similar operations later in this chapter.

val mapFirst : ('a -> 'b) -> 'a * 'c -> 'b * 'c

Calculates new value 
of the first element

Returns tuple with 
the new value

Input tuple to be processed

Original type
of the element

New type
of the element

Figure 6.1 The mapFirst 
function takes a function as the 
first argument and applies it to 
the first element of a tuple that’s 
passed as the second argument.
Licensed to   <kr_wilson@hotmail.com>



149Working with tuples
Let’s look at what the signature tells us about the function. First, it’s a generic function 
and has three type parameters, automatically named by F# compiler. It takes a func-
tion as the first parameter and a tuple containing values of types 'a and 'c as the sec-
ond argument. The signature tells us that the returned tuple is composed from values 
of types 'b and 'c.

 Since the function doesn’t have any safe way of working with values of type 'c, it’s 
likely that the second element is just copied. The next question is how we can get a 
value of type 'b in the result. We have a value of type 'a (the first element of the 
tuple) and a function that can turn a value of type 'a into a value of type 'b, so the 
most obvious explanation is that mapFirst applies the function to the first element of 
the tuple.

 Now that we’ve implemented the mapFirst and mapSecond functions, let’s start 
using them. Listing 6.5 shows an F# Interactive session demonstrating how they can be 
used to work with tuples.

> let oldPrague = ("Prague", 1188000);; 
val prague : string * int

> mapSecond (fun n -> n + 13195) oldPrague;;  
val it : string * int = ("Prague", 1201195)

> oldPrague |> mapSecond ((+) 13195);;      
val it : string * int = ("Prague", 1201195)

The example shows two ways for writing the same operation using the mapSecond
function. In the first case, we directly call the function B and give it a lambda func-
tion as the first argument and the original tuple as the second argument. If you look 
at the resulting tuple printed by the F# Interactive, you can see that the function was 
applied to the second element of the tuple as we wanted.

 In the second version C we’re using two powerful techniques. We’re using a partial 
function application (which we introduced in the previous chapter) to create a func-
tion that adds 13195 to the second element. Instead of writing the lambda function 
explicitly, we wrote (+) 13195. If an operator is used in parentheses, it behaves like an 
ordinary function, which means that we can add two numbers by writing (+) 10 5. If we 
use a partial application and give it just one argument, we obtain a function of type int
-> int that adds the number to any given argument and is compatible with the type 
expected by the mapSecond function. The type is 'a -> 'b and in this case int will be 
substituted for both 'a and 'b. 

 Thanks to pipelining, we can write the original tuple and then the function to 
apply. This makes the code more readable, describing first what we’re going to manip-
ulate and then what we’re going to do with it—just like in C# where operations are 
typically of the form target.MethodToCall(). The use of pipelining is also a reason 
why mapSecond takes a function as the first argument and a tuple as the second one 
and not the other way around.  

Listing 6.5 Working with tuples (F# Interactive)

B

C

Licensed to   <kr_wilson@hotmail.com>



150 CHAPTER 6 Processing values using higher-order functions
 I started this section by talking about F#, because showing the inferred type 
signature of a higher-order function and using pipelining can be demonstrated very 
naturally in F#. Of course, we can use the same concepts in C#, and we’ll do so in the 
next section.

6.2.2 Methods for working with tuples in C#

In this section, we’ll be working with the generic Tuple class from chapter 3, and we’ll 
add similar functionality to what we’ve just seen in F#. Listing 6.6 shows C# alterna-
tives to the higher-order functions mapFirst and mapSecond.

public static class Tuple {
   public static Tuple<B, C> MapFirst<A, B, C>
          (this Tuple<A, C> t, Func<A, B> f) {   
      return Tuple.Create(f(t.Item1), t.Item2);    
   }
   public static Tuple<C, B> MapSecond<A, B, C>
          (this Tuple<C, A> t, Func<A, B> f) {
      return Tuple.Create(t.Item1, f(t.Item2));    
   }
}

The implementation of these methods is very straightforward, but we have to specify 
the types explicitly. We used the same names for the type parameters as in the previ-
ous F# version so that you can compare them. In C#, the type signature is mixed with 
the implementation, which makes the code harder to read, but we can look at the type 
signature separately:

Tuple<B, C> MapFirst(Tuple<A, C>, Func<A, B>)

This corresponds to the previous F# signature. You can see that the last argument is a 
function that turns a value of type A into a value of type B. We’re using type A in the 
input tuple and B in the result. We also changed the order of parameters, so the origi-
nal tuple is now the first argument. This is because we want to use the method as an 
extension method for tuples, so the tuple has to come first. We also added the this
modifier to the first parameter B to tell the compiler we wanted to make it an exten-
sion method. Now we can use the method both directly and as an extension method:

var oldPrague = Tuple.Create("Prague", 1188000);
var newPrague1 = Tuple.MapSecond(oldPrague, n => n + 13195); 
var newPrague2 = oldPrague.MapSecond(n => n + 13195);        

When calling the method directly, the code is very similar to the first use in F#, 
because it calls a method with two arguments and uses a lambda function for one of 
them. In F# we were then able to use the pipelining operator to write the original 
tuple first, and as you can see on the last line, extension methods play a similar role. 
Because MapSecond is written as an extension method, we can call it using dot nota-
tion on the oldPrague object.

Listing 6.6 Extension methods for working with tuples (C#)

B

Licensed to   <kr_wilson@hotmail.com>



151Working with schedules
 In this section, we’ve seen two useful higher-order functions for working with 
tuples, and we’ll sure you’d be now able to write other functions such as applying the 
same operation on both elements of a tuple and so on. After discussing multiple val-
ues in the previous chapter, we talked about alternative values, so we’ll follow the same 
pattern and look at writing higher-order functions for alternative values now. 

6.3 Working with schedules
In this section, we’ll apply the techniques from the previous section to alternative val-
ues. When working with tuples, we found it very helpful to write a function that works 
with one element from the tuple. Similarly, when working with alternative values, we’ll 
need a higher-order function that performs some operation on one or more of the 
alternatives. We’ll follow the examples from the previous chapter, so we’ll start with a 
schedule type and then we’ll look at the option type. 

 In the previous chapter, we implemented a type for representing schedule of an 
event. In F#, it is a discriminated union called Schedule that can contain one of three 
options. The three discriminators for the alternatives are Never, Once, and Repeat-
edly. In C#, we represented it as an abstract class Schedule with a property called Tag
and one derived class for representing each of the three options. In this section we’ll 
add a higher-order function for working with schedules. 

 Now, imagine what the application might want to do with the schedule. The most 
common operation (especially in the today’s busy world) could be rescheduling the 
events. We may want to move all the events we know about by one week, or move 
events scheduled for Monday to Tuesday. Writing this explicitly would be difficult, 
because we’d have to provide code for each of the three different types of schedule. 

 If you think about the problem, we only want to calculate a new time based on the 
original time without changing any other property of the schedule. In listing 6.7, we 
implement a function that allows us to do exactly this.

> let mapSchedule rescheduleFunc schedule =
     match schedule with
     | Never -> Never                                            
     | Once(eventDate) -> Once(rescheduleFunc(eventDate))        
     | Repeatedly(startDate, interval) -> 
        Repeatedly(rescheduleFunc(startDate), interval)          
  ;;
val mapSchedule : (DateTime -> DateTime) -> Schedule -> Schedule  

We called the operation mapSchedule, because it performs some operation for all the 
date and time information that the schedule contains. When the alternative is Never, 
it simply returns Never with no recalculation. When it’s Once, the function given as an 
argument is used to calculate the new time. When the schedule is represented using 
Repeatedly, the function is used to calculate the new time for the first occurrence, 
keeping the original period between occurrences.

Listing 6.7 Map operation for schedule type (F# Interactive)

B

Licensed to   <kr_wilson@hotmail.com>



152 CHAPTER 6 Processing values using higher-order functions
 If you look at the type signature B, you can see that the first parameter is a func-
tion that takes DateTime as an argument and returns a new DateTime. This is used for 
calculating the new time of scheduled events. The original Schedule is the last param-
eter. This parameter ordering makes it possible to call this function using the pipelin-
ing operator, just as we did with the tuple projections earlier. Listing 6.8 shows how we 
can manipulate a collection of schedules using this function.

> let schedules = 
     [ Never; Once(DateTime(2008, 1, 1)); 
       Repeatedly(DateTime(2008, 1, 2), TimeSpan(24*7, 0, 0)) ];;  
val schedules : Schedule list

> for s in schedules do
     let newSchedule = s |> mapSchedule (fun d -> d.AddDays(7.0))  
     printfn "%A" newSchedule                                         
  ;;
Never                                                 
Once 8.1.2008 0:00:00                             
Repeatedly (9.1.2008 0:00:00,7.00:00:00)

We start by creating a list of schedules for testing B. Note that we omitted the new key-
word when constructing DateTime and TimeSpan .NET objects. This is just a syntactical
simplification that F# allows when working with simple types like these two.

 After creating the list, we iterate over all the schedules. In the next line C, we use 
the mapSchedule function to move each schedule by one week. The change in the date 
is specified as a lambda function that returns a new DateTime object. Of course, you 
could implement more complicated logic to perform different rescheduling inside this 
function. The original schedule is passed as the last argument using the pipelining 
operator. As you can see D, the operation changed the date of the Once schedule and 
the first occurrence of the schedule represented using the Repeatedly option.

6.3.1 Processing a list of schedules

In the previous example we used an imperative for loop, because we wanted to print 
the new schedule. If you wanted to create a list containing the new schedules, you 
could use the List.map function and write something like this:

let newSchedules = 
   List.map (fun s -> 
         s |> mapSchedule (fun d -> d.AddDays(7.0)) 
      ) schedules

The first argument of the List.map function is another function that’s used to obtain 
a new value using the original schedule. In this example, we calculate a new schedule 
and return it as the result of the function. The previous code can be simplified by 
using pipelining and a partial function application like this:

let newSchedules = 
    schedules |> List.map (mapSchedule (fun d -> d.AddDays(7.0)))

Listing 6.8 Rescheduling using the mapSchedule function (F# Interactive) 

B

C

D

Licensed to   <kr_wilson@hotmail.com>



153Working with schedules
When we specify the first argument (a function for calculating the date) to the map-
Schedule function, we get a function of type Schedule -> Schedule. This is exactly 
what the List.map operation expects as the first argument, so we don’t have to write 
lambda function explicitly. This example shows another reason why many higher-
order functions take the original value as the last argument. That way, we can use both 
pipelining and partial application when processing a list of values. 

 Another option would be to use sequence expressions that are similarly succinct, but 
probably more readable for a newcomer. We’ll look at sequence expressions in chap-
ter 12, but now let’s see how we could implement the same functionality in C#.

6.3.2 Processing schedules in C#

In C# we’ll build a MapSchedule method that should be similar to the mapSchedule
function in F#. Again, this will have two parameters: a function for calculating the new 
date and the original schedule. As we’re working with alternative values in C#, we’ll 
use a switch block and the Tag property as you saw in chapter 5. Listing 6.9 shows the 
complete implementation.

public static Schedule MapSchedule
     (this Schedule schedule, Func<DateTime, DateTime> rescheduleFunc) {  
   switch(schedule.Tag) {
      case ScheduleType.Never: 
         return new Never();        
      case ScheduleType.Once:
         var os = (Once)schedule;
         return new Once(rescheduleFunc(os.EventDate));  
      case ScheduleType.Repeatedly:
         var rs = (Repeatedly)schedule;
         DateTime newStart = rescheduleFunc(rs.StartDate);  
         return new Repeatedly(newStart, rs.Interval);
      default:
         throw new InvalidOperationException();       
   }
}

The method provides a branch for each of the possible representations and returns a 
new value in each branch. When the option carries a date that can be processed (Once
and Repeatedly), it first casts the argument to the appropriate type, then uses the 
rescheduleFunc argument to calculate the new date.

 The method is implemented as an extension method inside a ScheduleUtils class 
(for simplicity, the listing doesn’t include the class declaration). This means that we 
can call it as a static method, but also more readably using dot notation on any 
instance of the Schedule class. The following snippet shows how we can move every 
schedule in a list by one week:

schedules.Select(schedule => 
    schedule.MapSchedule(dt => dt.AddDays(7.0)) )

Listing 6.9 Map operation for schedule type (C#)

Uses this 
modifier B

Calculates 
new date

Move the first 
occurrence

Unreachable 
code!
Licensed to   <kr_wilson@hotmail.com>



154 CHAPTER 6 Processing values using higher-order functions
This is similar to our earlier F# code. We’re using the LINQ Select method (instead of 
the List.map function) to calculate a new schedule for each schedule in the original 
list. Inside a lambda function, we call MapSchedule on the original schedule, passing it 
an operation that calculates the new date.

 When we have several similar operations that we need to perform with the value, it 
would be tedious to use the schedule type directly, because we’d have to provide the 
same unwrapping and wrapping code multiple times for each of the operations. 
In this section, we’ve seen that a well-designed higher-order function can simplify 
working with values quite a lot. Now, let’s look at writing higher-order functions for 
another alternative value that we introduced in chapter 5: the option type. 

6.4 Working with the option type
One of the most important alternative values in F# is the option type. To recap what 
we’ve seen in the previous chapter, it gives us a safe way to represent the fact that value 
may be missing. This safety means that we can’t easily write code that would assume 
that the value is present and would fail if the option type represents a missing value. 
Instead, we have to use pattern matching and write code for both of the cases. In this 
section, we’ll learn about two useful functions for working with the option type. 

NOTE The functions we saw earlier for working with tuples aren’t part of the F# 
library, because they’re extremely simple and using tuples explicitly is 
usually easy enough. However, the functions we’ll see in this section for 
working with the option type are part of the standard F# library.  

First, let’s quickly look at an example that demonstrates why we need higher-order oper-
ations for working with the option type. We’ll use the readInput function from the pre-
vious chapter, which reads user input from the console and returns a value of type int 
option. When the user enters a valid number, it returns Some(n); otherwise it returns 
None. Listing 6.10 shows how we could implement a function that reads two numbers 
and returns a sum of them or None when either of the inputs wasn’t a valid number.

let readAndAdd1() =
   match (readInput()) with
   | None    -> None
   | Some(n) ->                     
      match (readInput()) with
      | None    -> None
      | Some(m) ->                  
         Some(n + m)                

The function calls readInput to read the first input, extracts the value using pattern 
matching, and repeats this for the second input. When both of the inputs are correct, 
it adds them and returns Some; in all other branches it returns None. Unfortunately, 
the explicit use of pattern matching makes the code rather long. Let’s now look at two 
operations that will help us rewrite the code more succinctly.

Listing 6.10 Adding two options using pattern matching (F#)
Licensed to   <kr_wilson@hotmail.com>



155Working with the option type
6.4.1 Using the map function

We’ll work with two operations that are already available in the F# library, so we’ll 
start by looking how we can use them. Later we’ll discuss their implementation and 
how we can use them from C#. As we’ve already seen, the best way to understand 
what a function does in F# is often to understand its type signature. Let’s look 
at Option.map:

> Option.map;;
val it : (('a -> 'b) -> 'a option -> 'b option) = (...)

Map operations usually apply a given function to values carried by the data type and 
wrap the result in the same structure. For the option type, this means that when the 
value is Some, the function given as the first argument ('a -> 'b) will be applied to a 
value carried by the second argument ('a option). The result of type 'b will be 
wrapped inside an option type, so the overall result has type 'b option. When the 
original option type doesn’t carry a value, the map function will return None.

 We can use this function instead of the nested match. When reading the second 
input, we want to “map” the carried value to a new value by adding the first number:

match (readInput()) with
| None           -> None
| Some(first) -> readInput() |> Option.map (fun second -> first + second 

On the third line we already have a value from the first number entered by the user. 
We then use readInput() to read the second option value from the console. Using 
Option.map, we project the value into a new option value, which is then returned as 
the result. The lambda function used as an argument adds the first value to a number 
carried by the option value (if there is one). 

6.4.2 Using the bind function

As a next step, we’d like to eliminate the outer pattern matching. Doing this using 
Option.map isn’t possible, because this function always turns input value None into 
output value None and input value Some into output Some carrying another value. In 
the outer pattern matching, we want to do something quite different. Even when the 
input value is Some, we still may return None when we fail to read the second input. 
This means that the type of the lambda function we specify as an argument shouldn’t 
be 'a -> 'b, but rather 'a -> 'b option.

 An operation like this is called bind in the functional programming terminology, 
and it’s provided by the standard F# library. Let’s explore the signature and see what 
this function does:

> Option.bind;;
val it : (('a -> 'b option) -> 'a option -> 'b option) = (...)

The difference in the type signature of bind and map lies only in the type of the func-
tion parameter, as we discussed earlier. Understanding a behavior of a function using 
only the type is a very important skill of functional programmers. In this case, the type 
Licensed to   <kr_wilson@hotmail.com>



156 CHAPTER 6 Processing values using higher-order functions
gives us a good clue of what the function does if we assume that it behaves reasonably. 
We can analyze all the cases to infer the specification of the function’s behavior:

■ When the input value is None, bind can’t run the provided function, because it 
can’t safely get the value of type 'a and thus immediately returns None.

■ When the input value is Some carrying some value x of type 'a, bind can call 
the provided function with x as an argument. It could still return None, but 
a more reasonable behavior is to call the function when possible. There 
are two different cases depending on what the function given as the argu-
ment returns:
– If the function returns None, the bind operation doesn’t have a value of type 

'b, so it has to return None as the overall result.
– If the function returns Some(y), then bind has a value y of type 'b and only 

in this case can it return Some as the result, so the result is Some(y).

Using bind we can now rewrite the outer pattern matching, because it gives us a way to 
return an undefined value (None) even when we successfully read the first input. List-
ing 6.11 shows the final version of readAndAdd.

let readAndAdd2() =
   readInput() |> Option.bind (fun num ->   
      readInput() |> Option.map ((+) num) )  

After reading the first input, we pass it to the bind operation B, which executes the 
given lambda function only when the input contains a value. Inside this lambda 
function, we read the second input and project it into a result value C. The opera-
tion used for projection adds the first input to the value. In this listing, we’ve writ-
ten the operation using the plus operator and partial application instead of 
specifying the lambda function explicitly. If you compare the code with listing 6.10, 
you can see that it’s definitely more concise. Let’s now analyze how it works in some 
more detail.

6.4.3 Evaluating the example step-by-step

It can take some time to become confident with higher-order functions like these, 
especially when they’re nested. We’re going to examine how the code from the pre-
vious listing works by tracing how it runs for a few sample inputs. Moving from the 
abstract question of “What does this code do in the general case?” to the concrete 
question of “What does this code do in this particular situation?” can often help clar-
ify matters.

 Let’s see what happens if we enter an invalid value as the first input. In that case, 
the first value returned from readInput() will be None. To see what happens, we can 
use computation by calculation and show how the program evaluates step by step. You 
can see how the calculation proceeds in listing 6.12.

Listing 6.11 Adding two options using bind and map (F#)

B
C

Licensed to   <kr_wilson@hotmail.com>



157Working with the option type
Start evaluating the body of the readAndAdd2 function:

readInput() |> Option.bind (fun num ->
   readInput() |> Option.map ((+) num) )

Read the first input from the user. Then we can replace the readInput() call with the 
returned value None:

    None |> Option.bind (fun num -> 
      readInput() |> Option.map ((+) num) )

Evaluate the Option.bind call. The lambda function isn’t called and None is returned 
as the overall result:

    None

In the first step, we replace the call with the None value that the function returns when 
we enter some invalid input (such as an empty string). The second step is more inter-
esting. Here, the Option.bind function gets None as its second argument. However, 
None doesn’t carry any number, so bind can’t call the specified lambda function; the 
only thing it can do is immediately return None.

 Now, how would the function behave if we entered 20 as the first input? Obviously, 
there will be two different options: one when the second input is correct and one 
when it’s invalid. Listing 6.13 shows what happens if the second input is 22.

Start evaluating the body of the readAndAdd2 function:

readInput() |> Option.bind (fun num ->
   readInput() |> Option.map ((+) num) )

Read the first input from the user. Then we can replace the readInput() call with the 
first input. In this case, it carries a value:

   Some(20) |> Option.bind (fun num -> 
      readInput() |> Option.map ((+) num) )

Evaluate the Option.bind call. It calls the lambda function and gives it 20 as the argu-
ment. In the code, we replace all occurrences of num with the actual value:

   readInput() |> Option.map ((+) 20)  

Read the second input from the user. Read the second input value

   Some(22) |> Option.map ((+) 20)

Next, we evaluate the Option.map call. It calls the provided function and wraps the 
result of the call in the Some discriminated union case:

   Some( (+) 20 22 )  

Finally, evaluate the + operator. We calculate 20 + 22 and keep the result wrapped in 
the Some case:

   Some(42)

Listing 6.12 Evaluation when the first input is invalid

Listing 6.13 Evaluation when both inputs are valid

B

C

Licensed to   <kr_wilson@hotmail.com>



158 CHAPTER 6 Processing values using higher-order functions
The first step is similar to the previous case, but this time, we call Option.bind with 
Some(20) as an argument. This option value carries a number that can be passed as the 
num argument to the lambda function we provided. Option.bind returns the result 
that it gets from this function, so the result in the next step will be the body of this func-
tion B. We also replace all occurrences of num with the actual value, which is 20.

 We then read the next input value with readInput(), which returns Some(22). 
Having replaced readInput() with Some(22), we can evaluate the Option.map func-
tion. This operation evaluates the function it gets as an argument and in addition 
wraps the result in the Some discriminator. So our next step C shows that we need to 
calculate the addition next and wrap the result in Some. After calculating the addition, 
we finally get the result: Some(42).

 After following this step-by-step explanation, you should have pretty good idea how 
Option.bind and Option.map work. Equipped with this information, we can look at 
the implementation of these two operations in both F# and C#.

6.4.4 Implementing operations for the option type

The implementations of both bind and map have a similar structure, because they’re 
both higher-order functions that pattern-match against an option value. We’ll take a 
look at both F# and C# implementations, which are good examples of encoding func-
tional ideas in C#. Let’s start with listing 6.14, which shows the implementation of the 
map operation.  

The implementation first examines the option value given as an argument. When the 
value is None, it immediately returns None as the result. Note that we can’t return the 
None value that we got as an argument, because the types may be different. In the C# 
version this is more obvious. The type of the result is Option<R>, but the type of the 
argument is Option<T>.

 When the value of the argument matches the discriminated union case Some, we 
get the value of type T and use the provided function (or Func delegate) to project it 
into a value of type R. Since the value returned from the operation should have a type 
Option<R>, we need to wrap this value using the Some constructor again.

 The source code of map and bind operations is quite similar, but there are some 
important differences. Let’s now look at the second couple of operations in listing 6.15.

Listing 6.14 Implementing the map operation in F# and C# 

F# Interactive C#

> let map f input = Option<R> Map<T, R>(this Option<T>
     match input with       input, Func<T, R> f) {
     | None -> None    T v;
     | Some(value) ->    if (input.MatchSome(out v))
        Some(f(value));;       return Option.Some(f(v));
val map :    else
   ('a -> 'b) ->       return Option.None<R>();
   'a option -> 'b option }
Licensed to   <kr_wilson@hotmail.com>



159Working with the option type
The bind operation starts similarly by pattern-matching on the option value given as the 
argument. When the option value is None, it immediately returns None just like in the 
previous case. The difference is when the option carries actual value. We again apply the 
function that we got as an argument, but this time we don’t need to wrap the result inside 
a Some constructor. The value returned from the function is already an option, and as 
you can see from the type signature, it has exactly the type that we want to return. This 
means that even in the Some case, the bind operation can still return None, depending 
on the function provided by the user.

 As usual, the F# version takes the original value as a last argument to enable 
pipelining and partial application, while the C# version is an extension method. 
Let’s now look how to rewrite the previous example in C# using the newly created 
methods. 
USING THE OPTION TYPE IN C#

Extension methods give us a way to write the code that uses Bind and Map in a fluent
manner. As the number of parentheses can be confusing, note that the call to Map is 
nested inside a lambda function that we give as an argument to Bind:

Option<int> ReadAndAdd() {
   return ReadInput().Bind(n =>
      ReadInput().Map(m => m + n));
}

In C# the difference between using higher-order functions and working with option 
types explicitly is even more significant. C# doesn’t directly support types like 
discriminated unions, but if we supply our types with appropriate processing func-
tions, the code becomes readable. This is the important point to keep in mind when 
writing functional-style programs in C#: some of the low-level constructs may feel 
unnatural, but thanks to lambda functions, we can write elegant functional code in 
C# too.

 So far, we’ve seen how to use higher-order functions to work with multiple values 
and alternative values. The last kind of value we talked about in the previous chapter 
was the function. In the next section, we’ll see that we can write surprisingly useful 
higher-order functions for working with function values as well. 

Listing 6.15 Implementing the bind operation in F# and C#

F# Interactive C#

> let bind f input = Option<R> Bind<T, R>(this Option<T>
     match opt with       input, Func<T, Option<R>> f) {
     | None -> None    T value;
     | Some(value) -> f(value)    if (input.MatchSome(out value))
  ;;       return f(value);
val bind :    else
   ('a -> 'b option)       return Option.None<R>();
   -> 'a option -> 'b option }
Licensed to   <kr_wilson@hotmail.com>



160 CHAPTER 6 Processing values using higher-order functions
6.5 Working with functions
All the higher-order functions we’ve discussed so far in this chapter have had a similar 
structure. They had two parameters: one was a value to be processed and the second 
was a function that specified how to process the value. When working with functions, 
the value parameter will be also a function, so our higher-order functions will take two 
functions as arguments.

6.5.1 Function composition

The most important operation for working with functions is composition. Let’s start 
by looking at an example where this will be helpful. We’ll use the example where we 
stored a name and population using a tuple. In listing 6.16 we create a function to 
determine whether the place is city, town, or village based on the size of the popula-
tion. We also test it by determining the status of several places stored in a list. 

> let places = [ ("Grantchester", 552); 
                      ("Cambridge", 117900); 
                      ("Prague", 1188126); ];;  
val places : (string * int) list

> let statusByPopulation(population) =  
      match population with
      | n when n > 1000000 -> "City"
      | n when n >    5000  -> "Town"
      | _                       -> "Village";;
val statusByPopulation : int -> string

> places |> List.map (fun (_, population) ->  
      statusByPopulation(population));;              
val it : string list = ["Village"; "Town"; "City"]

The first parts of listing 6.16 (creating a list of test data and the declaration of the 
statusByPopulation function) are quite straightforward. The interesting bit comes 
in the last few lines. We want to obtain the status of each place using List.map. To do 
this we pass it a lambda function as an argument. The lambda function first extracts 
the second element from the tuple using pattern matching B and then calls our 
statusByPopulation function C. 

 The code works well but it can be written more elegantly. The key idea is that we 
have to perform two operations in sequence. We first need to access the second ele-
ment from a tuple, then perform the calculation using the returned value. Since the 
first operation can be done using the snd function, we need to compose these two func-
tions. In F#, this can be written using the function composition operator (>>) like this:

snd >> statusByPopulation

The result of this operation is a function that takes a tuple, reads its second element 
(which has to be an integer), and calculates the status based on this number. We can 

Listing 6.16 Working with city information (F# Interactive)

Creates list 
with test data

Returns status 
based on population

Iterates over places, 
reads population info

B

C Calculates status
Licensed to   <kr_wilson@hotmail.com>



161Working with functions
understand how the functions are composed by looking at table 6.1, which shows their 
type signatures. 

On the second line, the table shows a specific type of the snd function after the com-
piler figures out that the second element of the tuple has to be an integer. We can get 
this type if we substitute type parameter 'b from the first row with a type int. Now we 
have two functions that can be composed, because the return type on the second row 
is the same as the input type on the third row. Using composition, we join the functions 
together and get a function that calls the first one and passes the result of this call as an 
input to the second one. The resulting function has the same input type as the func-
tion on the second row and the same return type as the function on the third row. List-
ing 6.17 shows how we can rewrite the original code using function composition.  

> places |> List.map (fun x -> (snd >> statusByPopulation) x);;  
val it : string list = ["Village"; "Town"; "City"]

> places |> List.map (snd >> statusByPopulation);;  
val it : string list = ["Village"; "Town"; "City"]

On the first line B, we call the composed function explicitly by giving it the tuple con-
taining the city name and population as an argument. This is to demonstrate that a 
result of composition is a function that can be called using the usual syntax. However, 
the reason for using function composition is that we can use the composed function 
as an argument to other functions. In this case, the composed function takes a tuple 
and returns a string, so we can immediately use it as an argument to List.map to get a 
list of the statuses of the sample places C.

 The implementation of the function composition operator is remarkably simple. 
Here’s how we could define it if it didn’t already exist in the F# library:

> let (>>) f g x = g(f(x))
val (>>) : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c

In this declaration, the operator has three parameters. When we were working with it 
earlier, we only specified the first two parameters (the functions to be composed). 
We’ll get better insight into how it works by looking at the two possible interpretations 
of the type signature in figure 6.2.

 The operator can be used for composing functions thanks to the partial applica-
tion. If we specify just the first two arguments, the result is a composed function. 
When the operator receives the third argument, it uses that argument to call the first 

Function value Type

snd ('a * 'b) -> 'b
snd (after specification) ('a * int) -> int
statusByPopulation int -> string
snd >> statusByPopulation ('a * int) -> string

Listing 6.17 Using the function composition operator (F# Interactive)

B

C

Table 6.1  
Type signatures of snd, 
statusByPopulation, 
and a function obtained by 
composing these two func-
tions using the >> operator
Licensed to   <kr_wilson@hotmail.com>



162 CHAPTER 6 Processing values using higher-order functions
function and then calls the second function using the result. Clearly, specifying all 
three arguments to it isn’t typically very useful—we could just call the functions 
directly, without using the operator!

 Now that we’ve seen how function composition works in F#, let’s look at what it 
might look like in C#. 

6.5.2 Function composition in C#

Function composition in C# is possible, but it has only a very limited use. This is partly 
because a partial application can’t be used as easily in C#, but more importantly 
because most of operations are written as members instead of functions. We can at 
least demonstrate the same idea in C#. Listing 6.18 shows an implementation of the 
Compose method as well as an example of using it.  

static Func<A, C> Compose<A, B, C>(this Func<A, B> f, Func<B, C> g) {
   return (x) => g(f(x));              
}

// Using function composition in C#
Func<double, double> square = (n) => n * n;                   
Func<double, string> formatNum = (n) => n.ToString("E");  

var data = new double[] { 1.1, 2.2, 3.3 };
var sqrs = data.Select(square.Compose(formatNum));  

// Prints: "1.210000E+000"; "4.840000E+000"; "1.089000E+001"
foreach (var s in sqrs) Console.Write(s);

Function composition is implemented as an extension method for the Func<T, R> del-
egate, so we can call it on function values that take a single argument using dot nota-
tion. In F# it was written as a function with three parameters, even though it’s usually 
used just with two arguments. In C# we have to implement it as a method with two 
arguments that returns a Func delegate explicitly. We construct a lambda function that 
takes an argument and calls functions that we’re composing B, and return this func-
tion as a delegate.

 To test the method, we create two functions that we want to compose C. We use 
the composed function when processing numbers in a collection using Select. 
Instead of specifying an explicit lambda function as the argument, we call Compose to 
create a composed function value and pass it to the Select method D.  

Listing 6.18 Implementing and using the Compose method (C#)

val (>>) : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c

First function ResultSecond function

Composed function

Argument for the 
first function

val (>>) : ('a -> 'b) -> ('b -> 'c) -> 'a -> 'c

First function Second function

Figure 6.2 Type signature of the 
function composition operator. If 
we specify three arguments 
(annotations above), it returns the 
result of calling them in sequence. 
If we specify only two arguments 
(annotations below), it returns a 
composed function.

B

C

D

Licensed to   <kr_wilson@hotmail.com>



163Type inference
 Over the last few sections, we’ve seen that many of the useful processing functions 
are generic, some of them having even three type parameters. Writing functions like 
this in F# has been easy because we haven’t had to write the types explicitly: type infer-
ence has figured out the types automatically. It’s time to take a closer look at how this 
mechanism works. 

6.6 Type inference
We have talked about type inference for values. We’ve seen it in C# 3.0 with the var
keyword and in F# with let bindings. We’ll start this section with another aspect that’s 
shared by both C# and F#. When calling a generic method, such as Option.Some (list-
ing 5.9) or Option.Map (listing 6.13) in C#, we can specify the type arguments explic-
itly like this:

var dt = Option.Some<DateTime>(DateTime.Now);
var nt = dt.Map<DateTime, int>(d => d.Year);

That’s very verbose, and we’ve almost never written code in this style in the previous 
examples, because C# performs type inference for generic method calls. This deduces 
type arguments automatically, so in the previous example we could have written just 
dt.Map(d => d.Year).

 The process of type inference in C# is quite complicated, but it works well and it 
usually isn’t important to understand it at an intimate level. If you really need the 
details, you can find complete documentation in the C# Language Specification
[ECMA 2006] or in C# in Depth [Skeet 2008]. Type arguments are inferred from the 
normal method arguments, with anonymous functions getting special treatment to 
make the whole process more streamlined. Also note that in C# 3.0, the order of 
parameters doesn’t matter.

6.6.1 Type inference for function calls in F#

Even though it’s possible to specify type arguments in F# using angle brackets in the 
same way as in C#, this approach is used only rarely. The reason is that when the com-
piler can’t infer all the information and needs some aid from the programmer, we can 
add type annotation to the particular location where more information is needed. 
Let’s demonstrate this using an example:

> Option.map (fun dt -> dt.Year) (Some(DateTime.Now));;
error FS0072: Lookup on object of indeterminate type.

> Option.map (fun (dt:DateTime) -> dt.Year) (Some(DateTime.Now));;
val it : int option = Some(2008)

Unlike in C#, the order of arguments matters in F#, so the first case fails. The reason is 
that the F# compiler doesn’t know that the value dt is of type DateTime until it reaches 
the second argument, and so it doesn’t know whether the Year property exists when 
processing the first argument. To correct this, we added a type annotation in the sec-
ond case, which specifies the type of the dt value explicitly. This is one more interesting 
Licensed to   <kr_wilson@hotmail.com>



164 CHAPTER 6 Processing values using higher-order functions
aspect of the pipelining operator: if we use pipelining to write the previous code snip-
pet, we don’t need type annotations:

> Some(DateTime.Now) |> Option.map (fun dt -> dt.Year);;
val it : int option = Some(2008)

This works because the option value, which contains the DateTime value, appears ear-
lier so it’s processed before the lambda function. When processing the lambda func-
tion, the compiler already knows that the type of dt has to be DateTime, so it can find 
the Year property with no trouble.

 So far, we’ve looked at the similarities between C# and F#, but type inference goes 
further in F#. Let’s see how the F# compiler can help us when we write higher-order 
functions.

6.6.2 Automatic generalization 

We’ve implemented several higher-order functions in F# in this chapter and we’ve 
seen a few side-by-side implementations in F# and C# as well. The interesting fact 
about the F# implementations is that we didn’t need to specify the types at all. This is 
thanks to automatic generalization, which is used when inferring the type of a function 
declaration. We’ll explain how this process works using an implementation of the 
Option.bind function as an example:

let bind func value =  
   match value with  
   | None      -> None      
   | Some(a) -> func(a)    

1 We describe the type inference process for this function step by step. It begins with 
the most general possible type and adds constraints as it processes the code, so the 
listing shows steps that are made while processing the function body.

2 Use the declaration signature B to infer that bind is a function with two argu-
ments and assign a new type parameter to each of the arguments and to the return 
type:

        func   : 't1
        value : 't2
        bind   : 't1 -> 't2 -> 't3

3 Use the pattern matching C to infer that value is an option type, because it’s 
matched against Some and None patterns. Use D to infer that the result of bind
is also an option type, because it can have None as a value:

        func   : 't1
        value : option<'t4>
        bind   : 't1 -> option<'t4> -> option<'t5>

4 Use E to infer that func is a function, because we’re calling it with a single 
parameter:

        func   : ('t6 -> 't7)
        value : option<'t4>
        bind   : ('t6 -> 't7) -> option<'t4> -> option<'t5>

B
C

D
E

Licensed to   <kr_wilson@hotmail.com>



165Working with lists
5 From E we know that the parameter to the function has type 't4 and that the 
result has the same type as the result of bind function, so we add two following 
constraints:

        't6 = 't4
        't7 = option<'t5>

6 Now, we can replace types 't6 and 't7 using the constraints obtained in the 
previous step:

        func   : ('t4 -> option<'t5>) 
        value : option<'t4>
        bind   : ('t4 -> option<'t5>) -> option<'t4> -> option<'t5>

7 We rename the type parameters according to the usual F# standards:

        bind  : ('a -> option<'b>) -> option<'a> -> option<'b> 

Even though implementing the F# type inference algorithm using this description 
would be difficult, it should show you what kind of information F# can use when 
deducing a type of a higher-order function. Probably the most interesting step in the 
process was the deduction of the type of a function (func) used as a parameter. This is 
an important step, because functions given as parameters represent operations that 
can be used on values. As we’ve seen earlier, these are in some sense similar to meth-
ods, but thanks to the type inference, writing code like this in F# doesn’t require any 
additional type specification and still makes the code completely type-safe.

 After that short interlude about type inference and automatic generalization, we’ll 
get back to writing and using higher-order functions. We’ve discussed most of the 
types from chapter 5, but we’re still missing one important functional value. In the 
next section we’ll tackle more familiar territory with a look at higher-order functions 
for working with lists. 

6.7 Working with lists
We talked about lists in chapter 3 where we learned how to process lists explicitly 
using recursion and pattern matching. We also implemented a functional list type in 
C#. In the sample application in chapter 4, we used lists in this way, but noted that 
writing list processing explicitly isn’t very practical.

 This is a recurring pattern of this chapter, so you probably already know what we’re 
going to say next. Instead of using pattern matching explicitly in every case, we can 
use higher-order functions for working with lists. We’ve already seen some functions 
for working with F# lists such as List.map and similar methods for working with C# 
collections (Select). In this section, we’ll look at these in more detail, examining 
their type signatures and seeing how they can be implemented.

6.7.1 Implementing list in F#

Even though we’ve been working with functional lists in F# and implemented the same 
functionality in C#, we haven’t explored how we might implement the list type in F#. 
Licensed to   <kr_wilson@hotmail.com>



166 CHAPTER 6 Processing values using higher-order functions
When we discussed lists earlier, we saw that a list is represented as either a nil value (for 
an empty list) or a cons cell containing an element and a reference to the rest of the list. 

 Now, if we look at our gallery of values from the previous chapter, this is exactly like 
an alternative value with two options. There’s one slight wrinkle: the list type is recursive, 
which means that a cons cell contains a value of type list itself. Listing 6.19 shows a type 
definition that creates a similar list type to the one in the F# standard library.

> type List<'T> =  
      | Nil                   
      | Cons of 'T * List<'T>  
type List<'T> = (...)

> let list = Cons(1, Cons(2, Cons(3, Nil)));;  
val list : List<'T>

The type is written as a generic type with a single type parameter B. The type param-
eter represents the type of the values stored in the list. Alternatives in F# are repre-
sented using discriminated unions, and this particular union has two discriminators. 
The first one C represents an empty list, and the second one D is a list with an ele-
ment (of type 'T) and a reference to the rest of the list, whose type is written recur-
sively as List<'T>.

 The last line in the code sample shows how we can create a list with three elements. 
The first argument to the Cons constructor is always a number, and the second argu-
ment is a list, which in turn is constructed using another Cons or the Nil discrimina-
tor. The built-in F# list type is declared in exactly this way. Earlier we worked with lists 
using two primitives. The :: constructor corresponds to Cons in our definition, and []
represents the same value as Nil. 

 In general, creating a recursive discriminated union type is a common way to rep-
resent program data, as we’ll see in the next chapter. The list type lies somewhere 
between simple values and complex program data. It can be interpreted in both ways, 
depending how it’s used in the program. We’ll also see how recursive unions can 
express many of the standard design patterns, but for now let’s get back to the higher-
order functions that make it easier to work with lists.

6.7.2 Understanding type signatures of list functions

As I mentioned earlier, we were already using functions for filtering and projecting 
lists, but we were using them quite intuitively. In this section, we’ll look at their type 
signature and see how we can deduce what a higher-order function does just using 
this information. 

 Of course, you can’t tell what a function does by looking at its type in general, but 
for generic and higher-order functions, such as those for working with lists, this is 
often possible. As we’ve seen earlier, functions for working with generic values can’t 
do much with the value alone, because they don’t know anything about it. As a result, 
they usually take a function as an extra argument and use it to work with the value. 

Listing 6.19 Definition of a functional list type (F#)

B
C

D
Creates list 
containing 1, 2, 3
Licensed to   <kr_wilson@hotmail.com>



167Working with lists
The type of the function gives some clues as to how the result will be used. Let’s dem-
onstrate this using type signatures displayed in listing 6.20.

// F# function signatures
List.map    : ('a -> 'b)     -> 'a list -> 'b list  
List.filter : ('a -> bool) -> 'a list -> 'a list                   

// C# method declarations 
List<B> Select<A, B> (List<A>, Func<A, B>)        
List<A> Where<A>       (List<A>, Func<A, bool>)                          

Let’s first look at projection B. As you can see, the input parameter is a list of values 
of type 'a and the result is a list of values of type 'b. The operation doesn’t know what 
'b is and so it can’t create values of this type alone. The only way to create a value of 
type 'b is to use a function given as an argument that turns a value of type 'a into a 
value of type 'b. This suggests that the only reasonable way for the operation to work 
is to iterate over the values in the input list, call the function for each of the values, 
and return a list of results. Indeed, this is exactly what the projection operation does. 

 It is worth noting that in this case the types of the input list and output list can dif-
fer. In chapter 5 we were adding a number 10 to a list of integers, so the input list had 
the same type as the output list. We could use a function that created a string from a 
number as an argument. In this case the input list would be a list of integers and the 
result will be a list of strings.

 The second operation is filtering C. Here the input and the resulting lists have the 
same type. The function given as an argument is a predicate that returns true or false 
for a value of type 'a, which is the same type as the elements in the input list. This 
gives us a good hint that the operation probably calls the function for each of the list 
elements and uses the result to determine whether the element should be copied to 
the returned list.
WORKING WITH LISTS

Let’s look at a larger example showing the use of filtering and projection. Both of them 
are available in the F# library for various collection types, but we’ll use lists as we’re 
already familiar with them. In C#, these methods are available for any collection imple-
menting IEnumerable<T>, so we’ll use the generic .NET List<T> class. Listing 6.21 
shows initialization of the data that we’ll be working with.

// C# version using a simple class
class CityInfo {                                           
   public CityInfo(string name, int population) {
      Name = name; Population = population; 
   }
   public string Name { get; private set; }
   public int Population { get; private set; }
}

Listing 6.20 Types of functions and methods for working with lists (F# and C#)

Listing 6.21 Data about settlements (C# and F#)

B
C

C

Licensed to   <kr_wilson@hotmail.com>



168 CHAPTER 6 Processing values using higher-order functions
var places = new List<CityInfo> { new CityInfo("Seattle", 594210),     
   new CityInfo("Prague", 1188126), new CityInfo("New York", 7180000),
   new CityInfo("Grantchester", 552), new CityInfo("Cambridge", 117900) }; 

// F# version using tuples
> let places =                                                                          
    [ ("Seattle", 594210); ("Prague", 1188126); ("New York", 7180000);
       ("Grantchester", 552); ("Cambridge", 117900) ];;
val places : (string * int) list

In F#, we’ll use our usual example—a list with information about cities with name and 
population B. Even though we could convert the F# tuple into the Tuple class that 
we’ve implemented, we’ll use a more typical C# representation this time. We declare a 
class CityInfo C and use it to create a list containing city information D.

 In C#, we can work with the data using the Where and Select methods that are 
available in .NET 3.5. Both are extension methods, so we can call them using the usual 
dot notation:

var names = 
   places.Where(city => city.Population > 1000000)
            .Select(city => city.Name);

Again, this shows the benefits of using higher-order operations. The lambda functions 
given as arguments specify what the condition for filtering is (in the first case), or the 
value to return for each city (in the second case). This is all we have to specify. We don’t 
need to know the underlying structure of the collection, and we’re not specifying how 
the result should be obtained. This is all encapsulated in the higher-order operations. 

 Let’s perform the same operation in F#. We want to filter the data set first, then 
select only the name of the city. We can do this by calling List.filter and using the 
result as the last argument to the List.map function. As you can see, this looks quite 
ugly and hard to read:

let names = 
   List.map fst 
               (List.filter (fun (_, pop) -> 1000000 < pop) places)

Of course, F# can do better than this. The previous C# version was elegant because we 
could write the operations in the same order in which they’re performed (filtering 
first, projection second), and we could write each of them on a single line. In F#, we 
can get the same code layout using pipelining:

let names = 
   places |> List.filter (fun (_, pop) -> 1000000 < pop)
             |> List.map fst 

In this case, the pipelining operator first passes the value on the left side (places) to 
the filtering function on the right side. In the next step, the result of the first opera-
tion is passed to the next operation (here projection). Even though we’ve been using 
this operator for quite some time, this example finally shows why it is called “pipelin-
ing.” The data elements are processed in sequence as they go through the “pipe,” and 
the pipe is created by linking several operations using the pipelining operator.

D

B

Licensed to   <kr_wilson@hotmail.com>



169Working with lists
 Note that sometimes the order of operations is important and sometimes not. In 
this case we have to perform the filtering first. If we did the projection in the first step, 
we’d obtain a list containing only city names and we wouldn’t have the information 
about population, which is needed to perform the filtering.

 When writing list processing in F#, you can combine pipelining with other func-
tional techniques such as partial function application and function composition. Let’s 
briefly look at the next step that we could make when writing the processing code:

let names =
   places |> List.filter (snd >> ((<) 1000000))
             |> List.map fst

Instead of specifying the filtering function explicitly using a lambda expression, we’re 
building it using function composition. The first function is snd, which returns the 
second element of a tuple. In our case, this is the number representing population. 
The second function used in the composition is a partially applied operator. We’re 
specifying only the first argument, so we’ll get a function that returns true when the 
second argument is larger than the given number.

TIP When writing code (not only in the functional style), you should always 
consider how difficult it will be to understand the code when you’ll need 
to modify it later. In the previous example, the version written using 
function composition isn’t particularly shorter and it doesn’t look more 
elegant. In fact, we think it’s less readable than the version written using 
an explicit lambda function, so in this case we’d prefer using lambda 
notation. There are many situations where function composition can sig-
nificantly simplify the code. Unfortunately, there’s no simple rule to fol-
low. The best advice we can give you is to use common sense and imagine 
someone else trying to understand the code. 

Processing collections of data is a task we do often, so programming language design-
ers try to make it as easy as possible. Both C# and F# now provide an easier way that 
lets you solve the same task we just implemented using higher-order functions. Under-
standing how higher-order functions work is essential, because you can use them for 
working with any data structures, not just lists.  

C# 3.0 queries and F# sequence expressions
You’ve probably seen examples of data queries written in C# using query expressions. 
Using this feature, our previous code would look like this:

var names = from p in places 
                where 1000000 < p.Population 
                select p.Name

This is often demonstrated as a key new feature, but it wouldn’t exist without the un-
derlying machinery, such as lambda functions and higher-order operations. We’ve fo-
cused on using these explicitly, because when you learn to use them explicitly, you 
can use a similar functional approach for working with any data and not just collections.
Licensed to   <kr_wilson@hotmail.com>



170 CHAPTER 6 Processing values using higher-order functions
Having looked at how we can use the two most common list processing functions and 
seen how useful they are, let’s take a deeper look at a third such function and imple-
ment it ourselves.

6.7.3 Implementing list functions

Instead of showing how to implement the functions for filtering and projection that 
we’ve just seen, we’ll look at a function that we started creating in chapter 3. Since all 
list processing functions have a similar structure, you’ll probably be able to implement 
any of the others after looking at the following example.

 In chapter 3, we wrote a function that could either sum or multiply all elements in 
a list. We later realized that it’s more useful than it first appeared: we saw that it could 
be used to find the minimum or maximum elements as well. We hadn’t covered 
generics at that point, so the function worked only with integers. In listing 6.22, we 
look at a similar function without the type annotations that originally restricted auto-
matic generalization.

> let rec fold f init list =           
     match list with
     | [] -> init                                        
     | head::tail -> 
        let state = f init head
        fold f state tail                                 
  ;;  
val fold : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a  

The implementation is very much like the one in chapter 3. More importantly, we 
removed type annotations, so the inferred signature is more general B. The function 
now takes a list with values of type 'b, and the value produced by aggregation can have 
a different type (type parameter 'a). The processing function takes the current 

Listing 6.22 Generic list aggregation (F# Interactive)

(continued)
The simplified syntax is quite useful and a similar feature called sequence expressions
is available in F# too. We’ll talk about this in chapter 12, but just for the curious, 
here’s the same query written in F#:

let names = 
   seq { for (name, pop) in places do
               if (1000000 < pop) then yield name }

It looks almost like ordinary code enclosed in a block and marked with the word seq. 
This is the intention, because in F#, it’s a more general language construct and can 
be used for working with other values as well. In chapter 12 we’ll see how to use it 
when working with option values, but we’ll also see how C# query expressions can 
sometimes be used for similar purposes.

Shows type 
signature

B

Licensed to   <kr_wilson@hotmail.com>



171Working with lists
aggregation result (of type 'a) and an element from the list ('b) and returns a new 
aggregated result.

 As we’ll see very soon, the use of generics makes the aggregation far more useful. 
It’s also available in the F# library. The version that works with the immutable F# list 
type is located in the List module. The following snippet shows our original use from 
chapter 3, where we multiplied all the elements in a list together:

> [ 1 .. 5 ] |> List.fold (*) 1
val it : int = 120

As we’re working with generic functions, the compiler had to infer the types for the 
type parameters first. In this case, we’re working with a list of integers, so parameter 
'b is int. The result is also an integer, so 'a is int too. Listing 6.23 shows some other 
interesting examples using fold.

> places |> List.fold (fun sum (_, pop) -> sum + pop) 0;;  
val it : int = 9080788

> places |> List.fold (fun s (n, _) -> s + n + ", ") "";;  
val it : string = 
  "Seattle, Prague, New York, Grantchester, Cambridge, "

> places 
    |> List.fold (fun (b,str) (name, _) ->                       
           let n = if b then name.PadRight(20) else name + "\n"
           (not b, str+n) 
       ) (true, "")          
    |> snd              
    |> printfn "%s";;        
Seattle             Prague
New York            Grantchester
Cambridge

In all the examples, we’re working with our collection of city information, so the type 
of the list is always the same. This means that the actual type of parameter 'b is always 
the (string * int) tuple. However, the result of aggregation differs. In the first case 
B, we’re just summing population, so the type of the result is int. In the second 
example C, we want to build a string with names of the cities, so we start the aggrega-
tion with an empty string. The lambda function used as the first argument appends 
the name of the currently processed city and a separator. 

 In the last example D we implement a version with improved formatting—it writes 
the city names in two columns. This means that the lambda function performs two alter-
nating operations. In the first case, it pads the name with spaces (to fill the first column), 
and in the second case it adds a newline character (to end the row). This is done using 
a temporary value of type bool, which is initially set to true, then inverted in every iter-
ation. The aggregation value contains this alternating temporary value and the resulting 
string, so at the end, we need to drop the temporary value from the tuple E. 

Listing 6.23 Examples of using fold (F# Interactive)

B

C

D

Specifies initial tuple value
E

Prints formatted string
Licensed to   <kr_wilson@hotmail.com>



172 CHAPTER 6 Processing values using higher-order functions
IMPLEMENTING FOLD IN C#

An operation with the same behavior as fold is available in the .NET library as well, 
although it has the name Aggregate. As usual, it’s available as an extension method 
working on any collection type and we can use it in the same way as the F# function. 
Let’s rewrite the last example from listing 6.21 in C# 3.0. In F# we used a tuple to store 
the state during the aggregation. As you’ll recall from previous chapters, we men-
tioned that C# 3.0 anonymous types can be sometimes used for the same purpose. 
This is an example of where they’re a really good fit:

var res = 
   places.Aggregate(new { StartOfLine = true, Result = "" }, 
   (r, pl) => {
      var n = r.StartOfLine ? pl.Name.PadRight(20) : (pl.Name + "\n");
      return new { StartOfLine = !r.StartOfLine, Result = r.Result + n };
    }).Result;

In C#, the initial value is specified as the first argument. We create an anonymous type 
with a flag StartOfLine (used as a temporary value) and the property Result, which 
stores the concatenated string. The lambda function used as the second argument 
does the same thing as in our previous F# example, but returns the result again as an 
anonymous type, with the same structure as the initial value. To make the code more 
efficient, we could also use the StringBuilder class instead of concatenating strings, 
but we wanted to show the simplest possible example. 

 Now that you know how to use the function in C#, we should look to see how it’s 
implemented. In listing 6.24 you can see two implementations. One is a typical func-
tional implementation for the functional list from chapter 3, and the other is an 
imperative implementation for the generic .NET List type, which is in principle the 
same as the Aggregate extension method in .NET library. 

// Functional implementation using 'cons list'
R Fold<T, R>(this FuncList<T> list, Func<R, T, R> func, R init) {  
   if (list.IsEmpty) 
      return init;      
   else {
      var state = func(init, list.Head)
      return list.Tail.Fold(func, state);  
   }
}

// Imperative implementation using 'List<T>'
R Fold<T, R>(this List<T> list, Func<R, T, R> func, R init) {  
   R temp = init;
   foreach(var item in list)
      temp = func(temp, item);  
   return temp; 
}

Aside from using different type of collection, the signature of both methods B E is 
the same. It corresponds to the earlier declaration in F#, although we have to write 

Listing 6.24 Functional and imperative implementation of Fold (C#)

B

C

D

E

F

Licensed to   <kr_wilson@hotmail.com>



173Common processing language 
the type parameters explicitly. In both cases, we’re using list as the first parameter and 
the methods are implemented as extensions for the collection type.

 In the functional version, we have two branches. The first one processes the empty 
list case C. The second branch recursively processes a cons cell and aggregates the 
result using the func parameter D. The imperative version declares a local mutable 
value to store the current result during the aggregation. The aggregated value is cal-
culated by iterating over all the elements and updating the value in each iteration F.

 As we’ve mentioned, implementing the other operations is quite a similar process. 
In the functional version of map or filter, you’d return an empty list in C and in the 
imperative version, you’d use mutable list as a temporary value. The other change 
would be on lines E and F. When performing a projection, we’d just call the given 
function, while for filtering we’d decide whether to append the current element. 

 To conclude our discussion of higher-order functions, we’ll highlight a few inter-
esting relationships between the functions that we’ve used for manipulating lists and 
the functions available for working with option values. 

6.8 Common processing language 
We’ve seen a few recurring patterns over the course of this chapter, such as an opera-
tion called map that’s available for both option values and lists. We also used it when we 
were working with tuples and implemented the mapFirst and mapSecond functions.

 Many different values share a similar set of processing functions, so it makes sense 
to think about these operations as a common language. However, the name of the 
operation can vary for different values: similarities in type signatures are often better 
clues than similarities in names. 

6.8.1 Mapping, filtering, and folding

The most common operations in functional programming are map, filter, and fold. 
We’ve used them when working with functional lists, but they’re supported by all 
other collection types (we’ll talk about some of them in chapters 10 and 12). These 
operations aren’t limited to collections. All of them can also be used when working 
with the option type. 

 Listing 6.25 shows signatures of the map, filter, and fold functions for several 
types. The listing includes the functions Option.filter and Option.fold, which we 
haven’t discussed yet.

// map operation
val mapFirst      : ('a -> 'b) -> 'a * 'c    -> 'b * 'c
val List.map      : ('a -> 'b) -> 'a list    -> 'b list
val Option.map    : ('a -> 'b) -> 'a option -> 'b option

// filter operation
val List.filter    : ('a -> bool) -> 'a list    -> 'a list
val Option.filter : ('a -> bool) -> 'a option -> 'a option

Listing 6.25 Signatures of filter and map functions (F#)
Licensed to   <kr_wilson@hotmail.com>



174 CHAPTER 6 Processing values using higher-order functions
// fold operation
val List.fold     : ('a -> 'b -> 'a) -> 'a -> 'b list    -> 'a
val Option.fold  : ('a -> 'b -> 'a) -> 'a -> 'b option -> 'a

The map operation can perform the function given as the first argument on any ele-
ments that are somehow enclosed in the composed value. For tuples, it’s used exactly 
once; for an option value it can be called never or once; for a list it’s called for each 
element in the list. In this light, an option value can be viewed as a list containing zero 
or one element.

 This also explains what the new Option.filter could do. For an option value with 
no elements it would return None; for an option with a single value it would test 
whether it matches the predicate and returns either Some or None depending on the 
result. This function is used quite rarely, so it isn’t part of the core F# library. Using 
the information from this chapter you should be able to easily implement it yourself. 
Then you might write code like this to filter option values containing even numbers:

> Some(5) |> Option.filter (fun n -> n%2 = 0);;
val it : int option = None

If we use the analogy between lists and options, this code filters a list containing one 
value and the result is an empty list. The next new function in the listing is 
Option.fold. It takes three parameters: an aggregation function, the initial state, and 
an option value. When the value is None, it returns the initial state. On the other 
hand, when the option carries some value, the fold operation uses an aggregation 
function to combine it with the specified initial value.

 This is again similar to the way the fold operation works for lists, so the analogy 
between lists and options is again quite useful. The analogy can work the other way 
around as well—we’ve already seen the bind operation for options, and we can apply 
the same concept to lists.

6.8.2 The bind operation for lists

We’ve only discussed the bind operation for option values, but as we’ll see in chapter 12, 
it is an extremely important functional operation in general. Listing 6.26 shows the type 
signature of the bind operation for option values and also what it would look like if we 
defined it for lists.

Option.bind :  ('a -> 'b option) -> 'a option -> 'b option
List.bind    :  ('a -> 'b list)    -> 'a list    -> 'b list

The function List.bind is available in the F# library under a different name, so let’s 
try to figure out what it does using the type signature. The input is a list, and for each 
element, it can obtain a list with values of some other type. A list of this type is also 
returned as a result from the bind operation.  

 In practice, this means that the operation calls the given function for each element 
and concatenates the lists returned from this function. In the F# library  the function 

Listing 6.26 Signatures of bind operations (F#)
Licensed to   <kr_wilson@hotmail.com>



175Summary
is called List.collect. A similar operation is also available in LINQ and is very impor-
tant for one special kind of query. We’ll talk about it in more details in chapter 12.

 We can use the List.collect function to get a list of all files from a given list of 
directories. Note that a single directory usually contains a list of files. Listing 6.27 
shows how we can list all source files for this chapter.

> open System.IO;;
> let directories = 
     [ "C:\Source\Chapter06\Chapter06_CSharp"; 
        "C:\Source\Chapter06\Chapter06_FSharp"; 
        "C:\Source\Chapter06\FunctionalCSharp" ];;
val directories : string list

> directories |> List.collect (fun d ->
     d |> Directory.GetFiles               
        |> List.ofSeq                             
        |> List.map Path.GetFileName );;
val it : string list = 
   [ "Chapter06_CSharp.csproj"; "Program.cs"; "Chapter06_FSharp.fsproj";
      "Script.fsx"; "FunctionalCSharp.csproj"; "List.cs"; 
      "Option.cs"; "Tuple.cs" ]

The collect operation calls the given lambda function for each of the directory in 
the input list. The lambda function then gets all files from that directory, converts 
them from an array into a list, and uses List.map to get the filename from the full 
path. The results are then collected into a single list that’s returned as the overall 
result. You probably won’t be surprised to hear that this operation is also available in 
.NET 3.5, where it’s represented by the SelectMany method. This is the method used 
when you specify multiple from clauses in a C# 3.0 query expression.

6.9 Summary
This chapter, together with chapter 5, covered functional values. As we saw in the pre-
vious chapter, values are important for controlling the flow of the program, and they 
allow us to write code in a functional way—composing it from functions that take val-
ues as an argument and return values as the result. In this chapter we’ve seen a more 
convenient way for working with values. Instead of directly using the structure of the 
value, we used a set of higher-order functions that are defined in the F# library. We’ve 
seen how they are implemented and also how we can implement similar functionality 
for our own types.

 In particular, we talked about functions that allowed us to perform an operation 
on the values carried by standard F# types such as tuples and option types, and also 
our type for representing schedules. You learned how to construct a function from 
two functions using function composition and seen how all these features, together 
with partial application and the pipelining operator, can be used to write elegant and 
readable code that works with values.

Listing 6.27 Listing files using collect (F# Interactive)

Gets list of filenames 
for given directory
Licensed to   <kr_wilson@hotmail.com>



176 CHAPTER 6 Processing values using higher-order functions
 Finally, we looked at several functions for working with lists and observed similari-
ties between some of the higher-order functions acting on different types. We saw that 
the map operation is useful for many distinct kinds of values and that the bind opera-
tion for an option type looks similar to the collect function for working with lists. 
We’ll talk more about this relationship in chapter 12.

 When we began talking about using values in chapter 5, we made a distinction 
between local values and program data. In the next chapter, we’ll turn our attention to 
program data, which represent the key information that the program works with. For 
example, this could be the structure of shapes in a vector graphics editor or the docu-
ment in a text editor. In this chapter we introduced a convenient way for working with 
local values, and we’ll see that same ideas can be used for working with program data 
as well. We’ve already taken a step in this direction when we talked about lists, because 
many programs represent their data as a list of records. 

 

Licensed to   <kr_wilson@hotmail.com>



Designing 
 data-centric programs
When designing a functional program, first think about the data that the program 
works with. Because nontrivial programs use data, this phase is extremely impor-
tant in application design. When implementing a program in a functional lan-
guage, we also begin with the data structures that we’ll use in the code, then write 
operations to manipulate the data as the second step. 

 This is different from object-oriented design, where data is encapsulated in the 
state of the objects; processing is expressed as methods that are part of the objects 
and interact with other objects involved in the operation. Most functional programs 
are data-centric, which means that data is clearly separated from operations. Adding 
a new operation to work with the data is a matter of writing a single function.

This chapter covers
■ Representing and processing documents
■ Designing immutable data structures
■ Converting between data representations
■ Using records and recursive discriminated unions
177

Licensed to   <kr_wilson@hotmail.com>



178 CHAPTER 7 Designing data-centric programs
NOTE Data-centric and behavior-centric programs Even though most functional 
programs are data-centric, there are some applications and components 
where we can’t think only about the data, because the primary concern is 
behavior. In an application that allows batch processing of images using 
filters, the primary data structure would be a list of filters, and from a 
functional point of view, a filter is a function. 

This shows that we have two primary ways of looking at functional 
code. These approaches are often combined in different parts of a single 
application, but we’ll talk about them separately. In this chapter, we’ll 
look at data-centric programs and in chapter 8 we’ll discuss behavior-
centric programs.

The primary aim of this chapter is to teach you how to think about application design 
in a functional way. We’ll demonstrate the ideas in the context of an application that 
works with simple documents containing text, images, and headings. In this chapter, 
we’ll use F# as our primary language. Although we can program in C# in a functional 
style, designing the whole structure of the application in a functional way would be 
somewhat inconvenient, because functional data structures rely heavily on data types 
like discriminated unions. We’ll mention several related object-oriented design pat-
terns, and we’ll also consider how we’d work with immutable types in C#. 

We’ll start by talking about one more F# type that’s important for representing pro-
gram data, then we’ll turn our attention to the example application. 

7.1 Functional data structures
In functional programming, the data that the program manipulates is always stored in 
data structures. The difference between data structures and objects is that data struc-
tures expose the structure of the data representation they use (as the name suggests). 
Knowing the structure of the data makes it easier to write code that manipulates it, but 
as we’ll see in chapter 9, F# also gives us a way to encapsulate the structure, just like in 

Using data representations
In functional programming, it’s common to use multiple data structures to represent 
the same program data. This means that we design different data structures, then 
write transformations between the representations. These transformations usually 
compute additional information about the data.

Different operations can be more easily implemented using different data represen-
tations. In this chapter we’ll work with two representations of documents. In sec-
tion 7.2, we’ll implement a flat data structure, which is suitable for drawing of the 
document. In section 7.3 we’ll add structured representation, which is more appro-
priate for storing and processing of the document. This approach also supports 
sharing work, because operations working on different representations can be de-
veloped and maintained to some extent independently by different developers.
Licensed to   <kr_wilson@hotmail.com>

http://www.functional-programming.net
http://www.functional-programming.net
http://www.manning.com/FunctionalProgrammingintheRealWorld


179Functional data structures
OOP, when we want to export the F# data structures from a library or make it available 
to C#. As we mentioned when we talked about functional concepts in chapter 2, these 
data structures are immutable. 

 We’ll look at two of the most common representations of program data in this 
chapter: 

■ A list of composed values such as tuples or discriminated unions
■ A more general recursive data structure such as a tree

In chapter 4 we used a list of tuples to draw a pie chart, where each tuple contained a 
title and a value. Using tuples is simple, but impractical for more complicated data. In 
this section we’ll look at the F# record type, which is the one remaining core F# data 
type left to discuss. 

7.1.1 Using the F# record type

Records are “labeled tuples.” They store multiple different elements in a single value; 
in addition, each element has a name that can be used to access it. In F#, the names 
of the elements are fields. This is in many ways similar to records or struct constructs 
from C or to anonymous types in C#. Unlike anonymous types, records have to 
be declared in advance. Similar to anonymous types, records in their basic form con-
tain only properties to hold data; listing 7.1 shows one such declaration to represent 
a rectangle.

> type Rect =
     { Left    : float32      
       Top     : float32         
       Width   : float32      
       Height : float32 };;
type Rect = (...)

> let rc = { Left = 10.0f; Top = 10.0f;          
                 Width = 100.0f; Height = 200.0f; };;  
val rc : Rect = (...)                              

> rc.Left + rc.Width;;     
val it : float32 = 110.0f

When declaring a record type, we have to specify the types of the fields and their 
names. In this example, we’re using the float32 type, which corresponds to float
in C# and the .NET System.Single type, because we’ll need rectangles of this type 
later. To create a value of an F# record, we specify values for all its fields in curly 
braces B. Note that we don’t have to write the name of the record type: this is 
inferred automatically using the names of the fields, and as you can see, in our 
example the compiler correctly inferred that we’re creating a value of type Rect C. 
This is different compared to how anonymous types in C# work. If the compiler 
couldn’t find any appropriate record type based on the names of the fields, it would 
report an error.

Listing 7.1 Representing a rectangle using a record type (F# Interactive)

Declares fields 
of record

B

C
Accesses fields using name
Licensed to   <kr_wilson@hotmail.com>



180 CHAPTER 7 Designing data-centric programs
 When working with records we’ll need to read their fields, but we’ll also need to 
“change” values of the fields—for example, when moving the rectangle to the right. 
Since a record is a functional data structure and it’s immutable, we’ll instead have to 
create a record with the modified value. Moving a rectangle record to the right could 
be written like this:

let rc2 = { Left = rc.Left + 100.0f; Top = rc.Top; 
                Width = rc.Width; Height = rc.Height }

Writing all code like this would be awkward, because we’d have to explicitly copy values 
of all fields stored in the record. In addition, we may eventually need to add a new field 
to the record declaration, which would break all the existing code. F# lets us express the 
idea of “copy an existing record with some modifications” in a succinct manner:

let rc2 = { rc with Left = rc.Left + 100.0f }

Using the with keyword, we can specify a value of the fields that we’re going to change 
and all the remaining fields will be copied automatically. This has the same meaning 
as the previous code, but it’s much more practical.

 So far we’ve seen how to write “primitive” operations on records—but of course 
we’re trying to write code in a functional style, so we really want to be able to manipu-
late records with functions.
WORKING WITH RECORDS

We’ll use the Rect type later in this chapter and we’ll need two simple functions to 
work with rectangles. The first function deflates a rectangle by subtracting the speci-
fied width and height from all its borders, and the second one converts our represen-
tation to the RectangleF class from the System.Drawing namespace. You can see both 
in listing 7.2.

> open System.Drawing;;
> let deflate(original, wspace, hspace) = 
     { Left = original.Left + wspace                       
       Top = original.Top + hspace                            
       Width = original.Width - (2.0f * wspace)        
       Height = original.Height - (2.0f * hspace) };;
val deflate : Rect * float32 * float32 -> Rect    

> let toRectangleF(original) = 
     RectangleF(original.Left, original.Top,    
                original.Width, original.Height);;  
val toRectangleF : Rect -> RectangleF          

> { Left = 0.0f; Top = 0.0f;
    Width = 100.0f; Height = 100.0f; };;
val it : Rectangle = (...)

> deflate(it, 20.0f, 10.0f);;                       
val it : Rectangle = { Left = 20.0f;  Top = 10.0f; 
                       Width = 60.0f; Height = 80.0f;}

Listing 7.2 Functions for working with rectangles (F# Interactive)

Creates, returns 
deflated rectangle

B

Returns new instance 
of RectangleF class

C

D

Licensed to   <kr_wilson@hotmail.com>



181Functional data structures
As you can see from the type signatures (B, C), the F# compiler correctly deduced 
that the type of the original parameter is of type Rect. The compiler uses the names 
of the fields accessed in the function body. If we had two record types and used only 
fields shared by both of them, we’d have to specify the type explicitly. We could use 
type annotations and write (original:Rect) in the function declaration. As usual 
when working with F# Interactive, we immediately test the function D. We didn’t use 
a let binding when creating the value, so later we access it using the automatically cre-
ated value called it. 

 To summarize, F# records are immutable and can be easily cloned using the { x
with ... } construct. If we were designing a functional data structure like this in C#, 
we’d use classes or occasionally structs, but we’d write them in a special way. In the 
next section, we’ll look how to do that.

7.1.2 Functional data structures in C#

We’ve implemented several functional immutable data types in C# such as FuncList
or Tuple. In C#, we do this by writing a class in a particular way. Most importantly, all 
its properties have to be immutable. This can be done either by using the readonly
field or by declaring a property that has a private setter and is set only in the construc-
tor of the class. In listing 7.3, we use the first approach to implement a class similar to 
the Rect type from listing 7.1.

public sealed class Rect {
   private readonly float left, top, width, height;

   public float Left    { get { return left; } }    
   public float Top      { get { return top; } }        
   public float Width   { get { return width; } }  
   public float Height { get { return height; } }

   public Rect(float left, float top, float width, float height) {  
      this.left = left; this.top = top; 
      this.width = width; this.height = height;
   }

   public Rect WithLeft(float left) {                               
      return new Rect(left, this.Top, this.Width, this.Height);  
   }
   // TODO: WithTop, WithWidth and WithHeight                   
}

The class contains fields marked using the readonly modifier that are initialized in 
the constructor. This is the right way of implementing a truly immutable class or value 
type in C#. You could also use C# 3.0 automatic properties with private setter. In that 
case, it’s your responsibility to ensure that the properties are set only in the construc-
tor, but it makes the code slightly shorter.

 The more interesting part is the WithLeft method B, which can be used to create 
a clone of the object with a modified value of the Left property. We’ve omitted similar 

Listing 7.3 Immutable Rect type (C#)

Returns value of 
read-only property

Constructs 
rectangle

B
Creates copy 
of object
Licensed to   <kr_wilson@hotmail.com>



182 CHAPTER 7 Designing data-centric programs
methods for other properties, because they’re all easy to implement. These methods 
correspond to the with keyword that we’ve seen earlier for F# records. You can see the 
similarity yourself: 

let moved = { rc with Left = 10.0f }   
var moved = rc.WithLeft(10.0f);        

The important thing is that we don’t have to explicitly read all properties of the Rect
class and we just mention the property that we want to change. This syntax is actually 
quite elegant even if we want to modify more than one of the properties:

var moved = rc.WithLeft(10.0f).WithTop(10.0f);

Just as we’ve seen in this example, you’ll often need to set two related properties at 
the same time. If this happens frequently, it’s more convenient to add a new method 
that creates a clone and modifies all the related properties. In our example, we’d 
likely also add methods WithPosition and WithSize, because they represent com-
mon operations. This can also be necessary if each individual change would other-
wise create an object in an invalid state but the combined operation represents a 
valid state transition.

 That’s all we need to know about F# record types for now. We’ll get back to func-
tional data types in .NET in chapter 9. In the next section, we’ll start working on a 
larger sample application, which is the heart of this chapter, and we’ll talk about one 
usual way of representing program data.

7.2 Flat document representation
We’ll develop an application for viewing 
documents in this chapter. Let’s begin 
by designing a representation of the 
document that’s suitable for drawing it 
on the screen. In this representation, 
the document will be a list of elements 
with some content (either text or an 
image) and a specified bounding box in 
which the content should be drawn. 
You can see an example of a document 
with three highlighted elements in fig-
ure 7.1.

 Let’s look at the data structures that 
represent the document in F#. List- 
ing 7.4 introduces a new discriminated 
union to represent the two alternative 
kinds of elements and a new record 
type for text elements. It uses the Rect
type we defined earlier.

Figure 7.1 Sample document that consists of 
three elements; two display text with different  
fonts and one shows an image.
Licensed to   <kr_wilson@hotmail.com>



183Flat document representation
open System.Drawing          

type TextContent =   
   { Text : string 
      Font : Font }

type ScreenElement =                       
   | TextElement   of TextContent * Rect
   | ImageElement of string * Rect              

In this sample, we’re defining two types. First, we define a record type called TextCon-
tent B that represents text and the font that should be used to draw it. The second 
type, called ScreenElement C, is a discriminated union with two alternatives. The first 
alternative stores text content and the second one contains the filename of an image. 
Both also have a Rect to define the bounding box for drawing. Listing 7.5 shows the 
code to represent the sample document from figure 7.1 using our new data types.

let fntText = new Font("Calibri", 12.0f)
let fntHead = new Font("Calibri", 15.0f)  

let elements =                                                           
   [ TextElement
       ({ Text = "Functional Programming for the Real World" 
           Font = fntHead }, 
         { Left = 10.0f; Top = 0.0f; Width = 410.0f; Height = 30.0f });
     ImageElement
       ("cover.jpg", 
         { Left = 120.0f; Top = 30.0f; Width = 150.0f; Height = 200.0f });
     TextElement
        ({ Text = "In this book, we'll introduce you to the essential " +
           "concepts of functional programming, but thanks to the .NET " + 
           "Framework, we won't be limited to theoretical examples. " + 
           "We'll use many of the rich .NET libraries to show how " + 
           "functional programming can be used in the real world."
           Font = fntText }, 
         { Left = 10.0f; Top = 230.0f; Width = 400.0f; Height = 400.0f }) ]

First we define fonts for the two different text elements, then we construct a list con-
taining the elements. When creating elements, we create several F# record type values 
using the syntax discussed earlier. This way of constructing structured documents is a 
bit impractical, and we’ll design a different representation, more suitable for creating 
documents, in section 7.3. Before that, we’ll implement a function to draw a docu-
ment stored using this representation.

7.2.1 Drawing elements

Just like in chapter 4 when we drew a pie chart, we’ll use the standard .NET System. 
Drawing library. The point of this example is to demonstrate that using the previous 
representation, drawing is extremely simple, so the core function in listing 7.6 has 

Listing 7.4 Flat document representation (F#)

Listing 7.5 Sample document represented as a list of elements (F#) 

Contains 
Font classB

C Stores image 
filename

Create fonts for heading 
and for usual text

Create a list of 
ScreenElement values
Licensed to   <kr_wilson@hotmail.com>



184 CHAPTER 7 Designing data-centric programs
only a few lines of code. It iterates over all elements in a list and contains drawing 
code for the two different kinds of elements. 

> let drawElements elements (gr:Graphics) = 
     for p in elements do                            
        match p with
        | TextElement(text, boundingBox) -> 
           let boxf = toRectangleF(boundingBox)                       
           gr.DrawString(text.Text, text.Font, Brushes.Black, boxf)
        | ImageElement(imagePath, boundingBox) ->
           let bmp = new Bitmap(imagePath)         
           let wspace, hspace =                                                      
              boundingBox.Width / 10.0f, boundingBox.Height / 10.0f     
           let rc = toRectangleF(deflate(boundingBox, wspace, hspace))
           gr.DrawImage(bmp, rc);;
val drawElements : seq<ScreenElement> -> Graphics -> unit

The function draws the specified list of elements to the given Graphics object. The type 
of the first parameter is seq<ScreenElement>, which represents any collection contain-
ing values of type ScreenElement. So far we’ve been working with lists, but you’ll see some 
other collections (such as arrays) in chapters 10 and 12. In the code, we only need to 
iterate over the elements in the collection using a for loop B, so the compiler inferred 
the most general type for us. The type seq<'a> corresponds to the generic IEnumera-
ble<T>, so in C# the type of the parameter would be IEnumerable<ScreenElement>.

 The code also uses the functions from the previous section to work with the Rect
values. We use toRectangleF to convert our Rect value to the type that the Draw-
String method needs, and deflate to add space around the image C.

 Our drawing function takes the Graphics object as an argument, so we need some 
way of creating one. As a final step, we’ll write some code to create a form and draw 
the document onto it.

7.2.2 Displaying a drawing on a form

The drawing will be similar to the example from chapter 4. Because the drawing can 
take some time, we’ll create an in-memory bitmap, draw the document there, then 
display the bitmap on a form rather than drawing the document every time the form 
is invalidated. Let’s first look at one very useful functional programming pattern that 
we’ll use in this section.  

Listing 7.6 Drawing document using flat representation (F# Interactive)

B

Converts Rect to 
.NET RectangleF

Loads image

C

The “Hole in the Middle” pattern
One common situation when writing a code is that you perform some initialization, 
then the core part of the function, and then some clean-up at the end. When you re-
peat similar operations in multiple places of the program, the initialization and clean-
up don’t change and only the core part is different. A sample that draws on an in-
memory bitmap written in C# would look like this: 
Licensed to   <kr_wilson@hotmail.com>



185Flat document representation
Listing 7.7 shows an F# implementation of a function similar to the DrawImage from 
the sidebar “The “Hole in the Middle” pattern.” In addition to the two parameters 
that specify the size of the created bitmap, it allows us to specify margins from the bor-
der of the image.

> let drawImage (width:int, height:int) space coreDrawingFunc =
     let bmp = new Bitmap(width, height)
     use gr = Graphics.FromImage(bmp)  
     gr.Clear(Color.White)
     gr.TranslateTransform(space, space)          
     coreDrawingFunc(gr)                    
     bmp
  ;;
val drawImage : int * int -> float32 -> (Graphics -> unit) -> Bitmap  

When we use this function to draw an image, the core part of the drawing will be spec-
ified in a function given as the last argument. The type signature D shows that the func-
tion takes a Graphics as an argument and doesn’t return a result. It’s invoked in the 
middle of the code C after the bitmap and the Graphics object are created. We also call 
TranslateTransform in the initialization phase, to provide padding for the drawing. 

Listing 7.7 Function for drawing images (F# Interactive)

(continued)
var bmp = new Bitmap(width, height)
using(var gr = Graphics.FromImage(bmp)) {
   (...)                                 
}

Here, the core part of the code is the placeholder on the third line of code where we 
would draw using the gr value. The problem is that using only OOP concepts, you 
can’t simply wrap the code that performs the initialization and finalization into a sub-
routine and share it between all the places that do different drawing. The C# language 
supports this pattern for some well-known and often used kinds of initialization and 
cleanup. The using construct is exactly this case. How can we achieve similar things 
for our own code patterns?

In functional programming, the solution is trivial. You can write a higher-order function
and wrap the core part into a lambda function and use it as an argument:

var bmp = DrawImage(width, height, gr => {
      (...)                                 
   });

From a functional point of view, this is an uninteresting example of using a higher-
order function, but the case where we need to perform some initialization followed by 
the core part and then clean-up is very common, so it deserves a special name. The 
name was first used by Brian Hurt in his blog post “The ‘Hole in the Middle’ Pattern” 
[Hurt, 2007]. It nicely describes the fact that only the middle part needs to be filled 
in with a different functionality in every use of the code.

B Shifts all 
drawing

C

D

Licensed to   <kr_wilson@hotmail.com>



186 CHAPTER 7 Designing data-centric programs
 The Graphics object that we’re creating implements IDisposable, so we need to 
dispose it after we finish drawing. In C#, we’d use the well-known using construct. In 
F#, we can do similar things thanks to the use keyword B. In listing 7.7, it’ll automati-
cally dispose of the graphics object before returning the bitmap as a result. The use
keyword works a bit differently than using, and we’ll discuss that in chapter 9.

 Finally we have everything we need to see our code in action. For now, we’ll create 
and test the form interactively. Listing 7.8 shows how to draw the screen elements 
from listing 7.5 and display the document on a form.

> let docImage = drawImage (450, 400) 20.0f (drawElements elements)  
val docImg : Bitmap

> open System.Windows.Forms                                                    
   let main = new Form(Text = "Document", BackgroundImage = docImage,  
                             Width = docImage.Width, Height = docImage.Height)  
  main.Show();;                                                                     

The line where we draw the bitmap B may require explanation. We’re calling drawIm-
age, which takes a function specifying the core part of the drawing as the last argu-
ment. Since we’ve already implemented this in the drawElements function, you might 
expect us to be able to pass it directly as the last argument. However, drawElements has 
two parameters, but drawImage expects a function with only one (the Graphics object 
to draw on). We use a partial function application to specify the list with ScreenEle-
ment values. The result of the partial application is a function that takes a Graphics
object and draws the document, which is exactly what we need (figure 7.2). 

Listing 7.8 Drawing the document using WinForms (F# Interactive)

B

Creates 
form with 
document

Figure 7.2 Sample document 
stored as a list of screen elements, 
drawn using the drawElements 
function on a form.
Licensed to   <kr_wilson@hotmail.com>



187Structured document representation
Our previous representation of the document allowed us to implement drawing easily 
although the code we had to use to create the document was somewhat awkward. In 
functional programming, you’ll often find that different contexts suggest different 
data structures: the desired usage determines the ideal representation to some extent. 
It’s not uncommon for a functional program to have different representations for the 
same information in a single program. Now that we’ve got a suitable form for drawing, 
let’s design one that’s suitable for construction and processing, then write a transfor-
mation function to get from one representation to the other. 

7.3 Structured document representation
The data structure that we’ll design in this section is inspired by the HTML format, the 
familiar and successful language for creating documents. Just like HTML, our repre-
sentation will have several types of content, and it will be possible to nest some parts in 
appropriate ways. Figure 7.3 shows an annotated sample document, which should give 
you an idea of what the format will include.

 There are two different kinds of parts. Simple parts like TextPart and ImagePart
contain content, but can’t contain nested parts. On the other side, TitledPart con-
tains one nested part and adds a title, while SplitPart consists of one or more nested 
parts and specification of an orientation. As you may have guessed, we’ll represent the 
different parts using a discriminated union. Because two of the parts can contain 
nested parts, the type will be recursive. Listing 7.9 shows the type declaration, giving 
us something more concrete to discuss in detail.

Figure 7.3 Four different kinds of parts 
available in our document format: 
TitledPart adds a title to another part, 
and using SplitPart, we can create 
columns and rows. TextPart and 
ImagePart specify the actual content.
Licensed to   <kr_wilson@hotmail.com>



188 CHAPTER 7 Designing data-centric programs
type Orientation =  
   | Vertical
   | Horizontal

type DocumentPart =                                       
   | SplitPart   of Orientation * list<DocumentPart>       
   | TitledPart of TextContent * DocumentPart       
   | TextPart    of TextContent
   | ImagePart   of string         

The transcription of our informal specification from the previous paragraph to F# 
code is very straightforward. This is definitely one of the most attractive aspects of the 
standard F# type declarations. We first declare a simple discriminated union with two 
options to represent an orientation for split parts B and then declare the Document-
Part type C with four alternative options. 

 Two of the options recursively contain other document parts. SplitPart contains 
several other parts in a list and an orientation to determine how the area should be 
divided; TitledPart consists of a single other part and a title to decorate it with. The 
text is stored using the TextContent type from the previous section, which is a record 
containing a string, together with a font.

 The DocumentPart type represents the document as a whole. Because the type is 
recursive, we can nest any number of content parts inside a single document part. 
This is different from the previous approach, where we created a type for an element 
and then represented the document as a list of elements. In that representation, the 
list served as a “root” of the data structure and the elements weren’t further nested. 
Using the new data types, we can write the document from section 7.2 like this:

let doc = 
   TitledPart({ Text = "Functional Programming for the Real World"; 
                Font = fntHead }, 
      SplitPart(Vertical, 
         [ ImagePart("cover.jpg");
           TextPart({ Text = "..."; Font = fntText }) ]
      )
   )

We omitted the content of the TextPart located below the image, but you can still see 
that the representation is terser, because we don’t need to calculate bounding rectan-
gles ourselves. However, we don’t have an implementation of drawing for this data 
type. We aren’t going to write one, either—why would we, when we’ve already got a 
perfectly good drawing function for the earlier representation? All we need to do is 
provide a translation from the “designed for construction” form to the “designed for 
drawing” one.

7.3.1 Converting representations

Two key differences exist between the data types that we’ve just implemented: 

Listing 7.9 Hierarchical document representation (F#)

B

C Contains other parts 
in columns or rows

Represents part 
with a titleStores primitive 

content
Licensed to   <kr_wilson@hotmail.com>



189Structured document representation
1 In the new representation, the document is a single (recursive) value, while in 
the first case it’s a list of elements.

2 The data type from section 7.2 explicitly contains the bounding boxes specify-
ing the location of the content. 

3 The second data type, which only indicates how the parts are nested. 

This means that when we translate the representation, we’ll need to calculate each 
location based on the nesting of the parts.

 These differences affect the signature of the translation function looks, so let’s 
analyze that before we study the implementation:

val documentToScreen : DocumentPart * Rect -> ScreenElement list

The function takes the part of the document to translate as the first argument and 
returns a list of ScreenElement values from section 7.2. This means that both the 
input argument and the result can represent the whole document. The function has 
also a second argument, which specifies the bounding rectangle of the whole docu-
ment. During the translation, we’ll need it to calculate positions of the individual 
parts. Listing 7.10 shows the implementation, which is (not surprisingly) a recur- 
sive function.

let rec documentToScreen(doc, bounds) = 
   match doc with
   | SplitPart(Horizontal, parts) ->                        
      let width = bounds.Width / (float32(parts.Length))       
      parts 
         |> List.mapi (fun i part ->                                          
               let left = bounds.Left + float32(i) * width                 
               let bounds = { bounds with Left = left; Width = width }
               documentToScreen(part, bounds))                             
         |> List.concat                            

   | SplitPart(Vertical, parts) ->                            
      let height = bounds.Height / float32(parts.Length)
      parts 
         |> List.mapi (fun i part -> 
               let top = bounds.Top + float32(i) * height                
               let bounds  = { bounds with Top = top; Height = height }
               documentToScreen(part, bounds))                            
         |> List.concat

   | TitledPart(tx, content) ->                           
      let titleBounds = { bounds with Height = 35.0f }
      let restBounds  =  { bounds with Height = bounds.Height - 35.0f;
                                                  Top = bounds.Top + 35.0f }
      let convertedBody = documentToScreen(content, restBounds)  
      TextElement(tx, titleBounds)::convertedBody

   | TextPart(tx)  -> [ TextElement(tx, bounds) ]  
   | ImagePart(im) -> [ ImageElement(im, bounds) ]  

Listing 7.10 Translation between document representations (F#)

B Calculates size of 
individual parts

C

D

E
Calculates 
bounding 

 box of row

Processes 
element 
recursivelyF

Translates 
body, 
appends 
titleG
Licensed to   <kr_wilson@hotmail.com>



190 CHAPTER 7 Designing data-centric programs
Let’s start from the end of the code. It’s easy to process parts that represent content G
because we only return a list containing a single screen element. We can use the rect-
angle that we’ve been provided as an argument to indicate the position and size. No 
further calculation is required.

 The remaining parts are composed from other parts. In this case, the function 
calls itself recursively to process all the subparts that form the larger part. This is 
where we have to perform layout calculations, because when we call documentTo-
Screen again, we give it a subpart and the bounding box for the subpart. We can’t 
copy the bounds parameter, or all the subparts would end up in the same place! 
Instead we have to divide the rectangle we’ve been given into smaller rectangles, one 
for each subpart.

 TitledPart F contains a single subpart, so we need to perform one recursive 
call. Before that, we calculate one bounding box for the title (35 pixels at the top) 
and one for the body (everything except the top 35 pixels). Next, we process the 
body recursively and append a TextElement representing the title to the returned list 
of screen elements.

 We process a SplitPart using a separate branch for each of the orienta- 
tions (B, E). We calculate the size of each column or row and convert all its parts. 
We use the List.mapi function C, which is just like List.map, but it also gives us an 
index of the part that we’re currently processing. We can use the index to calculate 
the offset of the smaller bounding rectangle from the left or from the top of the 
main rectangle. The lambda function then calls documentToScreen recursively and 
returns a list of screen elements for every document part. This means that we get a 
list of lists as the result of the projection using List.mapi. The type of the result is 
list<list<ScreenElement>> rather than the flat list we need to return, so we use 
the standard F# library function List.concat D, which turns the result into a value 
of type list<ScreenElement>.

NOTE The translation between different representations of the document is the 
most difficult part of this chapter, so you may want to download the 
source code and experiment with it to see how it works. The most inter-
esting (and difficult) part is calculating the bounding rectangle for each 
recursive call. It’s worth making sure you understand the list returned by 
the function and how it’s built from each of the deep recursive calls. You 
may find it useful to work through an example with a pencil and paper, 
keeping track of the bounding rectangles and the returned screen ele-
ments as you go.

Translation between representations is often the key to the simplicity of a functional 
program, as it allows us to implement each of the other operations using the most 
appropriate data structure for the situation. We’ve seen that the first representation is 
perfect for drawing the document but that the second makes construction simpler. 
The second form also makes manipulation easier, as we’ll see in section 7.4. Before 
that, we’ll introduce one more representation: XML.
Licensed to   <kr_wilson@hotmail.com>



191Structured document representation
7.3.2 XML document representation

The XML format is very popular and is a perfect fit for storing hierarchical data such 
as our document from the previous section. Working with XML is important for many 
real-world applications, so in this section we’ll extend our application to support load-
ing documents from XML files. We’ll use the .NET 3.5 LINQ to XML API to do most of 
the hard work—there’s no point in writing yet another XML parser. LINQ to XML is a 
good example of how functional concepts are being used in mainstream frameworks: 
although it isn’t a purely functional API (the types are generally mutable), it allows 
objects to be constructed in a recursive and declarative form. This can make the struc-
ture immediately apparent from the code, so it’s much easier to read than typical code 
using the DOM API.

 In some sense, this is another translation from one representation of the data into 
another. In this case the source representation is a structure of LINQ to XML objects, 
and the target is our document data type from section 7.3.1. The translation is a lot 
easier this time because both of the data structures are hierarchical. Listing 7.11 dem-
onstrates the XML-based format that we’ll use for representing our documents.

<titled title="Functional Programming for the Real World" 
           font="Cambria" size="18" style="bold">
   <split orientation="vertical">
      <image filename="C:\Writing\Functional\Cover.jpg" />
      <text>In this book, we'll introduce you (...)</text>    
   </split>
</titled>

Before looking at the core part of the translation, we need to implement some utility 
functions that parse the attribute values shown in the XML. In particular, we need a 
function for parsing a font name and the orientation of the SplitPart. Listing 7.12 
shows these functions and introduces several objects from the LINQ to XML library.

open System.Xml.Linq

let attr(node:XElement, name, defaultValue) =  
   let attr = node.Attribute(XName.Get(name))
   if (attr <> null) then attr.Value else defaultValue  

let parseOrientation(node) =                   
   match attr(node, "orientation", "") with
   | "horizontal" -> Horizontal
   | "vertical" -> Vertical
   | _ -> failwith "Unknown orientation!"  

let parseFont(node) =                    
   let style = attr(node, "style", "")
   let style = 
      match style.Contains("bold"), style.Contains("italic") with 

Listing 7.11 XML representation of a sample document (XML)

Listing 7.12 Parsing font and orientation using LINQ to XML (F#)

Stores subparts as 
nested XML elements

B Returns default 
value if missing

C

Throws 
exception

D

Licensed to   <kr_wilson@hotmail.com>



192 CHAPTER 7 Designing data-centric programs
      | true,  false  -> FontStyle.Bold
      | false, true   -> FontStyle.Italic
      | true,  true   -> FontStyle.Bold ||| FontStyle.Italic  
      | false, false -> FontStyle.Regular
   let name = attr(node, "font", "Calibri")
   new Font(name, float32(attr(node, "size", "12")), style)

This code will only work with a reference to System.Xml.dll and System.Xml.Linq.dll
assemblies. In Visual Studio, you can use the usual Add Reference command from 
Solution Explorer. In F# Interactive you can use the #r "(...)" directive and specify 
the path to the assembly as the argument, or just the assembly name if it’s in the 
Global Assembly Cache (GAC).

 The listing starts with the attr function B that we use for reading attributes. It 
takes an XElement (the LINQ to XML type representing an XML element) as the first 
argument and then the name of the attribute. The final parameter is the default value 
to use when the attribute is missing. The next function C uses attr to read the value 
of the orientation attribute of an XML node that’s passed into it. If the attribute con-
tains an unexpected value, the function throws an exception using the standard F# 
function failwith.

 parseFont D is used to turn attributes of an XML tag like title in listing 7.11 into 
a .NET Font object. The most interesting part is the way that we parse the style attri-
bute. It tests whether the attribute value contains two strings (“bold” and “italic”) as 
substrings and then uses pattern matching to specify a style for each of the four possi-
bilities. The function also converts a string representation of the size into a number 
using the float32 conversion function and creates an instance of the Font.

 Now that we have all the utility functions we need, loading the XML document is 
quite easy. Listing 7.13 shows a recursive function loadPart, which performs the com-
plete translation.

let rec loadPart(node:XElement) =
   match node.Name.LocalName with  
   | "titled" ->
      let tx = { Text = attr(node, "title", ""); Font = parseFont node}
      let body = loadPart(Seq.head(node.Elements()))        
      TitledPart(tx, body)
   | "split"  ->
      let orient = parseOrientation node
      let nodes = node.Elements() |> List.ofSeq |> List.map loadPart  
      SplitPart(orient, nodes) 
   | "text"   ->
      TextPart({Text = node.Value; Font = parseFont node})
   | "image"  ->
      ImagePart(attr(node, "filename", ""))
   | name -> failwith("Unknown node: " + name)  

The function takes an XML element as an argument, and we’ll give it the root element
of the XML document when we use it later. Its body is a single match construct B that 

Listing 7.13 Loading document parts from XML (F#)

Combines two 
options of .NET 
enumeration

B

Recursively loads 
first child element

Recursively 
loads all 
children

C

Licensed to   <kr_wilson@hotmail.com>



193Structured document representation
tests the name of the element against the known options and throws an exception if it 
encounters an unknown tag C.

 Loading image and text parts is easy because we only need to read their attributes 
using our utility functions and create appropriate DocumentPart values. The remain-
ing two document part types involve recursion, so they’re more interesting. 

 To create a TitledPart from a titled element, we first parse the attributes for the 
title text, then recursively process the first XML element inside the part. To read the 
first child element, we call the Elements() method, which returns all the child ele-
ments as a .NET IEnumerable collection. IEnumerable<T> is abbreviated as seq<'a> in 
F#, and we can work with it using functions from the Seq module that are similar to 
functions for working with lists. In our example, we use Seq.head, which returns the 
first element (the head) of the collection. If we were writing this code in C#, we could 
call Elements().First() to achieve the same effect.

 To create a SplitPart from a split element, we need to parse all the children, so 
again we call the Elements() method, but this time we convert the result to a func-
tional list of XElement values. We recursively translate each one into a DocumentPart
value using a projection with the loadPart function as an argument. 

 The function is very straightforward because it provides a few lines of code that 
parse the XML node for each of the supported tags. A lot of the simplicity is due to the 
fact that the XML document is hierarchical in the same way as the target representa-
tion. This lets us use recursion when a part has nested subparts. 

 We can finally see how the application displays a larger document: designing the 
document in an XML editor is easier than creating values in F#. Listing 7.14 shows the 
final piece of plumbing used to combine all the code that we’ve developed so far into 
a normal Windows Forms application.

open System.Windows.Forms

[<System.STAThread>]
do
   let doc = loadPart(XDocument.Load(@"..\..\document.xml").Root)
   let bounds = { Left = 0.0f; Top = 0.0f; Width = 520.0f; Height = 630.0f } 
   let parts = documentToScreen(doc, bounds)
   let img = drawImage (570, 680) 25.0f (drawElements parts)
   let main = new Form(Text = "Document", BackgroundImage = img,
                               ClientSize = Size(570, 680))
   Application.Run(main)

The code starts by loading the document from an XML file using the XDocument class. 
We pass the document’s root element to our loadPart function, which converts it into 
the hierarchical document representation. Next, we convert this into the flat repre-
sentation using documentToScreen, then draw and display the document using the 
code we saw in listing 7.8. We’ve also added the STAThread attribute, which is needed 
for a standalone Windows Forms application. The final line starts the application with 
the Application.Run method. Figure 7.4 shows the result.

Listing 7.14 Putting the parts of the application together (F#)
Licensed to   <kr_wilson@hotmail.com>



194 CHAPTER 7 Designing data-centric programs
We mentioned that the hierarchical representation is useful for manipulating the doc-
ument as well as performing the initial construction. Let’s take a look at that now. 

7.4 Writing operations
There are many kinds of operations that we could perform with a document. We 
could capitalize all the titles in the document or merge text in multiple columns into 
a single column. All these operations have something in common, and you may see a 
similarity between them and the map operation from the previous chapter. Just like 
mappings, each of these operations examines the document, performs some transfor-
mation with certain parts of it, and returns a new document.

 Another kind of operation would return only a single value of a different type. We 
could implement a function to count the words in the document or return all the doc-
ument text as a single string. This should sound familiar: the fold function from sec-
tion 6.7.3 does the same job, but working with lists instead of documents.

Figure 7.4 Finished 
application displaying a 
more complex 
document with all four 
kinds of document parts
Licensed to   <kr_wilson@hotmail.com>



195Writing operations
 As you learned in the previous chapter, writing a separate function for each opera-
tion would be impractical, and we can get better results if we write a single higher-order 
function that can be reused for different purposes. We’ll start by implementing the 
function discussed in the first paragraph: the one reminiscent of the map operation.

7.4.1 Updating using a map operation

Even though the operation is similar to map, we need to make an important design 
choice about the implementation. The split part can recursively contain more than 
one part, so the document structure is a tree. We need to decide in which order we 
want to process the nodes:

1 Start from the root part and recursively call the map operation on all its nested 
parts. 

2 Start from leafs and process the most deeply nested parts first, then return to 
parts that contain them.

When processing lists, the order doesn’t matter, but for tree structures it’s quite 
important. Imagine that we had a document containing one vertical split part contain-
ing two horizontal split parts with text. What would happen if we run the mapping 
function for merging split parts that contain only text?

■ If we start from the root part, we’d call the merging function on the vertical 
split part. The function wouldn’t be able to merge the columns, because each 
of them contains another split part. Then it would recursively process both of 
the horizontal split parts. These contain only text parts, so the function would 
merge them. As a result we’d get document with two rows of text.

■ If we start from leafs, we first call the function on the primitive text parts that 
would remain unchanged. Next it would process both of the horizontal split 
parts. Each of them contains only text, so the function would merge it. Finally, 
we’d call it on the root vertical split part, which now contains only two text 
parts. As a result we’d get only a single text part. 

The second behavior is more desirable, because we merged all parts containing only 
text. For the implementation, it means that we’ll first recursively process all subparts 
of the given part and after that run the processing function specified by the user. 

 Now that we know how the function should work, let’s look at how the user will call 
it. When thinking about higher-order functions, one of the first aspects to consider is 
the type. Here’s the signature of the function we’re going to implement compared with 
a function for processing lists (we’re using DP as an abbreviation for DocumentPart):

List.map      : ('a -> 'b) -> list<'a> -> list<'b>
mapDocument : (DP -> DP) -> DP          -> DP

There’s an interesting difference between these two functions. In lists, the function 
specified as the first parameter processes a single element of a list. The second param-
eter and the result are both lists of elements. In documents, we don’t distinguish 
between a single part and the whole document. The processing function specified as 
Licensed to   <kr_wilson@hotmail.com>



196 CHAPTER 7 Designing data-centric programs
the first parameter will usually work with only the root part of the input it gets, and it 
won’t process the nested parts recursively. The mapDocument function complements 
the function for processing a single part with code that recursively traverses the docu-
ment tree. As a result we’ll recursively process the whole document using the function 
for transforming single document part. See listing 7.15.

let rec mapDocument f docPart = 
   let processed = 
      match docPart with              
      | TitledPart(tx, content) ->
         TitledPart(tx, mapDocument f content)  
      | SplitPart(orientation, parts) ->
         let mappedParts = parts |> List.map (mapDocument f)  
         SplitPart(orientation, mappedParts)
      | _ -> docPart
    f(processed)                                     

As you recall, the function first recursively processes each subpart of the current part 
and after that runs the specified processing function. The recursive processing is quite 
simple. We use pattern matching to handle the two kinds of parts that contain chil-
dren. For a titled part B, we process the body and return a new TitledPart with the 
original title. For a split part C, we use List.map to obtain a new version of each of 
the columns or rows, and use the result to construct a new SplitPart. Once we have 
the recursively processed part, we give it as an argument to the specified processing 
function and return the result.

 Now that we have a higher-order function, let’s look at how to use it for merging of 
text elements. This would be useful in an adaptive document layout: on a wide screen 
we want to view several columns, but on a narrow screen a single column is more 
readable. Listing 7.16 shows how to shrink a split part containing only text into a sin-
gle part. 

let isText(part) =                                             
   match part with | TextPart(_) -> true | _ -> false  

let shrinkDocument part =
   match part with
   | SplitPart(_, parts) when List.forall isText parts ->  
      let res = 
         List.fold (fun st (TextPart(tx)) ->  
            { Text = st.Text + " " + tx.Text                  
               Font = tx.Font } ) 
            { Text = ""; Font = null } parts  
      TextPart(res)
   | part -> part  

let doc = loadPart(XDocument.Load(@"C:\...\document.xml").Root)
let shrinkedDoc = doc |> mapDocument shrinkDocument

Listing 7.15 map operation for documents (F#)

Listing 7.16 Shrinking split part containing text (F#)

Processes nested 
parts recursively

B

C

Runs specified 
function

Tests whether 
part is a TextPart

B

C
Concatenates 
text, returns font

Starts with empty 
string and null font

Ignores other cases
Licensed to   <kr_wilson@hotmail.com>



197Writing operations
In the processing function, we need to check whether the given part is a SplitPart
containing only text parts. The first condition can be checked directly using pattern 
matching, and the second one is specified in a when clause of the pattern. We write a 
utility function isText that tests whether a part is a TextPart and then use it from 
List.forall to test whether all parts fulfill the condition B.

 Next, we use fold to aggregate all the parts in the list into a single part. We already 
know that each subpart is a TextPart, so we can use it directly as a pattern when we 
write the lambda function to aggregate the result C. The compiler can’t verify that 
this is correct, so it gives a warning. You should be always careful when you spot a 
warning, but in this case we can safely ignore it. In larger projects where you want to 
eliminate all compiler warnings, you’d probably rewrite the code using the match con-
struct and call the failwith function in the unreachable branch. The aggregation 
uses the TextContent type as the state and specifies an initial value with no text con-
tent and unset font. During every step, we concatenate the existing string with the 
value in the current part, and use the current font. We don’t process fonts in a sophis-
ticated manner, so we’ll end up with the font used by the last part.

 You can see the final result of this operation in figure 7.5.

Figure 7.5 Original and updated 
document; in the new document, 
split parts that contain only text are 
merged into a single text part.
Licensed to   <kr_wilson@hotmail.com>



198 CHAPTER 7 Designing data-centric programs
We mentioned earlier that this map-like operation is one of several useful operations 
that we can provide for our documents. In the next section, we’ll look at another one, 
which aggregates the document into a single value.

7.4.2 Calculating using an aggregate operation

The idea behind aggregation is that we maintain some state that will be passed around 
over the course of the operation. We start with an initial state and calculate a new one 
using the given processing function for each part in the document. This idea is 
reflected in the signature of the function:

val aggregateDocument : 
    ('a -> DocumentPart -> 'a) -> 'a -> DocumentPart -> 'a

The reason we’ve used the broad notion of “some state” is that the state can be any-
thing. The type of the state in the function signature is a type parameter 'a, so it 
depends on the user of the function. The last two arguments of the function specify a 
document part to process (which also represents the whole document) and an initial 
value of the state. The first argument of aggregateDocument is a function for process-
ing document parts. It calculates the new state based on the old state and a single doc-
ument part. Listing 7.17 shows the complete (and perhaps surprisingly brief) 
implementation.

let rec aggregateDocument f state docPart = 
   let state = f state docPart                    
   match docPart with 
   | TitledPart(_, part) ->
      aggregateDocument f state part  
   | SplitPart(_, parts) ->
      List.fold (aggregateDocument f) state parts  
   | _ -> state

The code needs to walk over all the parts in the document. It calls the function on the 
current part and then recursively processes all subparts. The ordering is relevant here: 
we could have designed the function to process all the subparts first and then the cur-
rent part. The difference is that in listing 7.17, the function is called on the “root” 
node of the tree, while in the other case it would first be called on the “leaf” nodes. 
For our purposes, both options would work fine, but for some advanced processing 
we’d have to consider what kind of traversal we wanted. 

 When we call the aggregation function with the current part B, we use the same 
name for the value to hold the new state. The new value hides the old one, and in this 
case that’s a useful safety measure: it means we can’t accidentally use the old state by 
mistake after we’ve computed the new state. Next, we process the parts that can con-
tain subparts. For a titled part, we recursively process the body C. When we get a split 
with a list of subparts, we aggregate it using normal aggregation on lists with the 
List.fold function D.

Listing 7.17 Aggregation of document parts (F#)

B

C

D

Licensed to   <kr_wilson@hotmail.com>



199Object-oriented representations
 Aggregation can be useful for a variety of things. The following snippet shows how 
to use this operation for counting a number of words in the whole document: 

let totalWords =
   aggregateDocument (fun count part -> 
      match part with
      | TextPart(tx) | TitledPart(tx, _) ->  
         count + tx.Text.Split(' ').Length
      | _ -> count) 0 doc

The function that we use as an argument only cares about parts that contain text. We 
have two parts like this, and both contain the text as a value of type TextContent. F# 
pattern matching allows us to handle both cases using only a single pattern. This syn-
tax is called an or-pattern, and it can be used only when both patterns bind value to 
the same identifiers with the same type. In our case, we only need a single identifier 
(tx) of type TextContent. In the body for the pattern matching, we split the text into 
words using a space as the separator and add the length of the returned array to the 
total count.

NOTE Here are a few ideas that you’ll find solved on the book’s website, http: 
//www.functional-programming.net or http://www.manning.com/ 
Real-WorldFunctionalProgramming. 

■ You can use mapDocument to split text parts with more than 500 characters 
into two columns. 

■ You can use aggregation to collect a list of images used in the document. 
■ You can implement a filter-like operation that takes a function of type (Doc-

umentPart -> bool) and creates a document containing only parts for which 
the function returns true. Using this function, you can remove all the 
images from a document.

We’ve seen that the second representation is convenient for various operations with 
the document, especially if we implement useful higher-order functions first. Now 
we’ll get back to C#. We’ll discuss which of the ideas that we’ve just seen are applicable 
to C# programming and also how they relate to well-known concepts in OOP. 

7.5 Object-oriented representations
Standard design patterns are divided into three groups: creational, structural, and 
behavioral. In this section we’ll look at a few patterns from the last two groups and 
we’ll see that they’re similar to some constructs that we used in F# earlier in this chap-
ter. The functional version of the patterns won’t be the same as object-oriented, 
because OOP puts more emphasis on adding new types and FP puts more emphasis on 
adding new functionality, but the structure will be very similar. 

TIP This section assumes that you know a bit about some of the design pat-
terns. You can find links to introductory articles on the book’s website. 
We don’t have space to show all the data structures in C#, but you can 
find the full implementation online.

Processes both parts 
containing text
Licensed to   <kr_wilson@hotmail.com>

http://www.functional-programming.net
http://www.functional-programming.net
http://www.manning.com/Real-WorldFunctionalProgramming
http://www.manning.com/Real-WorldFunctionalProgramming


200 CHAPTER 7 Designing data-centric programs
We’ll start by discussing two structural patterns, and later we’ll look at one behavioral. 

7.5.1 Representing data with structural patterns

If we talk about programs in terms of data structures instead of objects, we can say 
that structural patterns describe common and proven ways to design data structures. 
Design patterns are more concrete and specify how to implement these structures in 
object-oriented languages using objects. In this chapter, we’ve seen functional ways 
to represent data. In the first representation we used a simple list of records, which 
is easy to write in any language, but the second representation (using a discrimi-
nated union) is more interesting. The first related pattern that we’ll look at is the 
composite pattern.
THE COMPOSITE DESIGN PATTERN

The composite pattern allows us to compose several objects into a single composed 
object and work with it in the same way as we do with primitive objects. Figure 7.6 
shows the usual object-oriented way to implement this pattern.

 The composed object is represented by the Composite class. The program then 
works with objects using the AbstractComponent class, so it doesn’t need to under-
stand the difference between primitive and composed objects. You can also see an 
example of a virtual method, which is called Operation. In the CompositeComponent
class, it iterates over all objects from the components collection and invokes the Oper-
ation method on them. You can find a similar case in our document representation. 
When a part is split into multiple columns or rows using SplitPart, we treat it as an 
ordinary document part in exactly the same way as other parts. The part is composed 
from other parts that are stored in a list. We can rewrite the general example from fig-
ure 7.6 in the same way using the recursive discriminated union type in F#:

type AbstractComponent
  | CompositeComponent of list<AbstractComponent> 
  | ConcreteComponent of (...)
  | (...)                                

In this example, the composite value is represented as one of the alternatives besides 
other primitive components. It recursively refers to the AbstractComponent type and 
stores values of this type in a list representing the composed object. When working 

Operation()

AbstractComponent

Operation()

CompositeComponent
components

Operation()

ConcreteComponent parent

1

child

0..*

Figure 7.6  
CompositeComponent is a 
class that contains a collection 
of other components; it inherits 
from AbstractComponent,  
so it can be used in place of 
primitive components in the 
same way as other components, 
such as ConcreteComponent.
Licensed to   <kr_wilson@hotmail.com>



201Object-oriented representations
with values of the AbstractComponent type, we don’t need to treat composed and 
primitive values separately, which is the primary aim of this design pattern.

 In functional programming the composition is the public aspect of the type. As a 
result, any user of the type knows there’s a component created by composition and 
can use this fact when writing primitive processing functions, as we did when imple-
menting the mapDocument operation. 

 When using functional data structures, the focus is on the ability to add new func-
tionality to existing types, so making the composition public is a valid design decision. 
This means that the functional version of the code also doesn’t need to define the 
Operation method, which was part of the AbstractComponent type in the object-ori-
ented representation. Any operation that uses the type can be implemented indepen-
dently of the type as a processing function. 

 F# has an advanced feature called active patterns that allows us to encapsulate the 
composition to some extent. This enables us to publicly expose the composition, but 
not the whole discriminated union type, which can be useful for evolving F# libraries. 
We don’t discuss details of this feature in the book, but you’ll find more information 
on the book’s website.
THE DECORATOR DESIGN PATTERN

Another pattern that’s closely related to composite is the decorator pattern. The goal of 
this pattern is to allow us to add a new behavior to an existing class at runtime. As you 
can see in figure 7.7, the structure looks similar to the composite pattern.

 The patterns look similar but their purposes are completely different. While the 
composite pattern allows us to treat composed values in the same way as primitive val-
ues, the purpose of the decorator pattern is to add a new feature to the existing 
object. As you can see, the DecoratedComponent class in figure 7.7 wraps a single other 
component that’s decorated and can carry additional state (such as the decoration
field). The decorated component can also add behavior that uses the additional state 
in the Operation method. 

 Again we can see a correspondence between this pattern and one of the parts in 
our document representation. The part that adds some decoration to another part in 
our application is TitledPart. The decoration is the title, and the added state is the 

Operation()

AbstractComponent

Operation()

DecoratedComponent
component
decoration

Operation()

ConcreteComponent

1

1

Figure 7.7  
The DecoratedComponent class 
wraps a component and adds a new 
state to it; the Operation method in 
the decorated component calls the 
wrapped functionality and adds a new 
behavior that uses the state of the 
decorated component.
Licensed to   <kr_wilson@hotmail.com>



202 CHAPTER 7 Designing data-centric programs
text and font of the title. The F# type that represents the same structure as the one 
illustrated in figure 7.7 is similarly simple as in case of the composite pattern:

type AbstractComponent =
    | DecoratedComponent of AbstractComponent * (...)    
    | ConcreteComponent of (...)
    | (...)                                              

In this case, the data carried by the decorator alternative is a single decorated compo-
nent (instead of a list of components in the case of composite) and also the additional 
state, which can vary between different decorators. We symbolized this using (...)
syntax in the previous listing, but this is only pseudo-code. In real F# code you would 
specify the type of the actual state here, such as TextContent in our titled part. Just as 
with the composite pattern, the code that implements operations on the decorated 
component is located in the processing functions that we implement for our data 
structure. The code for the DecoratedComponent case in the processing function 
would call itself recursively to process the wrapped component and execute the behav-
ior added by the decorator, such as drawing a title of the document part.

 The F# implementation of both of the patterns in this section relied on using a 
recursive discriminated union type. In the next section, we’ll work with it again, but in 
a different way. We’ll look at the object-oriented way for adding new operations to 
existing data types. 

7.5.2 Adding functions using the visitor pattern

Adding new operations to an existing data structure is the primary way of implement-
ing any code that works with data in a functional language. In object-oriented lan-
guages, this is more difficult to do, but it’s also needed less frequently. In this section 
we’ll talk about the visitor pattern that’s designed for this purpose, and we’ll sketch 
how we could use it to add operations to our representation of document. Figure 7.8 
shows the basic classes that we’ll use in this section.

VisitSplitPart()
VisitTitledPart()
VisitImagePart()
VisitTextPart()

DocumentVisitor<T>

CountWords : DocumentVisitor<int>

Accept<T>()

DocumentPart

Accept<T>()

ImagePart
Url

Accept<T>()

SplitPart
Parts
Orientation

Accept<T>()

TextPart
Text

Accept<T>()

TitledPart
Body
Text

Figure 7.8 A class hierarchy that 
represents a document and a 
generic visitor class with state as a 
generic type parameter (T); all 
parts support the visitor via the 
Accept method.
Licensed to   <kr_wilson@hotmail.com>



203Object-oriented representations
The hierarchy of classes that inherit from an abstract class DocumentPart is a usual way 
to represent alternatives in OOP, and it corresponds to the discriminated union type 
that we’ve used in F#. 

 The main class of the visitor pattern is a generic DocumentVisitor<T> class. 
We’re using a variant of the pattern that allows working with state, so the type 
parameter T represents the kind of state we need to maintain, such as arguments or 
the result of some computation performed by the visitor pattern. The pattern also 
requires adding a virtual Accept method and implementing it in each of the derived 
classes. The method takes the visitor pattern as an argument and calls its appropri-
ate Visit method, depending on which part it is. You can find the complete source 
code at the book’s website, but let’s look at the code of the Accept method 
in ImagePart:

public override T Accept<T>(DocumentPartVisitor<T> visitor, T state) {
   return visitor.VisitImagePart(this, state);
}

The method only delegates the processing to the visitor object. Because it’s imple-
mented in every derived class, it can call VisitImagePart, whose argument is a con-
crete class (in this case ImagePart). This means that when we implement a concrete 
visitor, we’ll have an easy and type-safe way to access properties of the different types 
that represent the document.

 Listing 7.18 shows how we can add an operation that counts words in the docu-
ment to the object-oriented representation using the visitor pattern.

class CountWords : DocumentPartVisitor<int> {
   public override int VisitTitledPart(TitledPart p, int state) {
      return p.Text.Text.Split(' ').Length + 
             p.Body.Accept(this, state);                                       
   }
   public override int VisitSplitPart(SplitPart p, int state) {
      return p.Parts.Aggregate(state, (n, p) =>                      
                p.Accept(this, n));                             
   }
   public override int VisitTextPart(TextPart p, int state) {
      return p.Text.Text.Split(' ').Length + state;
   }
   public override int VisitImagePart(ImagePart p, int state) {
      return state;
   }
}

This code corresponds to writing a recursive F# function that uses pattern matching to 
test which of the parts we’re currently processing. In an object-oriented way, this 
choice is done in the Accept methods from the visitor pattern. The CountWords class 
inherits from the visitor and uses a single int value as the state. Methods that process 
different types of document parts add the number of words to the current state, and 
there are two methods (B, C) that have to recursively invoke the visitor on certain 

Listing 7.18 Counting words in the document using the visitor pattern (C#)

Recursively 
counts 
words of 
body

B

Aggregates 
count over 
all subparts

Counts words 
in each partC
Licensed to   <kr_wilson@hotmail.com>



204 CHAPTER 7 Designing data-centric programs
subparts. The invocation is done by calling the Accept method on the subpart, similar 
to the code that we need to run the processing on the entire document:

int count = doc.Accept(new CountWords(), 0);

Here we call the Accept method and give it a new instance of the visitor as an argu-
ment. If we wanted to add another operation, we’d implement a new class similarly as 
CountWords and execute it by giving it as an argument to the Accept method. 

7.6 Summary
Working with data and designing data structures in a way that matches how we want to 
use the data is an important part of functional program design. In this chapter, we 
completed our toolset of basic functional data types by looking at the F# record type. 
We used records, lists, and recursive discriminated unions together to design and 
implement an application for working with documents.

 Functional programs often use multiple representations of data during processing, 
and our application provided an example of this. One representation (a flat list of ele-
ments) allowed us to draw the document simply, whereas another (a hierarchy of 
parts) proved more useful for constructing and manipulating documents. We imple-
mented a translation between these two representations, so the application could read 
the document from an XML file, process it in the hierarchical form, and then draw it 
using the flat form.

 We also looked at design patterns that you’d probably use if you wanted to imple-
ment the same problem in C#. In particular, you saw that the composite and decora-
tor patterns correspond closely with the alternative values we used in the document 
data structure. Finally, we discussed a C# way to add a new “function” for processing 
an existing data structure using the visitor pattern.

 This chapter was primarily about data-centric programs, where we design the data 
structures first. There are also programs primarily concerned with behavior. Of 
course, in more complex applications these two approaches are combined. In the 
next chapter, we’ll turn our attention to behavior-centric applications.
Licensed to   <kr_wilson@hotmail.com>



Designing 
 behavior-centric programs
In chapter 7, we discussed data-centric applications, and you learned that the first 
step to designing functional programs is to define the relevant data structures. 
There are also cases where the data structure contains some form of behavior. One 
case might be a command that the user can invoke or tasks that the program exe-
cutes at some point. Instead of hard-coding every behavioral feature, we want to 
work with them uniformly, so we need to keep them in a data structure that can be 
easily modified, either before the compilation or at runtime.

 An example of a behavior-centric application that we discussed in chapter 7 is 
one that processes images using graphical filters. The application needs to store 
the filters and add or remove them depending on what filters you want to apply. 
When representing this in the program, we could use a list for the actual collection

This chapter covers
■ Representing behaviors as functions
■ Extending program behavior
■ Working with functions and closures
■ Testing clients using decision trees
205

Licensed to   <kr_wilson@hotmail.com>



206 CHAPTER 8 Designing behavior-centric programs
of filters to apply; the harder question is what data structure we should use to repre-
sent the filters themselves. Clearly, a filter isn’t really data, although it may be parame-
terized in some fashion. Instead, it denotes behavior, and the simplest way for 
representing behavior in a functional language is to use a function. 

 As you learned in chapter 5, functions can be treated as values, so we can work with 
them as with any other data types. This means that a list of functions is a perfectly rea-
sonable data structure for representing graphical filters. The difference between 
behavior-centric and data-centric is more conceptual than technical. Understanding 
what kind of application you’re designing is a helpful hint for creating a proper 
design. If any of the following is true for your application, you’re probably designing 
behavior-centric application:

■ You don’t (and can’t) know the exact set of required features in advance.
■ The user or the programmer should be able to add new behaviors easily.
■ The program can be extended using external add-ins.
■ The user can create tasks by composing simple features.

The design of functional data-centric applications from the previous chapters relied 
heavily on functional data types, most importantly discriminated unions. These aren’t 
particularly idiomatic in C#, so we mostly talked about F#. On the other hand, using 
functions for representing simple behavior is perfectly possible in C# 3.0. Thanks to 
the Func delegate, which represents a function in C#, most of the examples you’ll see 
in this chapter will be written in both C# and F#.

NOTE In applications of a significant size, both approaches are usually com-
bined. A larger graphical editor that supports vector graphics as well as 
raster graphical filters might use a data-centric approach for represent-
ing shapes and a behavior-centric approach for applying graphical filters 
to the image. Implementing graphical processing is beyond the scope of 
this chapter, but you can find a sample application for graphical process-
ing at http://www.functional-programming.net.

In this chapter, we’ll use a single example that we’ll keep extending to demonstrate 
the look and feel of behavior-oriented applications. We’re going to develop an appli-
cation for testing the suitability of a client for a loan offer. 

8.1 Using collections of behaviors
First, we’ll write several conditions for testing whether a bank should offer a loan to 
the client, and we’ll store these conditions in a collection. This way, it’s very easy to 
add new conditions later during the development, because we’d just implement the 
condition and add it to the collection. One of the key aspects of behavior-oriented 
programs is the ability to add new behavior easily.

8.1.1 Representing behaviors as objects

We’ll start with the C# version, because working with collections of behaviors in a 
functional way is supported in C# 3.0 to a similar extent as in F#. Before we look at the 
Licensed to   <kr_wilson@hotmail.com>

http://www.functional-programming.net


207Using collections of behaviors
functional version, it’s useful to consider how the same pattern might be written using 
a purely object-oriented style.

 We’d likely start by declaring an interface with a single method to execute the test 
and return whether or not it failed. In our loan example, a return value of true would 
indicate that the test suggests the loan offer should be rejected. Later we’d implement 
the interface in several classes to provide concrete tests. Listing 8.1 shows the inter-
face and a simple implementation.

interface IClientTest {
   bool IsClientRisky(Client client);  
}
class TestYearsInJob : IClientTest {          
   public bool IsClientRisky(Client client) {
      return client.YearsInJob < 2;             
   }
}

When working with tests implemented like this, we’d create a collection containing 
elements of the interface type B (for example, List<IClientTest>) and then add an 
instance of each class implementing the interface to this collection. We have to create 
a separate class for every test, even though the condition itself is a simple compact 
expression C.

8.1.2 Representing behaviors as functions in C#

We mentioned earlier that an object-oriented way to understand a function is to think 
of it as an interface with a single method. If we look at the code from listing 8.1, we 
can see that IClientTest is declared exactly like this. That means the test can easily 
be represented as a simple function. In C#, we can write tests using lambda functions:

Func<Client, bool> isRiskyYearsInJob =
   client => client.YearsInJob < 2;

Instead of using the interface type, we now use a type Func<Client, bool>, which rep-
resents a function that takes the Client as an argument and returns a Boolean value. 
By writing the code in this fashion, we have significantly reduced the amount of boil-
erplate code around the expression that represents the test.

 Just as we could store objects that implement some interface in a collection, we can 
also create a collection that stores function values, and you’ll see how to do this using 
the List<T> type in listing 8.2. Note that we’re creating a completely standard collec-
tion of objects—we can iterate over all the functions in the collection or change the 
collection by adding or removing some of the function values. 

 When initializing the collection, we can easily write the code to specify the default 
set of tests in a single method. We can add the tests using the lambda function syntax 
without the need to declare the functions in advance; we can also use a C# 3.0 feature 
called collection initializer that makes the syntax even more concise.

Listing 8.1 Loan suitability tests using object-oriented style (C#)

B Implements 
single test

C

Licensed to   <kr_wilson@hotmail.com>



208 CHAPTER 8 Designing behavior-centric programs
class Client {                          
   public string Name { get; set; }
   public int Income { get; set; }
   public int YearsInJob { get; set; }
   public bool UsesCreditCard { get; set; }
   public bool CriminalRecord { get; set; }
}

static List<Func<Client, bool>> GetTests() {  
   return new List<Func<Client, bool>> {
      client => client.CriminalRecord,     
      client => client.Income < 30000,    
      client => !client.UsesCreditCard, 
      client => client.YearsInJob < 2     
   };
}

Listing 8.2 uses many of the new C# 3.0 features, and thanks to them it’s quite similar 
to the F# implementation we’re about to write. First we declare a class to store informa-
tion about the client using automatic properties B. Next, we implement a method that 
returns a collection of tests. The body of the method is a single return statement that 
creates a .NET List type and initializes its elements using the collection initializer C. 
This allows you to specify the values when creating a collection in the same way as for 
arrays. Under the cover, this calls the Add method of the collection, but it’s clearer.

 The values stored in the collection are functions written using the lambda function 
syntax. Note that we don’t have to specify the type of the client argument. This is 
because the C# compiler knows that the argument to the Add method is the same as 
the generic type argument, which in our case is Func<Client, bool>.

NOTE One frequent requirement for behavior-centric programs is the ability to 
load new behaviors dynamically from a library. For our application that 
would mean that someone could write a .NET class library with a type con-
taining a GetTests method. This would return a list of tests as in the earlier 
code; our program would call the method to get the tests at execution time, 
and execute the tests without needing to know anything more about them.

This can be done using the standard .NET classes from the System. 
Reflection namespace. The typical scenario is to load an assembly 
dynamically, find all appropriate classes inside the assembly, and create 
their instances at runtime. You can find more information about using 
reflection on the book’s website. 

Now that we have a class for representing clients and a collection of tests that advises 
us whether or not to offer a loan to the client, let’s look how we can run the tests.

8.1.3 Using collections of functions in C#

When considering a loan for a client, we want to execute all the tests and count the 
number of tests that returned true (meaning a high risk). If the count is zero or one, 

Listing 8.2 Loan suitability tests using a list of functions (C#)

B
Stores information 
about client

Returns list 
of tests

C Creates list of tests using 
collection initializer
Licensed to   <kr_wilson@hotmail.com>



209Using collections of behaviors
the program will recommend the loan. The normal imperative solution would be to 
declare a variable and enumerate the tests using a foreach statement. In the body of 
the loop, we’d execute the test and increment the variable if it returned true. This can 
be implemented more elegantly using the LINQ extension method Count (listing 8.3).

void TestClient(List<Func<Client, bool>> tests, Client client) {
   int issuesCount = tests.Count(f => f(client));                    
   bool suitable  = issuesCount <= 1;                         
   Console.WriteLine("Client: {0}\nOffer a loan: {1}",  
      client.Name, suitable ? "YES" : "NO");                
}

var john = new Client {                                           
      Name = "John Doe", Income = 40000, YearsInJob = 1,
      UsesCreditCard = true, CriminalRecord = false 
   };
TestClient(GetTests(), john);     

In functional terminology, Count is a higher-order function. It takes a predicate as an 
argument and counts the number of elements for which the predicate returns true. 
We’re using it to count how many tests consider the client to be unsuitable for a 
loan B. The element of the collection in our case is a function, so our predicate has 
to take a function and return a Boolean. The lambda function we wrote executes the 
function passed as its parameter, specifying the client as the argument, and returns 
the result of the test as the predicate result. Once we count the tests that failed, cal-
culating and printing the result is easy. Describing how it works (even in this rela-
tively simple case) is complicated, but if you think about what you’re trying to do 
with each element, it’s not that hard to understand.

 We mentioned earlier that the F# version of the example will be essentially the 
same. This is because all the necessary features such as higher-order functions, 
lambda functions, and the ability to store functions in a collection are now available in 
C# 3.0 as well. Let’s see what the F# code looks like.

8.1.4 Using lists of functions in F#

First, we’ll declare a type to represent information about the client. A client has quite 
a lot of properties, so the most natural representation will be an F# record type that 
we’ve seen in the previous chapter. Listing 8.4 shows the type declaration and code 
that creates the sample client.

> type Client =
     { Name : string; Income : int; YearsInJob : int
        UsesCreditCard : bool; CriminalRecord : bool };;
type Client = (...)

> let john =

Listing 8.3 Executing tests (C#)

Listing 8.4 Client record type and sample value (F# Interactive)

B

Prints results 
of testing

Creates client using 
object initializer

Offer a loan to the client?
Licensed to   <kr_wilson@hotmail.com>



210 CHAPTER 8 Designing behavior-centric programs
     { Name = "John Doe"; Income = 40000; YearsInJob = 1
        UsesCreditCard = true; CriminalRecord = false };;
val john : Client

There’s nothing new here: we’re declaring a type and creating an instance of it. To 
make the listing shorter, we haven’t used a separate line for each property, either 
when declaring the type or when creating the value. This is valid F#, but we have to 
add semicolons between the properties. In the lightweight syntax, the compiler adds 
them automatically at the end of the line (when they’re needed), but they have to be 
written explicitly when the line breaks aren’t there to help the compiler.

 Listing 8.5 completes the example. First it creates a list of tests and then decides 
whether or not to recommend offering a loan to the sample client (John Doe) from 
the previous listing.

> let tests =                                         
     [ (fun cl -> cl.CriminalRecord = true);
       (fun cl -> cl.Income < 30000);
       (fun cl -> cl.UsesCreditCard = false);
       (fun cl -> cl.YearsInJob < 2) ];;
val tests : (Client -> bool) list      

> let testClient(client) = 
     let issues = tests |> List.filter (fun f -> f (client))  
     let suitable = issues.Length <= 1                                            
     printfn "Client: %s\nOffer a loan: %s (issues = %d)" client.Name  
                (if (suitable) then "YES" else "NO") issues.Length;;          
val testClient : Client -> unit 

> testClient(john);;
Client: John Doe
Offer a loan: YES (issues = 1)

This uses the normal syntax for creating lists to initialize the tests which are written 
using lambda function syntax. We don’t have to write any type annotations and F# still 
infers the type of the list correctly B. F# type inference is smart enough to use the 
names of the accessed members to work out which record type we want to use.

 In the C# version, we used the Count method to calculate the number of tests that 
failed. F# doesn’t have an equivalent function; we could either implement it or com-
bine other standard functions to get the same result. We’ve taken the second 
approach in this case. First we get a list of tests that considered the client to be unsafe; 
these are the tests that return true using List.filter C. Then we get the number of 
issues using the Length property.

 In this section, you learned how to design and work with basic behavior-oriented 
data structures—a list of functions—in both C# and F#. In the sidebar “Point-free pro-
gramming style,” we look at an important functional technique that we could use in 
listing 8.5. In the next section, we’ll continue our discussion of common practices as 
we look at two object-oriented design patterns and related functional constructs. 

Listing 8.5 Executing tests (F# Interactive)

Creates list of tests

B

C

Counts issues, 
prints result
Licensed to   <kr_wilson@hotmail.com>



211Idioms for working with functions
8.2 Idioms for working with functions
In the previous chapter, we talked about data structures and related design patterns. 
We’ve seen two examples of structural patterns that are related to the problem of 
designing functional data structures and we’ve explored a behavioral pattern that 

Point-free programming style
We’ve seen many examples where we don’t have to write the lambda function explic-
itly when calling a higher-order function, so is this possible in listing 8.5? This way of 
writing programs is called point-free, because we’re working with a data structure that 
contains values (such as a list), but we never assign any name to the value (a partic-
ular “point”) from that structure. Let’s demonstrate this concept using examples that 
we’ve seen already:

[1 .. 10] |> List.map ((+) 100)
places |> List.map (snd >> statusByPopulation)

In the first case, we’re working with a collection of numbers, but there’s no symbol 
that would represent values from the list. The second case is similar, except we’re 
working with a list of tuples. Again, there are no symbols that would represent either 
the tuple or any element of the tuple.

The point-free style is possible thanks to several programming techniques. The first 
line uses partial function application, which is a way to create a function with the re-
quired number of parameters based on a function with larger number of parameters. 
In our example, we also treat an infix operator (plus) as an ordinary function. The second 
line uses function composition, which is another important technique for constructing 
functions without explicitly referencing the values that the functions work with.

Now, let’s see how we could rewrite the example from listing 8.5. First, we’ll rework 
the lambda function to use the pipelining operator. 

Instead of:

(fun f -> f client)

We’ll write:

(fun f -> client |> f)

These two functions mean the same thing. We’re almost finished, because the pipe-
lining operator takes the client as the first argument and a function as the second 
argument. If we use partial application to specify just the first argument (client), we’ll 
obtain a function that takes a function (f) as an argument and applies it to the client:

tests |> List.filter ((|>) client)

Point-free programming style should be always used wisely. Even though it makes 
the code more succinct and elegant, it’s sometimes harder to read and the reason-
ing that we’ve demonstrated here isn’t trivial. The point-free style is important for 
some areas of functional programming, and in chapter 15 we’ll see how it can be 
useful when developing a domain-specific language.
Licensed to   <kr_wilson@hotmail.com>



212 CHAPTER 8 Designing behavior-centric programs
describes how objects communicate, which corresponds to how functions call each 
other in functional terminology. 

 In this chapter, we’re talking about behavior-oriented applications, so it seems nat-
ural that the relevant patterns will be behavioral ones. The first one is called the strat-
egy pattern.

8.2.1 The strategy design pattern

The strategy pattern is useful if the application needs to choose among several algo-
rithms or parts of an algorithm at runtime. One of the common situations is when sev-
eral tasks that our application needs to perform differ only in a smaller subtask. Using 
the strategy pattern, we can write the common part of the task just once and parame-
terize it by giving it the subtask (primitive operation) as an argument. Figure 8.1 
shows an object-oriented representation of the strategy pattern. 

 The idea of parameterizing a task by giving it a subtask as an argument has proba-
bly made it fairly clear what the strategy pattern looks like in functional programming: 
it’s just a higher-order function. The Strategy interface in figure 8.1 has a single 
method, which suggests that it’s a simple function; the two classes that implement it 
are effectively concrete functions that can be created using lambda functions. 

 In a language that supports functions, we can replace the Strategy interface with 
the appropriate function (a Func delegate in C# or a function type in F#). Usually, we 
pass the strategy directly to the Operation method as an argument. Using the abstract 
names from figure 8.1, we could write

Context.Operation(arg => {
   //Implements the specific strategy
});

We’ve already seen a practical example of this pattern when filtering a list. In this case, 
the function that specifies the predicate is a concrete strategy (and we can use various 
strategies to write different filters), and the List.filter function or the Where
method is the operation of the context. This means that in a language that supports 
higher-order functions, you can always replace the strategy pattern with a higher-
order function.

 Our next pattern is somewhat similar, but more related to our earlier discussion of 
behavior-centric applications that work with a list of behaviors.

Operation()

Context
strategy : Strategy

AlgorithmOperation()

Strategy

AlgorithmOperation()

ConcreteStrategy2

1 1

AlgorithmOperation()

ConcreteStrategy1

Figure 8.1 Strategy is an inter-
face with a method representing 
the primitive operation. Two 
concrete strategies implement 
that operation differently, and the 
Context class can choose 
between the implementations.
Licensed to   <kr_wilson@hotmail.com>



213Idioms for working with functions
8.2.2 The command design pattern

The command pattern describes a way to represent actions in an application. As 
opposed to the previous pattern, which is used to parameterize a known behavior 
(such as filtering of a list) with a missing piece (predicate), the command pattern is 
used to store some “unit of work” that can be invoked at a later point. We often see 
collections of commands that specify steps of a process or operations that the user can 
choose from. Looking at figure 8.2, you’ll recognize an interface that looks like a 
good candidate for replacement with a single function.

 The type that can be easily replaced with a function is the Command interface. Again, 
it has a single method, which acts as a hint. The classes that implement the interface 
(such as ConcreteCommand) can be turned into functions, either constructed using the 
lambda function syntax or, when they are more complex, written as ordinary functions. 

 We mentioned that the difference between the command and strategy patterns is 
that the Invoker works with a list of commands and executes them as and when it 
needs to, very similar to the client loan example. We had a collection of tests for 
checking the suitability of the client, but instead of declaring the Command interface, 
our functional version used the Func<Client, bool> delegate in C# and a function 
type, Client -> bool, in F#. The invoker was the TestClient method, which used the 
tests to check a client. 

NOTE We explained that a Receiver class, shown in figure 8.2, usually repre-
sents some state that’s changed when the command is invoked. In a typi-
cal object-oriented program, this might be a part of the application state. 
In a graphical editor we could use commands to represent undo history. 
In that case, the state would be the picture on which the undo steps can 
be applied. 

This isn’t the way you’d use the pattern in a functional programming. 
Instead of modifying state, the command usually returns some result 
(such as the Boolean value in our client checking example). In func-
tional programming, the Receiver can be a value captured by the 
lambda function.

Invoker

Execute()

Command

OperationA()
OperationB()

Receiver

1 *

void Execute() {
  receiver.OperationA();
}

Execute()

ConcreteCommand
receiver : Receiver

Figure 8.2 Invoker stores a collection 
of classes implementing the Command 
interface. When invoked, the concrete 
command uses a Receiver object, 
which usually carries and modifies some 
state.
Licensed to   <kr_wilson@hotmail.com>



214 CHAPTER 8 Designing behavior-centric programs
Although mutable state should usually be avoided in functional programming, there’s 
one example where it’s useful, even in F#. We’ll see that a technique similar to the com-
mand pattern can help us to hide the state from the outside world, which is important 
if we still want to keep most of the program purely functional. First look at a similar 
idea in C#,then study the usual implementation using lambda functions in F#.
CAPTURING STATE USING THE COMMAND PATTERN IN C#

As we’ve explained, the command pattern often works with mutable state, encapsu-
lated in something like the Receiver class of our example. Listing 8.6 shows an exam-
ple of this, creating a more flexible income test for our financial application. The goal 
is to allow the test to be configured later without updating the collection of tests. 

class IncomeTest {                            
   public int MinimalIncome { get; set; } 
   public IncomeTest() {
      MinimalIncome = 30000;
   }
   public bool TestIncome(Client client)  {
      return client.Income < MinimalIncome;
   }
}

var incomeTest = new IncomeTest();
Func<Client, bool> command =                     
   client => incomeTest.TestIncome(client);  

tests.Add(command)  

We start by creating a class that carries the mutable state and corresponds to the 
Receiver component from the command design pattern B. The state is a recom-
mended minimal income and the class has a mutable property for modifying it. The 
next method implements the test itself and compares whether the income of the 
given client is larger than the current minimal value stored in the test.

 The next part of listing 8.6 shows how we can create a new test. First we create 
an instance of the IncomeTest class containing the state, then we create a lambda 
function that calls its TestIncome method C. This function corresponds to the 
ConcreteCommand component, and we add it to the collection of tests. We’ve 
replaced the abstract Command type with a function value, so instead of implementing 
an interface we’re creating a function with appropriate type using lambda function 
syntax. Listing 8.6 creates the function explicitly with lambda syntax, to demonstrate 
that it corresponds to the design pattern, but we can write it more concisely:

IncomeTest incomeTest = new IncomeTest();
tests.Add(incomeTest.TestIncome);

The C# compiler automatically creates a delegate instance that wraps the TestIncome
method and can be added to the collection if the method has the right signature. 
Once we add the test to the collection, we can configure the test using the Minimal-
Income property:

Listing 8.6 Income test using the command pattern (C#)

B
Corresponds to 
Receiver component

C Creates ConcreteCommand 
as function

Registers command with Invoker
Licensed to   <kr_wilson@hotmail.com>



215Idioms for working with functions
TestClient(tests, john);             
incomeTest.MinimalIncome = 45000;
TestClient(tests, john);             

(The result in the first line is yes. The result in the last line is no.) 
 This is a common pattern that’s widely used in imperative OOP. From a functional 

point of view, it should be used carefully: the code and comments should clearly docu-
ment what calls can affect the mutable state. In the example, the state is modified 
using the incomeTest object, and this explains why the same line of code can give dif-
ferent results when called at different times. In the next section, we’ll see how to 
implement similar functionality in a simpler way using F#.

8.2.3 Capturing state using closures in F#

In this section we’re going to talk about closures, which is an important concept in 
functional programming. Closures are very common, and most of the time they aren’t 
used with mutable state. Still, working with mutable state is sometimes needed for the 
sake of pragmatism, and closures give us an excellent way to limit the scope of the 
mutable state.

 First let’s look at a simple piece of F# that we saw in chapter 5: 

> let createAdder num =
     (fun m -> num + m);;
val createAdder : int -> int -> int

In our earlier discussion, we didn’t see any difference between a function written like 
this and a function called add taking two parameters and returning their sum. This is 
because we can call the add function with a single argument: thanks to partial applica-
tion, the result is a function that adds the specified number to any given argument. 

 If you carefully analyze what’s returned in the previous example, it isn’t just the 
code of the function! The code is a bunch of instructions that add two numbers, but if 
we call createAdder twice with two different arguments, the returned functions are 
clearly different because they’re adding different numbers. The key idea is that a func-
tion isn’t just code, but also a closure that contains the values that are used by the func-
tion but aren’t declared inside its body. The values held by the closure are said to be 
captured. In the previous example, the only example of capturing is the num parameter. 

 Closures may sound complicated, but they’re quite simple. The F# compiler uses 
the abstract class FastFunc<int, int> to represent a function value that takes an inte-
ger as an argument and returns an integer as a result. Listing 8.7 shows the generated 
code for the createAdder function translated to C#.

class createAdder : FastFunc<int, int> {
   public int num;                                 

   internal createAdder(int num) {  
      this.num = num;
   }

Listing 8.7 Closure class generated by the F# compiler (C#)

Stores captured 
valuesB
Licensed to   <kr_wilson@hotmail.com>



216 CHAPTER 8 Designing behavior-centric programs
   public override int Invoke(int m) {  
      return this.num + m;
   }
}

static FastFunc<int, int> createAdder(int num) {  
   return new createAdder(num);
}

The compiler produces a static method createAdder C that corresponds to the F# 
function. The method constructs a function value that consists of the function code 
and stores values captured by the closure. The generated closure class takes captured 
values as parameters, so in our example it has a single parameter num B. When exe-
cuting the function value using virtual method Invoke, the code has access to the val-
ues stored in the closure.

 Of course, we’ve been using closures when creating functions since we started talk-
ing about lambda functions. We didn’t talk about them explicitly, because usually you 
don’t need to think about them—they just work. However, what if the closure captures 
some value that can be mutated?
MUTABLE STATE USING REFERENCE CELLS

To answer this question, we’ll need to be able to create some state to capture. One way 
is to use let mutable, but that doesn’t work in this situation because that kind of 
mutable value can be used only locally—it can’t be captured by a closure.

 The second way to create mutable values is by using a type called ref, which is a 
shortcut for a reference cell. This is a small object (actually declared as an F# record 
type) that contains a mutable value. To understand how the ref type works, let’s 
define the same type in C#. As you can see, it’s fairly simple:

class Ref<T> { 
   public Ref(T value) { Value = value; }
   public T Value { get; set; }
}

The important point here is that the Value property is mutable, so when we create an 
immutable variable of type Ref<int>, we can still mutate the value it represents. List-
ing 8.8 shows an example of using reference cells in F# and shows the corresponding 
C# code using the Ref<T> type. In F#, we don’t access the type directly, because there’s 
a function—again called ref—that creates a reference cell, along with two operators 
for setting and reading its value.

 On the first line, we create a reference cell containing an integer. Just like the 
Ref<T> type we’ve just declared in C#, the F# ref type is generic, so we can use it to 

Listing 8.8 Working with reference cells in F# and C#

F# Interactive C#

let st = ref 10 var st = new Ref<int>(10);

st := 11 st.Value = 11;
printfn "%d" (!st) Console.WriteLine(st.Value);

Runs constructed 
function

C

Licensed to   <kr_wilson@hotmail.com>



217Idioms for working with functions
store values of any type. The next two lines demonstrate the operators that work with 
reference cells: assignment (:=) and dereference (!). The F# operators correspond to 
setting or reading values of the property but give us a more convenient syntax.
CAPTURING REFERENCE CELLS IN A CLOSURE

Now we can write code that captures mutable state created using a reference cell in a 
closure. Listing 8.9 shows an F# version of the configurable income test. We create a 
createIncomeTests function that returns a tuple of two functions: the first changes 
the minimal required income, the second is the test function itself.

> let createIncomeTest() =
     let minimalIncome = ref 30000  
     (fun (newMinimal) -> 
        minimalIncome := newMinimal),     
     (fun (client) -> 
        client.Income < (!minimalIncome))                         
  ;;
val createIncomeTest : unit -> (int -> unit) * (Client -> bool)  

> let setMinimalIncome, testIncome = createIncomeTest();;  
val testIncome : (Client -> bool)
val setMinimalIncome : (int -> unit)

> let tests = [ testIncome; (* more tests... *) ];;
val tests : (Client -> bool) list

Let’s look at the signature of the createIncomeTest function C first. It doesn’t take 
any arguments and returns a tuple of functions as a result. In its body, we first create a 
mutable reference cell and initialize it to the default minimal income B. The tuple of 
functions to be returned is written using two lambda functions, and both of them use 
the minimalIncome value. The first function (with the signature int -> unit) takes a 
new income as an argument and modifies the reference cell. The second one com-
pares the income of the client with the current value stored in the reference cell and 
has the usual signature of a function used to testing a client (Client -> bool). 

 When we later call createIncomeTest D, we get two functions as a result. We cre-
ated only one reference cell, which means it is shared by the closures of both func-
tions. We can use setMinimalIncome to change the minimal income required by the 
testIncome function.

 Let’s look at the analogy between the F# version and the command pattern with 
the C# implementation discussed earlier. In F#, the state is automatically captured by 
the closure while in C# it was encapsulated in an explicitly written class. In some 
senses, the tuple of functions and the closure correspond to the receiver object from 
the object-oriented pattern. As we’ve seen in listing 8.7, the F# compiler handles the 
closure by generating .NET code that’s similar to what we explicitly wrote in C#. The 
intermediate language (IL) used by .NET doesn’t directly support closures, but it has 
classes for storing state.

Listing 8.9 Configurable income test using closures (F# Interactive)

B Sets new 
minimal income

Tests client using 
current minimum

C

D

Licensed to   <kr_wilson@hotmail.com>



218 CHAPTER 8 Designing behavior-centric programs
 Listing 8.10 completes the example, demonstrating how to modify the test using the 
setMinimalIncome function. The example assumes that the testClient function now 
uses the collection of tests declared in listing 8.9. To achieve that in F# Interactive, you 
need to select and evaluate the value binding that declares the tests value, then eval-
uate the testClient function so that it references the previously evaluated collection.

> testClient(john);;
Client: John Doe
Offer a loan: YES (issues = 1)

> setMinimalIncome(45000);;
val it : unit = ()

> testClient(john);;
Client: John Doe
Offer a loan: NO (issues = 2)

Just as in the C# version, we first test the client using the initial tests (which the client 
passes), then modify the income required by one of the tests. After this change, the 
client no longer fulfills the conditions and the result is negative. 

In this section, we talked about object-oriented patterns and related functional tech-
niques. In some cases, we used a function instead of an interface with a single method. 

Listing 8.10 Changing minimal income during testing (F# Interactive)

Closures in C#
In the previous section we used C# for writing object-oriented code and F# for writing 
functional code because we wanted to demonstrate how the concepts relate—how 
closures are similar to objects and in particular to the Receiver object in the com-
mand design pattern. 

Closures are essential for lambda functions and the lambda expression syntax in 
C# 3.0 also supports the creation of closures. This was present in C# 2 in the 
form of anonymous methods. The following example shows how to create a func-
tion that, when called several times, will return a sequence of numbers starting 
from zero:

Func<int> CreateCounter() {
   int num = 0;
   return () => { return num++; };
}

The variable num is captured by the closure and every call to the returned function 
increments its value. In C#, variables are mutable by default, so be extremely care-
ful when you change the value of a captured variable like this. A common source of 
confusion is capturing the loop variable of a for loop. Assume you capture the 
variable in multiple iterations. At the end of the loop, all of the created closures 
will contain the same value, because we’re working just with a single variable.
Licensed to   <kr_wilson@hotmail.com>



219Working with composed behaviors
Next we’ll look at an example showing what we can do when the behavior is very sim-
ple but can’t be described by only one function. 

8.3 Working with composed behaviors
In this chapter, we’re talking about applications or components that work with behav-
iors and allow new behaviors to be added later in the development cycle or even at 
runtime. The key design principle is to make sure that adding new behaviors is as easy 
as possible. After we implement the new functionality, we should be able to register 
the function (for example, by adding it to a list) and use the application without any 
other changes in the code.

 To simplify things, it’s better to minimize a number of functions that need to be 
implemented. Often, a single function is sufficient to represent the functionality, but 
in some cases it may not be enough; we may need to include some additional 
information or provide a few more functions. Of course, in a functional program 
another function is only “additional information,” information we can run to pro-
vide richer feedback.

 An example of the first case may be a filter in a graphical editor. The filter itself 
is a function that works with pictures, but we could also provide a name of the filter 
(as a string). The user of the editor would rather see a “friendly” name and descrip-
tion than whatever we happened to call our function, with all the inherent nam- 
ing restrictions.

 In the next section, we’re going to look at the second case, where more functions 
are required. We’ll improve our loan application so that a test can report the details of 
why it’s recommending against a loan, if the client “fails” the test. This will be imple-
mented using a second function that does the reporting.

8.3.1 Records of functions

We’ve already seen a way of working with multiple functions. In the previous example, 
we returned a tuple of functions as a result and we could use the same technique to 
represent our application with the new reporting feature. Let’s say the reporting func-
tion takes the client, prints something to the screen, and returns a unit as a result. 
Using this representation, the type of the list of behaviors would be

((Client -> bool) * (Client -> unit)) list

This starts to look a bit scary. It’s complicated and the functions don’t have names, 
which makes the code less readable. In the previous example, it wasn’t a big problem, 
because the function was used only locally, but this list is one of the key data structures 
of our application, so it should be as clear as possible. A simple solution that makes 
the code much more readable is to use a record type instead of a tuple. We can define 
it like this:

type ClientTest = 
  { Check  : Client -> bool
    Report : Client -> unit }
Licensed to   <kr_wilson@hotmail.com>



220 CHAPTER 8 Designing behavior-centric programs
This code defines a record with two fields, both of which are functions. This is just 
another example of using functions in the same way as any other type. The declara-
tion resembles a very simple object (or interface); we’ll talk about this similarity later. 
First, let’s look at listing 8.11, which shows how we can create a list of tests represented 
using the record declared earlier.

let checkCriminal(client) = client.CriminalRecord = true              
let reportCriminal(client) =                                                      
   printfn "Checking 'criminal record' of '%s' failed!" client.Name

let checkIncome(client) = client.Income < 30000    
let reportIncome(client) =                                   
   printfn "Checking 'income' of '%s' failed (%s)!"
                client.Name "less than 30000"                  

let checkJobYears(client) = client.YearsInJob < 2              
let reportJobYears(client) =                                             
   printfn "Checking 'years in the job' of '%s' failed (%s)!"
                client.Name "less than 2"                                     

let testsWithReports =                                           
  [ { Check = checkCriminal; Report = reportCriminal };
    { Check = checkIncome;    Report = reportIncome };
    { Check = checkJobYears; Report = reportJobYears };
    (* more tests... *) ]

Listing 8.11 is a series of let bindings. To make the code more readable, rather than 
using lambda functions we’ve define all the checks as ordinary F# functions. For each 
test, we’ve defined one function with the prefix check and one with the prefix report. 
If you enter the code in F# Interactive, you can see that the function types correspond 
to the types from the ClientTest record type. The last operation is creating a list of 
tests B. We need to create a record for each criterion to store the two related func-
tions, and create a list containing the record values.

 We also have to update the function that tests a particular client. We’ll first find 
those tests that fail (using the Check field) and then let them print the result (using 
the Report field). Listing 8.12 shows the modified function, as well as the output when 
we run it against our sample client.

> let testClientWithReports(client) =  
     let issues =                                              
        testsWithReports                                       
        |> List.filter (fun tr -> tr.Check(client))
     let suitable = issues.Length <= 1                           
     for i in issues do                      
        i.Report(client)                      
     printfn "Offer loan: %s" 
                (if (suitable) then "YES" else "NO")
  ;;
val testClientWithReports : Client -> unit

Listing 8.11 Creating tests with reporting (F#)

Listing 8.12 Testing a client with reporting (F# Interactive)

Checks 
criminal 
record

Checks 
minimal 
income

Checks 
years in the 
current job

B
Creates list 
of records

B Gets list of tests 
that failed

Calculates 
overall resultC Reports all 

found issues
Licensed to   <kr_wilson@hotmail.com>



221Working with composed behaviors
> testClientWithReports(john);;
Checking 'years in the job' of 'John Doe' has failed (less than 2)!
Offer loan: YES

The testClient function has only changed slightly since listing 8.5. The first change is 
in the lines that select which tests have failed B. The list is now a collection of records, 
so we have to test the client using a function stored in the Check field. The second 
change is that earlier, we were interested only in a number of failing tests. This time, we 
also need to print the detailed information about the failure C. This is implemented 
using an imperative for loop, which invokes the Report function of all the failing tests. 

 One problem in the current version of the code is that we had to write very simi-
lar functions when creating some tests. Let’s fix that, reducing unnecessary code 
duplication.

8.3.2 Building composed behaviors

In listing 8.11 there’s obvious duplication in the testing and reporting functions that 
verify the minimal income and minimal years in the current job. The tests have a simi-
lar structure: both test whether some property of the client is smaller than a minimal 
allowed value. 

 Identifying commonality is only the first step toward removing duplication. The 
next step is to look at which parts of the checkJobYears and checkIncome functions 
(together with their reporting functions) are different:

■ They check different properties.
■ They use different minimal values.
■ They have slightly different messages.

To write the code more succinctly, we can create a function that takes these three dif-
ferent parts as its arguments and returns a ClientTest record. When we create the list 
of tests, we’ll call this new function twice with different arguments to create two simi-
lar tests. Listing 8.13 shows both the extra function (lessThanTest) and the new way 
of creating the list of tests.

> let lessThanTest readFunc minValue propertyName =
     let report client =                                                   
        printfn "Checking '%s' of '%s' failed (less than %d)!"    
                    propertyName client.Name minValue
     { Check = (fun client -> readFunc(client) < minValue)  
       Report = report };;
val lessThanTest : (Client -> int) -> int -> string -> ClientTest  

> let tests = 
     [ (lessThanTest (fun client -> client.Income) 30000 "income")
       (lessThanTest (fun client -> client.YearsInJob)                
                           2 "years in the job")                                       
       (* more tests... *) ];;
val tests : ClientTest list

Listing 8.13 Creating similar tests using a single function (F# Interactive)

B

C

D

Creates 
 two similar tests 

with reporting
Licensed to   <kr_wilson@hotmail.com>



222 CHAPTER 8 Designing behavior-centric programs
As usual, the type signature D tells us a lot about the function. The lessThanTest
function returns a value of type ClientTest, which contains the testing and reporting 
functions. The test is built using three arguments which: 

1 Read a numeric property of the client 
2 Specify a minimal required value (in our case, representing either an income or 

a number of years) 
3 Describe the property (used in the reporting test)

The code first declares a nested function called report B, which takes a Client as the 
argument and prints a reason why the test failed. The function uses the arguments of 
the lessThanTest function as well which means that when report is returned as a 
part of the result, all these parameters will be captured in a closure. When construct-
ing a record value that will be returned C, we specify report as one of the function 
values, and the second one is written inline using a lambda function.

 Working with tuples or records of functions is common in functional programming, 
and it reflects the F# development style. But in C#, we’d use a different approach to 
implement this example. Let’s look back at the development process and also consider 
how we’d implement the example in C# and improve the current F# version.

8.3.3 Further evolution of F# code

In the previous section, we moved from a simple piece of F# that stored a list of func-
tions to a more sophisticated version that uses a list of records. This is a part of the F# 
development process that we discussed in chapter 1. You learned that F# programs 
often start as very simple scripts and evolve into code that follows standard .NET pro-
gramming guidelines and benefits from the .NET object model.

 We started with the most straightforward way to solve the problem using only what 
we knew at the beginning. When we later realized that we needed to add reporting 
using another function, we made relatively small adjustments to the code (because 
this is quite easy to do in F#), resulting in a version with more features. The transition 
wasn’t just in terms of features, but also in a sense of readability and maintainability. 

 When extending the initial version, we mentioned that we could have used a list con-
taining tuples of functions. Representations like this are more likely to be used in the 
initial prototype than in a finished application, and using F# record types clearly make 
the code more readable. Even though we went straight to a record type, bear in mind 
that there’s nothing wrong with using a simple representation when you start writing an 
application that should turn into a complex product. This kind of change is quite easy 
to make in F#, and when you develop an initial version, you usually want to get it run-
ning with useful features as soon as possible rather than writing it in a robust way. 

 Even though we’ve already made a few transitions on the road to the robust ver-
sion of the application, there are still improvements to consider. Because F# is a lan-
guage for .NET, we can use several object-oriented features to make the code more 
.NET-friendly. We’ll return to this topic in the next chapter, where you’ll see how to 
turn our record into an F# interface type, which corresponds to C# interfaces. 
Licensed to   <kr_wilson@hotmail.com>



223Combining data and behaviors
COMPOSED BEHAVIORS IN C#

We began this chapter with an example of C# code that declared an interface with a 
single method representing the test, but then we used functions (and the Func dele-
gate) as a more convenient way to write the code. If we wanted to implement a pro-
gram that works with two functions, as we now have in F#, we’d probably turn 
immediately back to interfaces. Using interfaces in C# is definitely more convenient 
and more reasonable than using a tuple or a class with functions as its members. Hav-
ing said that, in C# we have two options: functions for simple behaviors or an interface 
for anything more complicated. 

 In F#, the transition between the representations is easier. Most importantly, 
thanks to the type inference, we don’t have to change the types everywhere in 
the source code. Also, turning a lambda function into a class is a larger change 
than adding another function. In chapter 9, we’ll see that we can represent composed 
behaviors in F# using .NET interfaces too. Even when using interfaces, there’s an easy 
way to turn a lambda function into something you can think of as a “lambda object.”
The name for this feature is object expression, and we’ll talk about it in the next chapter.

 In this chapter, we’ve primarily focused on behavior-centric applications, but 
in the introduction we explained that data-centric and behavior-centric approaches 
are often used together. We’re going to see that in action now, combining functions 
with the discriminated union type that was so important for representing data in 
chapter 7.

8.4 Combining data and behaviors
Our original algorithm for testing whether a client is suitable for a loan offer used 
only the count of the tests that failed. This isn’t very sophisticated: if the client has a 
large income, we may not be interested in other aspects, but we may want to ask addi-
tional questions of a client with a smaller income. In this section, we’re going to 
implement an algorithm using decision trees. We’ll also explore the declaration of a 
more interesting F# data structure.

8.4.1 Decision trees

Decision trees are one of the most popular algorithms in machine learning. They can 
be used for making decisions based on some data or for classifying input into several 
categories. The algorithm works with a tree that specifies what properties of the data 
should be tested and what to do for each of the possible answers. The reaction to the 
answer may be another test or the final answer.

 Machine learning theory provides sophisticated ways for building the tree auto-
matically from the data, but for our example we’ll create the tree by hand. Figure 8.3 
shows a decision tree for our problem.

 We’re going to start by implementing the F# version. In F#, it’s usually very easy to 
write the code if we have an informal specification of the problem—in this case, a data 
structure to work with. The specification for a decision tree could look like this:
Licensed to   <kr_wilson@hotmail.com>



224 CHAPTER 8 Designing behavior-centric programs
A decision tree is defined by an initial query that forms the root of the 
tree. A query consists of the name of a test and a function that executes it 
and can return several possible answers. In our implementation, we’ll 
limit the answer to just true or false. For each answer, the node also 
contains a link to the next query or the final decision for this path 
through the tree.

Equipped with this specification, we can start writing the F# code. Before we see how 
to implement key parts of the problem in C# we’d like to demonstrate how easy it is to 
rewrite a specification like this into F#. 

8.4.2 Decision trees in F#

From the last sentence in the specification you can see that a link leads either to a 
query or a final result. In F#, we can directly encode this using a discriminated union 
type with two options. The specification also talks about the query in more detail—it 
says that the query contains various fields, which suggests that we can represent it as 
an F# record type.

 We’ll define an F# record type (QueryInfo) with information about the query 
and a discriminated union (called Decision), which can be either another query or 
a final result. These data types reference each other. In functional terminology, we’d 
say that the types are mutually recursive. Listing 8.14 shows what this means for the F# 
source code.

type QueryInfo =      
   { Title      : string
     Check      : Client -> bool  
     Positive : Decision  
     Negative : Decision }  

Listing 8.14 Mutually recursive types describing decision tree (F#)

Income over 
40000?

Criminal 
record?

 Yes 

Years in 
current job

 No 

Uses credit 
card?

 x < 2 

 x >= 2 

Low risk

 No 

Yes 

High risk

 Yes 

 No 

High riskLow riskLow risk

Figure 8.3 A decision tree for testing loan suitability; each diamond represents a 
question to ask, and the links are possible answers that lead to another question or 
to a conclusion (shown in a rectangle).

DECISION 
TREE

B

C
Refers to second type
Licensed to   <kr_wilson@hotmail.com>



225Combining data and behaviors
and Decision =            
   | Result of string  
   | Query   of QueryInfo  

When writing type declarations in F#, we can only refer to the types declared earlier in 
the file (or in a file specified earlier in the compilation order or located higher in the 
Visual Studio solution). Obviously that’s going to cause problems in this situation, 
where we want to define two types that reference each other. To get around this, F# 
includes the and keyword. The type declaration in the listing starts as usual with the 
type keyword B, but it continues with and D, which means that the two types are 
declared simultaneously and can see each other.

 The QueryInfo declaration combines data and behavior in a single record. The 
name of the test is a simple data member, but the remaining members are more inter-
esting. The Check member C is a function—that is, a behavior. It can return a Boolean 
value that we’ll use to choose one of the two branches to continue with. These 
branches are composed values that may store a string or can recursively contain other 
QueryInfo values, so they can store both data and behavior. Alternatively we could 
return the Decision value as a result from the function, but then we couldn’t that eas-
ily report whether or not the checking failed—we’d only know what the next test to run 
is. In listing 8.15 we create a value representing the decision tree shown in figure 8.3.

let rec tree =                            
   Query({ Title = "More than $40k" 
              Check = (fun cl -> cl.Income > 40000)
              Positive = moreThan40; Negative = lessThan40 })
and moreThan40 =                                                     
   Query({ Title = "Has criminal record"
              Check = (fun cl -> cl.CriminalRecord)
              Positive = Result("NO"); Negative = Result("YES") })
and lessThan40 =                                                           
   Query({ Title = "Years in job"
              Check = (fun cl -> cl.YearsInJob > 1)
              Positive = Result("YES"); Negative = usesCredit })
and usesCredit =                                                        
   Query({ Title = "Uses credit card"
              Check = (fun cl -> cl.UsesCreditCard)
              Positive = Result("YES"); Negative = Result("NO") })

There’s one new thing about listing 8.15 that we haven’t seen before. When declaring 
values, we’re using the rec keyword in conjunction with the new and keyword. This isn’t 
exactly the same use of the keyword as when we declared two types together in the pre-
vious listing, but the goal is similar. The and keyword allows us to declare several values
(or functions) that reference each other. For example, this is how we can use the value 
moreThan40 C in the declaration of tree B, even though it’s declared later in the code.

 The declaration order is the main reason for using let rec in this example, 
because this allows us to start the root node of the tree B, then create values for the 
two possible options on the second level (C, D) and finally declare one additional 

Listing 8.15 Decision tree for testing clients (F#)

D

Refers to first type

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



226 CHAPTER 8 Designing behavior-centric programs
question for one case on the third level E). We used let rec earlier for declaring 
recursive functions, which are functions that call themselves from their body (before 
they’re declared). In general, F# also allows the declaration of recursive values, which 
can simplify many common tasks. 

We’ve shown you how to declare a record that mixes data with behaviors and how to 
create a value of this record type using lambda functions. In listing 8.16, we’ll finish 
the example by implementing a function that tests the client using a decision tree.

> let rec testClientTree(client, tree) =  
     match tree with
     | Result(message) ->                     
        printfn "  OFFER A LOAN: %s" message

Listing 8.16 Recursive processing of the decision tree (F# Interactive)

Initialization using recursive let bindings
We’ve seen several examples of recursive functions, but what would recursive value 
look like? One example might be code to create a UI using Windows Forms. Using a 
simplified API, it could look like this:

let rec form = createForm "Main form" [ btn ]
and btn = createButton "Close" (fun () -> form.Close())

The first line creates a form and gives it a list of controls to be placed on the form as 
the last argument. This list contains a button, which is declared on the second line. 
The last argument to the createButton function is a lambda function that will be in-
voked when the user clicks the button. It should close the application, so it needs to 
reference the form value, which is declared on the first line.

What’s so difficult about this? We could easily write code to do the same thing in C#, 
and we wouldn’t think of it as being particularly recursive. In C# we’d be adding an 
event handler to the button after creating the form, or adding the button to the form 
after creating it. Either way, we’re mutating the objects. It’s easy for two values to 
refer to each other via mutation, but the tricky part comes when you want to make 
the values immutable.

Using recursive let bindings, we can create values that reference other values and 
the whole sequence is declared at once. Even recursion has its limitations, as shown 
in the following code snippet: 

let rec num1 = num2 + 1
and num2 = num1 + 1

In this case, we’d have to evaluate num1 in order to get the value of num2, but to 
do this we’d need a value of num1. The difference that made the first example cor-
rect is that the value form was used inside a lambda function, so it wasn’t needed 
immediately. Luckily, the F# compiler can detect code like this that can’t possibly 
work, and generates a compilation error.

B

C

Licensed to   <kr_wilson@hotmail.com>



227Combining data and behaviors
     | Query(qinfo) ->     
        let result, case = 
           if (qinfo.Check(client)) then "yes", qinfo.Positive  
           else "no", qinfo.Negative
        printfn "  - %s? %s" qinfo.Title result
        testClientTree(client, case)                
  ;;
val testClientTree : Client * Decision -> unit

> testClientTree(john, tree);;  
  - More than $40k? no
  - Years in job? no
  - Uses credit card? yes
  OFFER A LOAN: YES
val it : unit = ()

The program is implemented as a recursive function B. The decision tree can be either 
a final result C or another query D. In the first case, it prints the result. In the second 
case it first runs the test and chooses one of the two possible subtrees to process later 
based on the result. It then reports the progress to the console, and calls itself recur-
sively to process the subtree. In listing 8.16, we also immediately test the code and which 
path in the decision tree the algorithm followed for our sample client.

 In this section, we’ve developed a purely functional decision tree in F#. As we’ve 
seen before, rewriting functional constructs (particularly discriminated unions) in C# 
can be quite difficult, so in the next section we’ll implement a similar solution by mix-
ing object-oriented and functional style in C# 3.0.

8.4.3 Decision trees in C#

In chapter 5 we discussed the relationship between discriminated unions in F# and 
class hierarchies in C#. In this example, we’ll use another class hierarchy to represent 
a node in a decision tree, deriving two extra classes to represent the two different 
cases (a final result and a query). 

 In the functional version, all the processing logic was implemented separately in 
the testClientTree function. Even though we can do this in object-oriented style 
too—using the visitor pattern (discussed in chapter 7)—that isn’t a particularly object-
oriented solution. In this case, we don’t need to implement functions for working with 
the decision tree separately, so we can use the more normal object-oriented technique 
of inheritance and virtual methods. 

 Listing 8.17 shows the base class (Decision) and the simpler of the two derived 
classes (ResultDecision), which represents the final result. 

abstract class Decision {
   public abstract void Evaluate(Client client);  
}
class ResultDecision : Decision {
   public bool Result { get; set; }
   public override void Evaluate(Client client) {  

Listing 8.17 Object-oriented decision tree (C#)

D

Processes 
subtree 
recursively

Depends on 
test result

Tests code 
interactively

B

C

Licensed to   <kr_wilson@hotmail.com>



228 CHAPTER 8 Designing behavior-centric programs
      Console.WriteLine("OFFER A LOAN: {0}", Result ? "YES" : "NO");
   }
}

This part of the code is quite simple. The base class contains only a single virtual 
method B, which will be implemented in the derived classes and that will test the client 
and print the result. Its implementation in the class representing the final result C
prints the result to the console.

 The more interesting part is the implementation of the class representing a query. 
The problem is that we need to provide different code for each of the concrete que-
ries (testing the income, the number of years in the current job, and so on). We could
create a new derived class for each of the query with a similar implementation of the 
Evaluate method—but that doesn’t feel like a good solution, as it involves code dupli-
cation. A somewhat better way for implementing this is to use the template method
design pattern.
THE TEMPLATE METHOD PATTERN

In general, the template method pattern 
allows us to define the skeleton of an 
algorithm or a class and fill in the miss-
ing pieces later, by implementing them 
in an inherited concrete class. The base 
class defines operations to be filled in 
later and uses them to implement more 
complicated operations. Figure 8.4 
shows this in diagram form.

 The abstract class from the template 
method corresponds to our represen-
tation of the query (let’s call the class 
QueryDecision). The primitive opera-
tion that needs to be supplied by the 
derived classes is the testing method, which would take a Client as an argument and 
return a Boolean value. The template method would be our Evaluate method, which 
would contain code to print the result to the console and recursively process the selected 
branch. We’d still have to implement a new concrete class for each of the specific que-
ries, which would make the code quite lengthy. Using functions, we can simplify the pat-
tern and remove this need. 
FUNCTIONAL IMPLEMENTATION

Instead of representing the primitive operation as a virtual method that can be filled 
in by deriving a class, we’ll represent it as a property, where the type of the property is 
the function type Func<Client, bool>. The function is then supplied by the user of 
the class. Listing 8.18 shows an implementation of the QueryDecision class as well as 
an example of how we can create a simple decision tree.

PrimitiveOperation()
TemplateMethod()

AbstractClass

PrimitiveOperation()

ConcreteClass

void TemplateMethod() {
  // ...
  PrimitiveOperation();
  // ...
}

Figure 8.4 The base class contains the abstract 
method PrimitiveOperation, which is used in 
the implementation of TemplateMethod. This 
missing piece is filled in by the inherited class 
ConcreteClass.
Licensed to   <kr_wilson@hotmail.com>



229Summary
class QueryDecision : Decision {
   public string Title { get; set; }
   public Decision Positive { get; set; }
   public Decision Negative { get; set; }
   public Func<Client, bool> Check { get; set; }  

   public override void Evaluate(Client client) {
      bool res = Check(client);                                              
      Console.WriteLine("  - {0}? {1}", Title, res ? "yes" : "no");
      Decision next = res ? Positive : Negative;
      next.Evaluate(client);                            
   }
}

var tree = 
   new QueryDecision {          
      Title = "More than $40k", 
      Check = (client) => client.Income > 40000,   
      Positive = new ResultDecision { Result = true },   
      Negative = new ResultDecision { Result = false } };  

The QueryDecision class represents a case where we want to perform another test 
regarding the client. If we’d followed the template method pattern strictly, the test 
would be a virtual method, but we instead specified it as a property B. The type of the 
property is a function that takes a client and returns a Boolean value. This function is 
invoked when testing a client C, and depending on the result, the code follows one of 
the two possible branches. When creating a decision tree, we don’t have to write an 
extra class for every test, because we can simply provide the primitive testing function-
ality using lambda functions D.

 This example demonstrates how we can very effectively mix object-oriented and 
functional concepts. The types we created could be easily made immutable, which 
would make the example even more functional. The only reason we didn’t do so is 
that using automatic properties makes the code a bit more compact. We started with a 
standard object-oriented design pattern and simplified it using lambda functions that 
are now available in C# 3.0. The solution is somewhere between the traditional object-
oriented solution and the functional version we implemented in F#.

8.5 Summary
In this chapter we finished our exploration of the core functional concepts. After 
exploring basic principles such as functional values and higher-order functions, we 
moved to a higher-level perspective and discussed the architecture of functional appli-
cations. We divided applications (or components) into two groups: data-centric and 
behavior-centric.

 In this chapter we discussed behavior-centric programs. You saw how to develop an 
application where behaviors aren’t hard-coded and new behavior can be added easily 
later, either during development or at runtime, simply by using a list of functions. 

Listing 8.18 Simplified implementation of the Template method (C#)

B

C

Selects branch to follow

Constructs tree 
with a root query

D
Specifies ResultDecision or 
QueryDecision as subtree
Licensed to   <kr_wilson@hotmail.com>



230 CHAPTER 8 Designing behavior-centric programs
Later, we investigated several ways to extend the data structure to combine functions 
and other functional data types to develop a decision tree, which combines data and 
behaviors in a single data type.

 We also talked about design patterns that are related to behavior-centric programs. 
In particular, you learned how the strategy pattern corresponds to higher-order func-
tions and how the command pattern relates to closures capturing mutable state in 
functional programming. Finally, we looked at how the template method pattern can 
be simplified using functions in C# 3.0.

 In part 3, we’ll focus on language features specific to F# and on advanced functional 
concepts. Chapter 9 starts with F# features that allow us to take the next step of the iter-
ative development style. You’ll see how to turn conceptually simple data types such as 
tuples of functions or discriminated unions into types that follow most of the .NET
design guidelines. This means that the types follow standard F# and .NET development 
guidelines, are easy to document, and could be distributed in a commercial F# or .NET
library. This also means that the library will be easily accessible from a C# application.

 

Licensed to   <kr_wilson@hotmail.com>



Part 3

Advanced F# 
 programming techniques

In part 2, we talked about functional concepts common to most functional 
languages. You could now say that you understand functional programming in 
the same way you can say you’re familiar with OOP after reading about encapsu-
lation, inheritance, and polymorphism. You’d still need to learn a few other 
things before you’d be an effective object-oriented developer, and functional 
programming in F# is no different. 

 In the same way that there are specific features in every object-oriented lan-
guage, there are useful features in F# that aren’t commonly available in other 
functional languages. The first example of this is in chapter 9 when we talk 
about object types and members. F# is a first-class citizen in the .NET world and 
allows us to both use and declare standard .NET objects. We’ll look at how to 
encapsulate standard functional code into objects, which is often the next step 
in the iterative development style. Objects provide a better way to structure your 
code, and make it easy to use F# functionality from C#.

 We’ll also discuss best practices that apply to functional F# code. In chapter 10, 
we’ll explore ways to optimize F# programs. We’ll explain how to guard against 
stack overflows when using recursion, and also provide techniques for improving 
program performance. In chapter 11, we’ll look at refactoring and unit testing, 
two practices that are now regarded as essential in virtually any language or pro-
gramming paradigm. In particular, we’ll see the effect that immutability has on 
both areas.
Licensed to   <kr_wilson@hotmail.com>



 In chapter 12 we’ll discuss better ways for working with sequences or collections of 
values, and about monads, a most mysterious term in the programming language 
word, but you’ll see that they’re not so complicated in reality. In some senses it’s a 
design pattern for composing code from simpler pieces so that the author of the 
monad can specify an additional aspect or behavior that’s added to the pieces written 
by the user. You’ll see that we’ve been already using this pattern; we didn’t explicitly 
call it out.

 After finishing this part of the book, you’ll be able to write efficient functional pro-
grams in general, but also take advantage of many language features specific to F#. 
You’ll also know how to use functional programming on the .NET platform. This 
includes the ability to combine functional, object-oriented, and imperative style, but 
also using standard techniques when writing and testing code. After finishing this 
part, you could successfully start looking for a job as an F# programmer. We’re cer-
tainly not suggesting that you skip part 4—it will show examples of how to combine all 
functional tricks that we talk about in this book.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Licensed to   <kr_wilson@hotmail.com>



Turning values into F# 
 object types with members
When we introduced F# in chapter 1, we described it as a multiparadigm language
that takes the best elements of several worlds. Most importantly, it takes ideas from 
both functional and object-oriented languages. In this chapter, we’re going to look 
at several features inspired by OOP or that allow fluent integration with object-ori-
ented .NET languages like C# and Visual Basic .NET (VB.NET).

 This chapter is particularly important for the later steps in the F# development 
process. As we’ve mentioned, functional simplicity allows us to write a program 
quickly and provides great flexibility. OOP in F# is valuable because it gives the code 
a solid structure, encapsulates related functionality, and allows painless integration 
with other systems or .NET programming languages. In this chapter, we’ll see how 
to take F# code that we developed earlier and evolve it to make it easier to use in a 
team or in a larger project.

This chapter covers
■ Declaring types with members
■ Using interfaces in a functional way
■ Writing class and interface types
■ Using F# code from C#
233

Licensed to   <kr_wilson@hotmail.com>



234 CHAPTER 9 Turning values into F# object types with members
9.1 Improving data-centric applications
Let’s go over a few elements of data-centric applications that we covered in the previ-
ous chapters. In chapter 7 we saw that the key aspect of data-centric application design 
is creating the data structures that will be used by the application. Functional lan-
guages give us very simple and conceptually clear constructs for thinking about data 
structures. We’ve seen all basic data types, namely tuples, discriminated unions, and 
records. We’ve also seen how to declare generic types that can be reused by many 
applications, and we’ve discussed some available in the F# libraries, such as the option 
type and the functional list.

 So far we’ve implemented operations separately from the data types. This is the 
usual approach in functional application design, unlike in OOP, where the operations 
are a part of type declaration. We discussed the motivation for this approach in chap-
ter 7, but let’s briefly review the key benefits for functional programs:

■ It allows us to easily add operations when working with discriminated unions.
■ Writing code in this way in F# makes the syntax very succinct, so the code can be 

written faster and we can easily prototype different solutions.
■ We can take the full advantage of the F# type inference. As we’ve seen when 

working with .NET objects, we often needed type annotations, because the com-
piler cannot infer the type based on the members that we call.

■ This programming style also better supports functional techniques such as par-
tial function application and pipelining.

■ The lightweight functional style makes it easier to run the code interactively 
using the F# Interactive shell.

TIP If we keep operations separately from the type, the data structure 
changes less frequently. Once you define the data structure, you can cre-
ate values of that type and keep them “alive” in F# Interactive. Then you 
can write the first version of the function, test it using F# Interactive, cor-
rect possible errors, improve it, and test it again on the same data. If we 
were updating the data structure together with all its operations, this pro-
cess would be a lot more difficult.

There are many reasons in favor of keeping operations as part of the data structure; 
you probably know most of them from experience with C#. Let’s demonstrate this 
using an example. In chapter 7, we wrote a simple Rect type and two functions to 
work with it. You can see the code repeated in listing 9.1. The example uses some 
types from the System.Drawing namespace, so if you’re creating a new project, you’ll 
need to add a reference to the System.Drawing.dll assembly.

open System.Drawing

type Rect =
   { Left:  float32; Top:    float32

Listing 9.1 Rect type with processing functions (F#)
Licensed to   <kr_wilson@hotmail.com>



235Improving data-centric applications
     Width: float32; Height: float32 }

let deflate(rc, wspace, hspace) =                                      
   { Left = rc.Left + wspace; Width  = rc.Width - (2.0f * wspace)
     Top  = rc.Top + hspace;  Height = rc.Height - (2.0f * hspace) } 

let toRectangleF(rc) =                                       
   RectangleF(rc.Left, rc.Top, rc.Width, rc.Height)

First we declare the type, then define two operations for working with rectangle val-
ues. The operations are implemented independently as F# functions, but, if we imple-
ment them as methods instead, it’s easier to discover them when writing the code. 
Instead of remembering the function name, you type a dot after the value name and 
Visual Studio’s IntelliSense pops up with a list of operations. The code is also better 
organized, because you know what operations belong to which type. The obvious 
conundrum is how to get the best from both of the approaches in F#.

9.1.1 Adding members to F# types

This is where the F# iterative style of development comes in handy. The ability to 
debug and test the code interactively is more important during the early phase of the 
development. As the code becomes more polished and we start sharing the project 
with other developers, it’s more important to provide the common operations as 
members that can be invoked using dot notation.

 This means that in F#, encapsulation of data types with their operations is typically 
one of the last steps of the development process. This can be done using members, 
which can be added to any F# type and behave just like C# methods or properties. 
Listing 9.2 shows how to augment the Rect type with two operations using members.

type Rect =           
   { Left    : float32
     Top      : float32
     Width   : float32
     Height : float32 }

   /// Creates a rectangle which is deflated by 'wspace' from the
   /// left and right and by 'hspace' from the top and bottom         
   member x.Deflate(wspace, hspace) =                             
      { Left = x.Left + wspace
        Top = x.Top + hspace
        Width = x.Width - (2.0f * wspace)
        Height = x.Height - (2.0f * hspace) }

   /// Converts the rectangle to representation from 'System.Drawing'
   member x.ToRectangleF() =
      RectangleF(x.Left, x.Top, x.Width, x.Height)

To create an F# data type with members, you write the member declarations after the 
normal F# type declaration. As you can see in the example, the member declarations 
have to be indented by the same number of spaces as the body of the type declaration. 

Listing 9.2 Rect type with operations as members (F#)

Shrinks 
rectangle

Converts to System.Drawing 
representation

B

C

D

Licensed to   <kr_wilson@hotmail.com>



236 CHAPTER 9 Turning values into F# object types with members
In listing 9.2, we started with a normal F# record type declaration B then added two 
different methods as members. 

 The member declaration starts with the keyword member. This is followed by the 
name of the member with a value name for the current instance. For example, 
x.Deflate means that we’re declaring a method Deflate and that, inside the body, 
the value x will refer to the current instance of the record. This acts in a similar way to 
the C# this keyword—think of it as a way of being able to call this anything you like. 
F# doesn’t reserve this as a keyword, so you can name the value this (by writing for 
example this.Deflate) and then refer to the current instance using the same key-
word as in C#. In this book, we’ll mostly use the name x, which is often used by the F# 
community for its brevity. Another name aside from this and x that’s also not an F# 
keyword is self. 

 The first member D takes a tuple as an argument and creates a rectangle, which is 
made smaller by subtracting the specified length from its vertical and horizontal sides. 
When creating types with members, F# developers usually declare a member’s param-
eters as a tuple. Done this way, they’re compiled as standard methods usable from C#. 
If you specify the parameters without parentheses, you can use standard functional 
techniques such as partial function application with members.

 Also note in the example that the comment preceding the member C now starts 
with three slashes (///). This is a kind of comment that specifies documentation for 
the member, analogous to C# XML comments. In F#, you can use similar XML-based 
syntax if you want, but if you write plain non-XML text, the comment is automatically 
treated as a summary.

 Now let’s see how we can use the members we’ve declared. After you select 
the code and run it in F# Interactive, you’ll see the type signature of the Rect type, 
which includes available members and their types. Listing 9.3 demonstrates calling 
both members.

> let rc = { Left = 0.0f; Top = 0.0f            
                 Width = 100.0f; Height = 100.0f };;  
val rc : Rect

> let small = rc.Deflate(10.0f, 30.0f);;     
val small : Rect = { Left = 10.0f; Top = 30.0f
                            Width = 80.0f; Height = 40.0f }

> small.ToRectangleF();;                                                   
val rcf : RectangleF = {X=10, Y=30, Width=80, Height=40} { ... }

We start by creating a value of the Rect type. This hasn’t changed; we still specify a 
value for each of the record type properties. The next command B invokes the 
Deflate member. As you can see, we can do this using standard object-oriented dot 
notation that we’ve already seen when working with .NET objects. In this case, the 
arguments are specified using a tuple, but if we specified them without parentheses in 
the declaration, the call would also use the F# function call syntax with parameters 

Listing 9.3 Working with types and members (F# Interactive)

Creates 
Rect value

B

C

Licensed to   <kr_wilson@hotmail.com>



237Improving data-centric applications
separated by a space. The last command C converts the rectangle into a value of the 
RectangleF object from System.Drawing. The example looks now very much like 
object-oriented code, but that doesn’t mean that we’re turning away from the func-
tional programming style in any sense. 

NOTE The code is still purely functional (as opposed to imperative), which 
means that there are no side effects, despite its more object-oriented orga-
nization. If you implemented this in the imperative style, the Deflate
method would probably modify the properties of the rectangle it was 
called on. Our implementation doesn’t do this. The Rect data type is still 
immutable: the property values can’t be changed once the instance has 
been created. So, instead of modifying the value, the member returns a 
new Rect value with modified properties. This is the same behavior that 
the original deflate function had, but it’s important to keep in mind 
that we can very nicely combine functional concepts (like immutability) 
with the object-oriented concepts (in this case, encapsulation). This isn’t 
an alien concept in an imperative object-oriented world, of course—look 
at the System.String type, which takes the same approach.

We’ve already mentioned that one of the benefits when using members instead of 
functions is that you can easily discover operations for working with the value using 
IntelliSense. In figure 9.1 you can see the Visual Studio editor working with Rect type.

 Another important benefit is that types with members are naturally usable from 
other .NET languages like C#. The Deflate member would look just like an ordinary 
method of the type if we were using it from C#, as you’ll see in section 9.5. We have to 
design the members carefully in order to make all of them compatible with C#, but 
it’s always possible. Some tricky cases include higher-order functions discussed in sec-
tion 9.5 and events that we’ll look at in chapter 16.

 When we turned functions into members in listing 9.2, we converted functions 
declared using let bindings into members declared using the member keyword. This 
worked, but we had to make quite large changes in the source code. Fortunately, we 
can avoid this and make smoother the transition from a simple F# style to a more idi-
omatic .NET style. 

Figure 9.1 A hint showing members of the Rect type when 
we’re editing F# source code inside Visual Studio IDE
Licensed to   <kr_wilson@hotmail.com>



238 CHAPTER 9 Turning values into F# object types with members
9.1.2 Appending members using type extensions

In the previous section, we mentioned that you can add members to any F# data type. 
This time, we’ll demonstrate it using a discriminated union. We’ll use a technique that 
allows us to add members without making any changes to the original code. This 
means that we’ll be able to leave the original type and original function declarations 
unmodified and add members to them later.

 We’ll extend an example from chapter 5 where we declared a schedule type. 
The type can represent events that occur once, repeatedly, or never. As well as the 
data type itself, we created a function calculates the next occurrence of the event. 
Listing 9.4 shows a slightly modified version of the code. We’ve made the code more 
compact and also refactored the Once branch of the pattern matching to use a 
simple utility function. The original code was in listing 5.5, if you want to compare 
the two.

type Schedule =      
   | Never
   | Once of DateTime
   | Repeatedly of DateTime * TimeSpan

let futureOrMaxValue(dt) =                                     
  if (dt > DateTime.Now) then dt else DateTime.MaxValue

let getNextOccurrence(schedule) =                       
   match schedule with
   | Never -> DateTime.MaxValue
   | Once(eventDate) -> futureOrMaxValue(eventDate)
   | Repeatedly(startDate, interval) ->
      let secondsFromFirst = (DateTime.Now - startDate).TotalSeconds
      let q = max (secondsFromFirst / interval.TotalSeconds) 0.0
      startDate.AddSeconds
         (interval.TotalSeconds * (Math.Floor(q) + 1.0))

The most interesting change is that we added the utility function futureOrMaxValue C. 
The change doesn’t improve readability very much; we made it only to demonstrate the 
choices available. In a more complicated project you’d definitely have several large util-
ity functions.

 The point is that in a typical F# source file, we start with the type declaration B, 
then have a bunch of utility (private) functions, then a couple of functions that we 
want to expose as members D. If we wanted to turn the last function into a member 
using the technique from the previous section, it would be quite difficult. The mem-
bers have to be written as part of the type declaration, but we usually want to put sev-
eral utility functions between the type and its members!

 The solution is to use intrinsic type extensions, which allow us to add members to a 
type declared earlier in the file. Listing 9.5 shows how we can use extensions with our 
schedule type.

Listing 9.4 Schedule data type with a function (F#)

B Declares original type

Implements 
helper calculation

C

D
Specifies public 
behavior
Licensed to   <kr_wilson@hotmail.com>



239Improving data-centric applications
type Schedule =
   | Never
   | Once of DateTime
   | Repeatedly of DateTime * TimeSpan

let futureOrMaxValue(dt) =
   (...)
let getNextOccurrence(schedule) =  
   (...)

type Schedule with                                              
   member x.GetNextOccurrence() = getNextOccurrence(x) 
   member x.OccursNextWeek =                                    
      getNextOccurrence(x) < DateTime.Now.AddDays(7.0)     

Most of the code hasn’t changed since listing 9.4, so we’ve omitted it for brevity. 
We’ve added only the last four lines of code. The first one C defines a type exten-
sion, which tells the F# compiler to add the following members to a type with the 
specified name. This is followed by the usual member declarations. As we’ve already 
implemented the core functionality as a function B, the member implementations 
are simple D. Aside from getting the next occurrence, we added one property E
that uses the private function to test whether the next occurrence happens during 
the next week.

 If you come from C# 3.0, you can see similarities between type extensions and 
extension methods. You can use type extensions to add methods and properties to 
existing types from other assemblies. The case in the previous listing was different, 
because we used the intrinsic type extension. This is a special case when we declare both 
the original type and the extension in a single file. In that case, the F# compiler
merges both parts of the type into a single class and also allows us to access private 
members of the type in the type extension.

 Listing 9.6 demonstrates calling the members from listing 9.5. Members added 
using type extensions behave in the same way as other members, so the listing 
shouldn’t contain any surprises.

> let sch = Repeatedly(DateTime.Now, TimeSpan(2, 0, 0, 0));;
val sch : Schedule

> sch.OccursNextWeek();;     
val it : bool = true

> let sch = Never;;
val sched : Schedule

> sch.OccursNextWeek();;     
val it : bool = false

Just as when we were working with records, we create the F# value in the usual way. For 
the discriminated union in our example, this means using the Repeatedly or Never

Listing 9.5 Adding members using intrinsic type extensions (F#)

Listing 9.6 Working with Schedule using members (F# Interactive)

B

C
D

E

Tests using 
repeated event

Tests behavior for 
unscheduled event
Licensed to   <kr_wilson@hotmail.com>



240 CHAPTER 9 Turning values into F# object types with members
discriminator. (We could have used the Once discriminator as well.) Once we have the 
value, we can invoke its members using the object-oriented dot notation. 

 As you’ve just seen, members are very useful when writing mature code, because 
they wrap the code into well-structured pieces and they make it easier to use the types. 
In the F# development process, we don’t usually start by writing code with members, 
but we add them once the code is well tested and the API design is fixed. We’ve dis-
cussed two ways of adding members: 

■ Append members directly to the type declaration, when the type is simple 
enough. 

■ Use intrinsic type extensions, which require fewer changes to the code, for 
more complex types. 

Type extensions have the additional benefit that we can test the type and its process-
ing functions in the F# Interactive tool before augmenting it, because we don’t have to 
declare the whole type in one go.

 You know that members are important for turning data-centric F# code into a real-
world .NET application or component. Now we’ll turn our attention to behavior-cen-
tric applications. 

9.2 Improving behavior-centric applications
In previous chapters, we’ve shown that functional programming is based on several 
basic concepts, which are then composed to get the desired result. We’ve seen this 
when discussing the ways to construct data types, with examples of tuples, functions, 
discriminated unions, and record types.

 When creating behavior-centric applications, we used a function type to represent 
the behavior and we composed it with other types. For example, we used a record type 
to store two related functions in a single value.

9.2.1 Using records of functions

Using records that store functions is a common technique in OCaml and to some 
extent also in F#. Before looking at possible improvements, listing 9.7 provides a 
reminder of the original solution in chapter 8.

type ClientTest =            
   { Check : Client -> bool
      Report : Client -> unit }

let testCriminal(client) = client.CriminalRecord = true
let reportCriminal(client) =
   printfn "'%s' has a criminal record!" client.Name

let tests =                                                        
   [ { Check = testCriminal       
        Report = reportCriminal };  
     (* more tests... *) ]

Listing 9.7 Testing clients using records of functions (F#)

Represents test

Creates record value
Licensed to   <kr_wilson@hotmail.com>



241Improving behavior-centric applications
The code first creates a record type that specifies types of functions that form the 
checking and reporting part of the test. It then creates two functions and combines 
them to form a value of the record type. Using records of functions is conceptually 
very simple, and it’s easy to refactor code using individual functions into a design 
using records. If we want to evolve this code into a more traditional .NET version, we 
can take one more step. 

 We mentioned earlier that the function type is similar to an interface with a single 
method. It’s not surprising that a record consisting of two functions is quite similar to 
an interface with two methods. In C# you’d almost certainly implement this design 
using an interface, and F# lets us do the same thing. 

 Similarly to members, interfaces are more important when creating robust applica-
tions or reusable .NET libraries. If we use an interface, we don’t say how it should be 
implemented. This gives us a lot of flexibility when we write the application. We’ll talk 
about ways to implement an interface in F# later in this chapter. Interfaces are also 
useful when developing a .NET library that should be callable from C#. If we declare 
an interface in F#, the C# code will see it as an ordinary interface. On the other hand, 
an F# record type with functions as members looks like a class with properties of some 
hard-to-use type. Let’s see how we can adapt our record type into an interface while 
still using it in a natural way from F#. 

9.2.2 Using interface object types

Just like records and discriminated unions, interfaces types are declared using the 
type construct. Listing 9.8 shows our earlier test record type converted to an interface 
type.

type ClientTest =                      
   abstract Check : Client -> bool     
   abstract Report : Client -> unit    

The declaration in listing 9.8 says that any type implementing the ClientTest inter-
face will need to provide two members. In the interface declaration, the members are 
written using the abstract keyword, which means that they don’t yet have an imple-
mentation. The declaration specifies the names and type signatures of the members. 
We didn’t explicitly say that we’re declaring an interface, but the F# compiler is smart 
enough to deduce that. If we, for example, provided implementation of one of the 
members, the compiler would realize that we want to declare an abstract class. In the 
usual F# programming practice, we’ll need abstract classes and implementation inher-
itance very rarely, so we’ll focus on working with interfaces in this chapter.

 One point to note before we move on to look at the implementations: in F#, we 
didn’t use the I prefix when declaring the interface; F# has ways to declare a type and 
attempts to unify all of them (for example, we don’t use D prefix when declaring dis-
criminated unions and so on). We can break the >NET rules when writing purely F# 

Listing 9.8 Interface representing client test (F#)
Licensed to   <kr_wilson@hotmail.com>



242 CHAPTER 9 Turning values into F# object types with members
code, but when writing an F# library that’s supposed to be used from other .NET lan-
guages, you should always follow all the standard .NET coding conventions in all pub-
lic API (for example, by using the I prefix for interfaces).

 If we wanted to create a test that checks, say, the criminal record of the client in 
C#, we’d have to write a new class implementing the interface. F# supports classes as 
well, but provides another solution called object expressions. This is inspired by func-
tional programming and is often more elegant, because we don’t have to write any 
class declarations before creating useful values. 

In listing 9.9, we’ll create tests to check the client’s criminal record and his income, 
and create a list of interface values just like our earlier lists of records.

> let testCriminal =
     { new ClientTest with                                 
        member x.Check(cl) = cl.CriminalRecord = true        
        member x.Report(cl) =                                            
           printfn "'%s' has a criminal record!" cl.Name };;
val testCriminal : ClientTest                                  

> let testIncome =
     { new ClientTest with
          member x.Check(cl) = cl.Income < 30000  
          member x.Report(cl) =                                                  
           printfn "Income of '%s' is less than 30000!" cl.Name };;
val testCriminal : ClientTest

> let tests = [ testCriminal; testIncome ];;  
val tests : ClientTest list

Listing 9.9 Implementing interfaces using object expressions (F# Interactive)

Object expressions and lambda functions
The analogy between interface and function types is useful when explaining what an 
object expression is. The signature of a function type describes it in an abstract 
sense. It specifies that the function takes arguments and returns a result of some 
type. The concrete code of the function is provided when we’re creating a function val-
ue. This can be done using a lambda function, which is an expression that returns a 
function, or a let binding, which creates a named function.

An interface is an abstract description of an object. It (1) defines that the object 
should have some members and (2) specifies their types. Again, we provide the ac-
tual code for the members when creating a concrete value. One option is to write a 
named class that implements the interface, which is similar to creating a named 
function. Object expressions are similar to lambda functions. They can be used any-
where in the code and create a value that implements the interface without specify-
ing the name of the type providing the actual code. If you’re familiar with Java, object 
expressions in F# are essentially the same as anonymous classes in Java.

B

C

D

Implements 
testing of client Implements 

reporting

Creates list of 
interface values
Licensed to   <kr_wilson@hotmail.com>



243Working with .NET interfaces
The code creates two values implementing the ClientTest interface type using object 
expressions. Each object expression is enclosed in curly braces and starts with an ini-
tial header B that specifies what interface we’re implementing. This is followed by 
the with keyword, then by the member declarations C. Syntactically, this is quite sim-
ilar to the type extensions that we discussed in the previous section. Member declara-
tions give an implementation for the members specified by the interface, so the 
expressions in listing 9.9 implement members Check and Report.

 The whole object expression fulfills the normal definition of an F# expression: it 
does a single thing, which is returning a value. If we look at the output from F# Inter-
active D, we can see that it returns a value of type ClientTest. This is the interface 
type, so the object expression returns a concrete value implementing the interface, 
just like a lambda function returns a function value implementing an abstract func-
tion type.

NOTE Technically, the F# compiler creates a class that implements the interface 
and object expression returns a new instance of this class. However, the 
declaration of the class is only internal, so we can’t access this class 
directly. The only thing we need to know about it is that it implements 
the specified interface. 

This is similar to anonymous types in C# 3.0, where the compiler also 
creates a hidden class behind the scenes that we can’t access directly. In 
C#, we know what the properties of the class are, but this information 
about properties is available only locally inside the method. On the 
other hand, in F# we know which interface the class implements, so we 
can work with it without any such limitations. We can write methods 
that return well-known interface types and implement them using 
object expressions.

In this section, you learned how to use interface types to make one final step in the 
iterative development of behavior-oriented applications in F#. Interfaces give us an 
idiomatic .NET solution, but F# provides features to allow us to work with interfaces in 
a natural way that’s consistent with its functional style. Thanks to the object expres-
sions, it’s easier to implement the interface than to construct a record of functions.

 Later in this chapter you’ll learn that using interfaces makes it possible to call F# 
code comfortably from C#. We haven’t yet talked about class declarations in F#, 
because ordinary classes aren’t used that frequently in pure F# projects, but we’ll look 
at them briefly in section 9.4. Before that, let’s see how we can take advantage of 
object expressions when using some common types from the .NET libraries. 

9.3 Working with .NET interfaces
The .NET Framework is fully object-oriented, so we’ll often work with interfaces when 
using .NET libraries from F#. In this section we’ll explore how to implement an inter-
face that can be used to customize equality of keys stored in the Dictionary object 
and we’ll work with the well-known interface for resource management: IDisposable.
Licensed to   <kr_wilson@hotmail.com>



244 CHAPTER 9 Turning values into F# object types with members
9.3.1 Using .NET collections

So far, we’ve mostly used the built-in F# list type for storing collections of data 
although, in some cases, it’s useful to work with other .NET types such as the Diction-
ary class from the System.Collections.Generic namespace. This type is particularly 
useful when we need fast access based on keys, because immutable types providing 
similar functionality (such as Map from the F# library) are less efficient.

 Note that the Dictionary type is a mutable type. This means that methods like Add
change the state of the object instead of returning a new, modified copy. This means 
we have to be careful when working with it in scenarios where we want to keep our 
code purely functional.

 Listing 9.10 shows how to create a simple lookup table using Dictionary and how 
to specify a custom way for comparing the keys by providing an implementation of the 
IEqualityComparer<T> interface.

> open System
   open System.Collections.Generic;;

> let noSpaceComparer = 
     let replace(s:string) = s.Replace(" ", "")  
     { new IEqualityComparer<_> with           
          member x.Equals(a, b) =                        
             String.Equals(replace(a), replace(b))  
          member x.GetHashCode(s) =                    
             replace(s).GetHashCode() };;             

> let scaleNames = new Dictionary<_, _>(noSpaceComparer)  
  scaleNames.Add("100", "hundred")
  scaleNames.Add("1 000", "thousand")
  scaleNames.Add("1 000 000", "million");;

> scaleNames.["10 00"];;
val it : string = "thousand"

> scaleNames.["1000000"];;
val it : string = "million"

This example demonstrates that object expressions can be quite useful when we 
need to call a .NET API that accepts an interface as an argument. In this case, the 
constructor of the Dictionary type C accepts an implementation of the IEquality-
Comparer<T> interface as an argument. The interface is then used to compare keys 
when accessing elements stored in the dictionary. We created a value called 
NoSpaceComparer, which implements the interface B. Our implementation com-
pares strings and ignores any spaces in the string. We did that by creating a utility 
function that removes spaces from any given string and then comparing the 
trimmed strings. We also implemented a method that calculates the hash code of the 
string, which is used by the Dictionary type to perform the lookup efficiently. 

Listing 9.10 Implementing the IEqualityComparer<T> interface (F# Interactive)

Removes spaces 
from string

B

Compares strings, 
ignoring spaces

C

Licensed to   <kr_wilson@hotmail.com>



245Working with .NET interfaces
 F# type inference helped us again in this listing. We used an underscore (_)
instead of the actual type when writing the object expression as well as when creating 
an instance of the Dictionary class. When the compiler sees the underscore, it uses 
other information to figure out what the actual type parameter is, and in this example 
it had enough information from other parts of the code.

 Another familiar interface for a .NET programmer is IDisposable, which is used 
for explicit cleaning of resources. Let’s see how we can use it from F#.

9.3.2 Cleaning resources using IDisposable

We’ve already worked with several types that implement IDisposable, like Graphics
and SolidBrush. We wanted to make the code as easy to follow as possible, so when we 
finished using the object, we explicitly called the Dispose method. 

 C# contains syntactic sugar for this in the form of the using statement, which 
makes sure that Dispose is called even if an exception is thrown within the body of the 
statement. F# has a similar construct with the use keyword. Listing 9.11 shows a simple 
example that works with files.

> open System.IO;;
> let readFile() =
     use reader = new StreamReader("C:\\test.txt")  
     let text = reader.ReadToEnd()
     Console.Write(text)
  ;;                                     
val readFile : unit -> unit

> readFile();;
Hello world!
Ahoj svete!      

When creating a StreamReader (which implements the IDisposable interface), we 
declare it using the use keyword B. Note that the syntax is similar to the let keyword 
in a usual let binding. The difference is that the F# compiler automatically adds a call 
to the Dispose method at the end of the function C, so the StreamReader is automat-
ically disposed after we finish working with it. The compiler also inserts a try-finally
block to make sure that the cleanup is run even when an exception occurs.

 An important difference between the using construct in C# and the use keyword 
in F# is that in C# we have to specify the scope explicitly using curly braces. In F# the 
Dispose method is called at the end of the scope where the value is visible. This is usu-
ally what we need, so it makes a lot of code snippets easy to write. Listing 9.12 shows 
the C# and F# versions.

// F# version
let test() =
   use reader = new StreamReader("C:\\test.txt") 

Listing 9.11 Working with files and the use keyword (F# Interactive)

Listing 9.12 Cleaning up resources in F# and C# 

B

C

Prints content 
of sample file
Licensed to   <kr_wilson@hotmail.com>



246 CHAPTER 9 Turning values into F# object types with members
   let text = reader.ReadToEnd()
   Console.Write(text)            

// C# version
void Test() {
   using(var reader = new StreamReader("C:\\test.txt")) {
      var text = reader.ReadToEnd(); 
      Console.Write(text);
   }                                        
}

In both languages, the object is disposed when the execution leaves the scope where 
the value reader is accessible B C. In F#, this happens at the end of the function by 
default, which is often what we need. When the function continues with code that can 
run for a long time, it’s better to make sure that the resource is disposed earlier. Let’s 
say that we’d like to close the file and print the content to the console after it’s closed. 
In C#, we’d have to create a local variable inside the function and assign it a value 
inside the using block. In F#, this can be done more easily, because we can specify the 
scope explicitly using whitespace:

let test() = 
   let text = 
      use reader = new StreamReader("C:\\test.txt")
      reader.ReadToEnd()
   Console.Write(text)

The syntax may be somewhat surprising, but it becomes clear once we realize that in 
F# every block of code is an expression. In the previous code, we’re specifying the way 
in which the expression is constructed in the same way as when we write (1 + 2) * 3
instead of the default 1 + (2 * 3). This way, we can limit the scope of the reader value 
to the expression that initializes the value of text.

 Even though the use keyword is primarily useful when working with .NET objects 
that keep some resources, it can be used for a wider range of scenarios. Let’s look at 
an example.
PROGRAMMING WITH THE USE KEYWORD

As we’ve seen, if we create a value using the use keyword, the compiler will automati-
cally insert a call to its Dispose method at the end of the function where it’s declared. 
This is useful for resources, but there are other situations where we need to enclose a 
piece of code between two function calls. 

 Suppose we want to output text to a console in a different color and then restore 
the original color. Traditionally, we’d have to store the original color, set the new one, 
send the output to the console, and restore the original color.

 The same thing can be done rather elegantly thanks to the use keyword. We can 
write a function that changes the color of the console and returns an IDisposable
value. This value contains a Dispose method, which restores the original color when 
called, and thanks to the use keyword, the method will be called automatically. List-
ing 9.13 shows the function and a demonstration of its use.

 

B

C

Licensed to   <kr_wilson@hotmail.com>



247Working with .NET interfaces
> open System;;

> let changeColor(clr) = 
     let orig = Console.ForegroundColor  
     Console.ForegroundColor <- clr   
     { new IDisposable with          
          member x.Dispose() = 
           Console.ForegroundColor <- orig };;  
val changeColor : ConsoleColor -> IDisposable

> let hello() = 
     use clr = changeColor(ConsoleColor.Red)  
     Console.WriteLine("Hello world!")
     ;;                                          
val hello : unit -> unit

The most interesting part of the code is the changeColor function. We can imagine 
that it contains two pieces of code. The first part is executed immediately when 
the function is called, and the second part is returned and executed at a later 
time. The first part of the code first stores the original color B and then sets the 
new one C. 

 The second part needs to be returned as a result. We could return it as a function 
(possibly using lambda function syntax), but then the caller would have to call it 
explicitly. Instead, we create an IDisposable value using an object expression D and 
place the code that restores the original color in the Dispose method E.

 When the changeColor function is used, the first part (which sets the new color) is 
executed immediately F. We store the result using the use keyword, so at the end of the 
function G the Dispose method is called and the original color is restored. You can see 
the result of running this code in the F# Interactive console window in figure 9.2. Note 
that we have to use the standalone console version of F# Interactive and not the inte-
grated Visual Studio window, which doesn’t support changing the text color. 

 The same idea is useful in other contexts, such as temporarily changing the cursor 
in a GUI to an appropriate “please wait” indicator, or temporarily changing the cur-
rent thread’s culture to a specific value when unit-testing culture-specific code. The 
clue here is the word temporarily, which suggests the “change something, do some 
work, restore the original value” pattern—ideal for the use keyword!

Listing 9.13 Setting console color using IDisposable (F# Interactive)

B
C

D

E

F

G

Figure 9.2 Changing the  
color of the console text using 
the changeColor function. 
You can see that the color is 
changed only inside the hello 
function and then the original 
color is restored.
Licensed to   <kr_wilson@hotmail.com>



248 CHAPTER 9 Turning values into F# object types with members
In all the examples showing object-oriented features, we used the standard F# types, 
interfaces, and object expressions. This is quite normal when using F# in a functional 
way, but the language supports other object-oriented features as well. As this book is 
primarily about functional programming we won’t discuss all of them, but we’ll look at 
a couple of the most important examples. 

9.4 Concrete object types
The most important construct of OOP is a class declaration. In F#, this is valuable 
when you’re writing a library that can be used from C#, because an F# class declara-
tion looks just like a normal class when referenced from C#. Conceptually, classes are 
a bit like records with members, because they store values in fields and provide mem-
bers for accessing them. Classes have additional features. In F#, you can typically use 
classes in the following scenarios:

■ When you need to encapsulate data and behavior.
■ In a later phase of the iterative development process when turning simple 

tuples or records into a more evolved type that hides internal implementation.
■ When the type needs to run some computation inside the constructor.

Classes aren’t used when you need to design an extensible type that supports adding 
of operations. Implementation inheritance and virtual methods are used only rarely. 

 Let’s start with the simplest possible example. Listing 9.14 shows a class declaration
with a constructor, several properties, and a method. 

> type ClientInfo(name, income, years) =      
     let loanCoefficient = income / 5000 * years
     do printfn "Creating client '%s'" name          

     member x.Name = name      
     member x.Income = income  
     member x.Years = years  

     member x.Report() =                                                                
        printfn "Client: %s, loan coefficient: %d" name loanCoefficient  
  ;;
type ClientInfo = (...)

> let john = new ClientInfo("John Doe", 40000, 2);;  
val john : ClientInfo
Creating client 'John Doe'

> john.Report();;         
Client: John Doe, q=16
val it : unit = ()

The declaration starts with the class name and constructor arguments B. The next cou-
ple of lines before the first member declaration are executed during construction. This 
part of code forms an implicit constructor. The arguments to the constructor (such as 

Listing 9.14 Class with client information (F# Interactive)

B
Executes during 
construction

C

D

Creates class, 
runs constructor

Invokes method 
of class
Licensed to   <kr_wilson@hotmail.com>



249Concrete object types
name and others) and values declared in the initialization code (like loanCoefficient) 
are accessible from anywhere inside the class. This is quite useful, because a C# con-
structor often only copies its arguments to private fields, so they can be accessed from 
other places. If you use the parameter only inside the code of the constructor, it isn’t 
stored as a field, because the compiler knows that we won’t need it.

 Next, the class contains three member declarations that expose constructor argu-
ments as properties of the client C and a single method D. Just like when adding 
members to F# data types, the x. prefix means that the current instance of the class 
can be accessed using the x value. We might use it to call another method or read 
other properties.

NOTE F# provides a richer set of features for declaring classes than what we’ve 
seen in this example. The goal of the F# language is to be a first-class 
.NET citizen, so nearly everything you can write in C# can also be 
translated to F#. However, in the usual F# programming, we don’t need 
advanced .NET object model features such as overloaded constructors 
and overloaded methods or, for that matter, publicly accessible fields.

The goal of this book is to introduce functional concepts and not to 
explain every F# feature, so we’ll look only at the most useful object-
oriented constructs that F# provides and how they work with the 
functional style. You can find more information about class declara-
tions on the book’s website and also in the [F# Documentation] 
and [F# Language Specification] in the Resources section at the end of 
this book.

The class from the previous example is still purely functional, in the sense that it 
doesn’t have any mutable state. This demonstrates how object-oriented and functional
paradigms can work very well together.

9.4.1 Functional and imperative classes

Just like the let bindings we’ve seen in other F# code, a let binding in a class or an 
argument to a class constructor is an immutable value. Also, a property declaration 
using the member keyword creates a read-only property (with only a getter). This 
means that if the class references only values of other immutable types, it will also 
become immutable. 

 Let’s say that we want to allow changes of the client’s income in the previous exam-
ple. This can be done in two ways: 

■ In a purely functional style, the object will return a new instance with updated 
income and the original values of all other properties. 

■ Using the imperative style, the income will be a mutable field. 

Listing 9.15 shows the functional version of the class (named ClientF) together with 
the imperative class named ClassI.  
Licensed to   <kr_wilson@hotmail.com>



250 CHAPTER 9 Turning values into F# object types with members
In the functional version, all properties remain read-only B. When we want to change 
the income of a client, we have to create a new instance of the client. This can be done 
easily using the WithIncome C method, which returns a copy of the object with the 
income set to the new value. 

 The imperative version declares an updatable field for storing the income using 
the mutable keyword D. When declaring the field, we use the same name for both the 
value and the constructor parameter. The new value hides the original one, meaning 
that we can no longer access the original value. This may seem strange at first, but it 
prevents you from accidentally using the initial value when you intend to use the cur-
rent (possibly changed) one.

 The next notable thing in the imperative version is the read/write property E for 
changing income of the client. The property is composed from two members, similar 
to method declaration. The get member doesn’t have any parameters and returns the 
value, while the set member has a single parameter for the new value and should 
return unit as the result. Even though the syntax is slightly different from that of a C# 
property declaration, the principles are the same.

 When we’re changing the income of a client, each of the two classes is used differ-
ently, but we can use both versions to get the same result. You can see an F# Interactive 
session demonstrating how to use the classes in listing 9.16.

> let joeOriginal = new ClientF("Joe", 30);;
val joeOriginal : ClientF

> let joeUpdated = joeOriginal.WithIncome(40);;  
val joeUpdated : ClientF

> joeUpdated.Income;;
val it : int = 40

> let joeMutable = new ClientI("Joe", 30);;
val joeMutable : ClientI

> joeMutable.Income <- 40;;      
val it : unit = ()

> joeMutable.Income;;
val it : int = 40

Listing 9.15 Functional and imperative version of Client type (F#)
type ClientF(name, inc) = type ClientI(name, inc) =
      member x.Name = name   
   member x.Income = inc  

   let mutable inc = inc  

   member x.Name = name
   member x.WithIncome(v) =     member x.Income 
      new ClientF(name, v)       with get() = inc     

      and set(v) = inc <- v  
   member x.Report() =
      printfn "%s %d" name inc    member x.Report() =

      printfn "%s %d" name inc

Listing 9.16 Programming functional and imperative Client type (F# Interactive)

B D

C
E

Creates new 
client instance

B

C
Mutates existing 
instance
Licensed to   <kr_wilson@hotmail.com>



251Concrete object types
When using the immutable version B, we store the returned client as a value with a 
new name. This means that we can still access the original value. We could use value 
hiding and use the same name for the value if we didn’t want to access the original 
instance later in the code. In the imperative version, we can update the income using 
the read/write property C. We’re using the <- operator just like when working with 
any other object declared in standard .NET library.

 Even though we’re concentrating on functional programming, it’s sometimes use-
ful to know how to write a mutable class like this. If you need to expose a larger piece 
of F# code to a C# client, you’ll probably wrap your code in at least one class, because 
this makes it easier to use from C#. At this point, you can choose which style to follow: 
an imperative one with some mutable types, or a purely functional one where every-
thing is mutable. The second solution is cleaner from the F# point of view, but devel-
opers who aren’t accustomed to dealing with libraries composed entirely of 
immutable types may find it easier to use a wrapper with mutable state.

 We’re nearly ready to show a complete example of calling F# code from C#, but we 
need to finish our tour of object-oriented F# features first. 

9.4.2 Implementing interfaces and casting

We’ve discussed how to declare an interface in F# and how to create a value that 
implements the interface using object expressions. This is a very lightweight solution 
similar to lambda functions. Just as lambda syntax isn’t always the appropriate choice 
for creating functions, it sometimes makes sense to implement an interface in a 
named class.

 We’re going to work with the same example as earlier in the chapter. We’ll look at 
implementing interfaces in both C# and F#, so let’s recap the declaration of the inter-
face in both languages:

// C# interface declaration
interface IClientTest {
   bool Check(Client client);
   void Report(Client client);
}
// F# Interface declaration
type ClientTest = 
   abstract Check : Client -> bool
   abstract Report : Client -> unit

The interface has two methods: one that tests the client and one that prints a report to 
the screen. Let’s suppose we want to implement the interface using a coefficient calcu-
lated from several properties. Earlier we created similar tests using object expressions, 
but when the code becomes more complex it’s better to move it into a separate class 
declaration or possibly into a separate source file. 

 Listing 9.17 shows the C# implementation testing a client’s income and how many 
years he’s been in his current job using weightings and a threshold, all specified in the 
constructor. The class uses explicit interface implementation, which is slightly unusual—
but we’ll see why when we look at the F# implementation.
Licensed to   <kr_wilson@hotmail.com>



252 CHAPTER 9 Turning values into F# object types with members
class CoefficientTest : IClientTest {                     
   readonly double incomeCoeff, yearsCoeff, minValue;

   public CoefficientTest(double ic, double yc, double min) {
      this.incomeCoeff = ic;                                                
      this.yearsCoeff = yc;                                                
      this.minValue = min;                                                 
   }                                                                              
   public void PrintInfo() {
      Console.WriteLine("income * {0} + years * {1} >= {2}", 
         incomeCoeff, yearsCoeff, minValue);  
   }
   bool IClientTest.Check(Client client) {                                
      return client.Income * incomeCoeff +                                  
         client.YearsInJob * yearsCoeff < min;                             
   }                                                                                     
   void IClientTest.Report(Client client) {                              
      Console.Write("Coeffficient {1} less than {0} ", minValue,   
         client.Income * incomeCoeff + cl.YearsInJob * yearsCoeff);
   }                                                                                     
}

To implement an interface member using the explicit syntax in C#, we include the 
name of the interface when writing the method B and remove the access modifier. 
This is a minor change, but the more important difference is how the class can be 
used. The methods from the interface (in our case Test and Report) aren’t directly 
accessible when using the class. To call them, we first have to cast the class to the inter-
face type. Let’s look at an example: 

var test = new CoefficientTest(0.001, 5.0, 50.0);
test.PrintInfo();                                 

var cltest = (IClientTest)test;                   
if (cltest.Check(john)) cltest.Report(john);

We can’t simply write test.Check(john), because Check isn’t directly available as a 
public method of the class. It’s only usable as a member of the interface, so we can 
access it using the cltest value, which has a type IClientTest. We used an explicit 
cast and the var keyword in the code, because that will help our understanding how 
interface implementations work in F#. Another option is to declare the variable type 
as IClientTest and then assign the test value to it, because the C# compiler would 
use implicit conversion to the interface type.

 Other than using explicit interface implementation, the class is wholly unremark-
able. We’re using it as a point of comparison with the F# code. Speaking of which…
IMPLEMENTING INTERFACES IN F#

Listing 9.17 uses explicit interface implementation in C# because that is the only style 
of interface implementation that F# allows. In the functional programming style, this 
is often adequate. If you really need to expose the functionality directly from the class, 
you can add an additional member that invokes the same code. Listing 9.18 shows an 
F# version of the previous example.

Listing 9.17 Client test using explicit interface implementation (C#)

Implements IClientTest

Stores 
arguments in 
private field

BImplements 
interface methods
Licensed to   <kr_wilson@hotmail.com>



253Concrete object types
type CoefficientTest(incomeCoeff, yearsCoeff, minValue) =  

   let coeff(client) =                                                               
      float(client.Income) * incomeCoeff +                                      
      float(client.YearsInJob) * yearsCoeff                                  
   let report(client) =                                                             
      printfn "Coefficient %f less than %f" (coeff(client)) minValue

   member x.PrintInfo() =
      printfn "income*%f + years*%f > %f" 
                   incomeCoeff yearsCoeff minValue

   interface ClientTest with                             
      member x.Report(client) = report(client)       
      member x.Check(client) = coeff(client) < min

Listing 9.18 uses so-called implicit class syntax, which means that it specifies parameters 
of the constructor directly in the declaration B. It takes three arguments specifying 
coefficients for the calculation. Since we’re referring to these parameters later in the 
members, the F# compiler will automatically store them in class fields. 

 Next, we defined two local helper functions using the standard let binding syn- 
tax C. These aren’t visible from outside of the class, and we use them only for other 
members later in the code. When implementing an interface D, we group all 
members from a single interface together using the interface ... with syntax 
and implement them using usual members. If we also wanted to expose some of the 
same functionality as a public method, we could add another member to the class 
declaration and call the local helper function. Alternatively, we could implement 
the functionality in the public member and call that member from the inter- 
face implementation.

 Working with the class is very much like the previous C# version, which was using 
explicit interface implementation. You can see the F# version of the code in listing 9.19.

> let test = new CoefficientTest(0.001, 5.0, 50.0);;  
val test : CoefficientTest

> test.PrintInfo();;                                
income*0.001000 + years*5.000000 > 50.000000

> let cltest = (test :> ClientTest);;  
val cltest : ClientTest

> if (cltest.Check(john)) then cltest.Report(john);;  
Coefficient 45.000000 is less than 50.000000.

Most of listing 9.19 should be quite straightforward. The only exception is the code 
that casts the value to the interface type B, because we haven’t yet talked about casts. 
In F#, there are two kinds of casts. In this case, the compiler knows at the compilation 
that the cast will succeed, because it knows that the class (CoefficientTest) imple-
ments the interface (ClientTest). This is called an upcast. In the next section, we’ll 
look at both of the casts in detail.

Listing 9.18 Implementing interface in a class (F#)

Listing 9.19 Working with F# classes and interfaces (F# Interactive)

B

C

D

Creates instance 
of class

Uses method 
of class

B
Uses methods 
of interface
Licensed to   <kr_wilson@hotmail.com>



254 CHAPTER 9 Turning values into F# object types with members
UPCASTS AND DOWNCASTS IN F#

When the conversion between the types can’t fail, it’s called an upcast. We’ve seen that 
this is the case when converting a type to an interface implemented by that type. 
Another example is casting a derived class to its base class. In this case the compiler 
can also guarantee that the operation is correct and won’t fail.

 If we have a value of a base type and we want to cast it to an inherited class, the 
operation can fail because the value of the base class may or may not be a value of the 
target class. In this case, we have to use a second type of casting, which is called a down-
cast. Let’s demonstrate this using an example. We’ll use the standard Random class, 
which is (just like any other .NET class) derived from the Object class:

> open System;;
> let rnd = new Random();;
val rnd : Random

> let rndObject = (rnd :> Object);;  
val obj : Object

> let rnd2 = (rndObject :> Random);;                             
stdin(4,12): error: Type constraint mismatch.                  
The type 'Object' is not compatible with the type 'Random'

> let rnd2 = (rndObject :?> Random);;  
val rnd2 : Random

> (rndObject :?> String);;
System.InvalidCastException: Unable to cast object of type 
   'System.Random' to type 'System.String'.

As you can see, if we accidentally try to use an upcast inappropriately, the F# compiler 
reports this as an error. The error message says that Object isn’t compatible with Ran-
dom, which means that the compiler can’t guarantee that the value of type Object can 
be casted to the Random type. Finally, the listing shows that a downcast can fail and 
throws an exception if we try to cast an object to the wrong inherited class.

 A good way to remember the F# syntax for upcasts (:>) and downcasts (:?>) is to 
realize that there’s some uncertainty when using downcasts, because the operation 
can fail. This uncertainty is the reason why the downcast operator contains the ques-
tion mark symbol and upcast doesn’t. The F# language also provides an equivalent to 
the is operator known from C# that returns a Boolean value specifying whether an 
object instance can be casted to the specified type. To test whether obj can be casted 
to String, we’d write obj :? String.

 It’s worth thinking about the differences between F# and C# here. In C#, we didn’t 
even need the cast in listing 9.17: when the compiler knows the conversion can succeed 
and it’s not needed for disambiguation, you can let it occur implicitly. F# doesn’t per-
form any conversions implicitly, so it makes sense for it to have a language construct 
expressing conversions that are guaranteed to succeed. In C# it wouldn’t make sense 
as you’d use it so rarely—it’s simpler to use the same syntax for both kinds of conver-
sion. The programming style where you specify conversions explicitly makes type 
inference possible, but it also often helps to clarify what code actually does.

Succeeds--operation 
can’t fail

Invalid use 
of upcast

Succeeds--but 
could fail
Licensed to   <kr_wilson@hotmail.com>



255Using F# libraries from C#
 It would be impossible to review all the object-oriented features of F# in a single 
(reasonably sized!) chapter, but we’ve seen that the ones that are most important in 
order to evolve functional applications into real-world .NET code.

 We’ve said several times that these changes make our F# code more easily accessi-
ble from C#, and it’s time to provide proof of that, and show how the interoperability 
hangs together.

9.5 Using F# libraries from C#
Like C#, F# is a statically typed language, which means that the compiler knows the 
type of every value as well as signatures of class methods and properties. This is very 
important for interoperability with C#, because the compiler can generate code that 
looks just like an ordinary .NET library.

When creating F# libraries that should be usable from C#, we need to distinguish 
between two kinds of F# constructs. The first kind includes classes or records with 
members, which appear as standard C# classes and can be used without any trouble. 
The second kind includes values or higher-order functions that are compiled in a 
nonstandard way and are harder to use from C#. Let’s start by looking at an example 
of the first kind.

Interoperability with other .NET languages
The interoperability between F# and C# or VB.NET is very smooth compared to dy-
namically typed languages that have a .NET implementation like Python, Ruby, or 
JavaScript. Compilers for these languages don’t know whether a method takes an 
argument of type int or, for example, Customer, so using code written in these 
languages is more difficult when using C# 3.0. Often you don’t even know whether 
an object contains a method with a particular name, so the C# code has to look 
like this:

obj.InvokeMethod("SayHello", new object[] { "Tomas" });

This example specifies the name of the method as a string and passes the arguments 
to the method in an array. This is an important problem for many languages, so C# 4.0
introduces the dynamic type, which allows you to write something like this:

obj.SayHello("Tomas");
obj.SaiHello("Tomas");

The syntax is the same as for normal method calls, but there’s an important differ-
ence. We intentionally added another method call, but with a misspelled method 
name. This will compile correctly, because the method name is internally represent-
ed as a string just as in the previous example. The problem only comes to light at 
runtime. The fact that F# is statically typed means we don’t have to worry about this: 
we can rely on the compiler to spot the same kinds of errors it would when calling 
into other C# code. 
Licensed to   <kr_wilson@hotmail.com>



256 CHAPTER 9 Turning values into F# object types with members
9.5.1 Working with records and members

We’ll start with a basic example. In the first section of this chapter, we saw how to add 
members to the Rect type that represents a rectangle. Now we’re going to use the type 
from C#. First we need to create a new F# “Library” project and add a source file (for 
example, export.fs) containing the code from listing 9.20.

namespace Chapter09.FSharpExport  

open System
open System.Drawing

type Rect =
    {  Left : float32; Width : float32 
       Top : float32; Height : float32 }  

   member x.Deflate(wspace, hspace) =                                     
      { Top = x.Top + wspace; Height = x.Height - (2.0f * hspace)    
         Left = x.Left + hspace; Width = x.Width - (2.0f * wspace) }
   member x.ToRectangleF () =                                                
      RectangleF(x.Left, x.Top, x.Width, x.Height)                   

As you can see, we’ve added a single line to specify the .NET namespace B. This 
namespace will contain all the type declarations from the file (in our case, there’s only 
a single type called Rect). This type will be easy to use from C# because the fields of 
the record C will become properties and members D will appear as methods.

 Next we’re going to add a new C# project to the solution. Adding a reference to 
the F# project is done exactly as if you were referencing another C# class library, 
although you should also add a reference to the FSharp.Core.dll assembly. This is an 
F# redistributable library that contains the F# core functions and types. After config-
uring the projects, you should see something similar to figure 9.3. The figure also 
shows how other F# types from this chapter appear in IntelliSense from C#. 

 If you experiment with IntelliSense, you’ll see that the F# type is present in the 
namespace we specified in its source code. IntelliSense also shows what properties and 
methods the type has, so you’d surely be able to use it without any further help. For 
completeness, listing 9.21 gives an example.

using System;
using Chapter09.FSharpExport;

class Program {
   static void Main(string[] args) {
      var rc1 = new Rect(0.0f, 100.0f, 0.0f, 50.0f);  
      var rc2 = rc1.Deflate(20.0f, 10.0f);          
      Console.WriteLine("({0}, {1}) - ({2}, {3})",
         rc2.Left, rc2.Top, rc2.Width, rc2.Height);
   }
}

Listing 9.20 Compiling F# types into a library (F#)

Listing 9.21 Using types from the F# library (C#)

B

C

D

B
C

Licensed to   <kr_wilson@hotmail.com>



257Using F# libraries from C#
The code listing 9.21 first creates an instance of the Rect type. It uses a constructor that 
was automatically generated by the F# compiler B and corresponds to the F# code for 
creating a record. We have to specify values for all the fields of the record at construc-
tion time—we can’t change them later, as the type is immutable. The next step is to 
invoke the Deflate method B. This is a perfectly ordinary method, although it’s 
implemented in a purely functional style so it returns a new Rect value instead of 
mutating the existing one. Finally, we print the information about the returned rectan-
gle. This is also easy, because record fields are exposed as .NET properties.

NOTE We’ve looked at referencing F# projects from C# because this is a com-
mon scenario and we wanted to explicitly show how nicely the two lan-
guages play together when the F# code uses object types. You can also 
reference F# libraries from F# applications. The steps to do this would be 
the same: specify a namespace for the F# library, add a reference in 
Visual Studio, and add an appropriate open directive to your F# applica-
tion. It’s worth noting that when referencing an F# library from F#, the 
compiler will recognize that the library is authored in F# and all con-
structs (such as discriminated unions or functions) will be accessible in 
the normal F# way.

Figure 9.3 After adding a reference to the F# library, we can see types from the F# 
project in IntelliSense. The F# record type Rect is compiled as an ordinary class.
Licensed to   <kr_wilson@hotmail.com>



258 CHAPTER 9 Turning values into F# object types with members
Using the Rect type from C# is quite simple, and figure 9.3 shows other types from 
this chapter. An F# Interface declaration (ClientTest) shows as an ordinary .NET
interface, so the interoperability works very smoothly. What if we wanted to export a 
higher-order function or a value? What would these two constructs look like in C#?

9.5.2 Working with values and delegates

In this section, we’re going to look at using two more typical F# constructs from C#. 
We’ll see how to export a value and a higher-order function. The latter is tricky, 
because F# uses quite a sophisticated internal representation for functions. 

 If a function took int -> int -> int as an argument, a C# developer would see this 
as FastFunc<int, FastFunc<int, int>>. It’s possible to work with this type, but it isn’t 
very convenient; we’ll use a different approach. If we’re writing a higher-order func-
tion that should be used from C#, we can use standard .NET delegates. This isn’t as 
natural as using normal functions in F#, but the library will be much simpler to use 
from C#.

 Another problem crops up when we want to export a value or function directly: 
methods (and fields) don’t appear on their own in .NET, or even as part of a 
namespace—they’re always part of a type. The very idea of a method existing with no 
containing type to love and nurture it is enough to make a compassionate C# devel-
oper distraught. Help is at hand in the form of F# modules. Listing 9.22 shows how a 
value and a utility function can be exported so they can be used from C#, and also 
demonstrates the previous point about using delegates for higher-order functions.

namespace Chapter09.FSharpExport
open System

type Client =
  { Name : string; Income : int; YearsInJob : int
     UsesCreditCard : bool; CriminalRecord : bool }

module Tests =                                               
    let John = 
      { Name = "John Doe"; Income = 25000; YearsInJob = 1
         UsesCreditCard = true; CriminalRecord = false }

    let WithIncome (f:Func<_, _>) client =               
        { client with Income = f.Invoke(client.Income) }  

The module declaration B tells the F# compiler to enclose the values and functions 
into a class with static methods (when compiling functions) and static properties (for 
values). We’ve chosen to follow the C# naming conventions here (using Pascalcase) as 
the reason for creating the module in the first place is to expose the values to C#.

 The next point to note is the WithIncome function. It’s a higher-order function, but 
instead of taking a normal F# function as an argument, it takes a .NET delegate Func
with two generic arguments C. We’re using an underscore so the F# compiler infers 
the actual types for us. When we need to invoke the delegate later in the code D, we 

Listing 9.22 Exporting values and higher-order functions (F#)

B

C
D

Licensed to   <kr_wilson@hotmail.com>



259Summary
use its Invoke method. This is somewhat inelegant compared with normal F# function 
calling, but it means the C# client can work with it in an idiomatic manner using 
lambda functions: 

var client = Tests.John;                                     
client = Tests.WithIncome(income => income + 5000, client);  
Console.WriteLine("{0} - {1}", client.Name, client.Income);

The module that we called Tests is compiled into a class, so the value John becomes a 
static property of this class and WithIncome becomes a method. As you can see, it takes 
an argument of type Func<int, int>, so anyone who knows C# 3.0 can use it even 
though the code is actually written in F#. In reality, we could make WithIncome a 
member of the Client type and the C# user would call it using the familiar dot nota-
tion. However, we wanted to demonstrate that even basic F# functions can be used 
from C# with no problems.

9.6 Summary
In the last few chapters, we’ve talked about functional programming and imple-
mented several sample applications in the functional style. We started with simple 
functional ideas such as combining values into “multiple values” or “alternative val-
ues,” then we discussed ways of working with functions. In chapters 7 and 8 we talked 
about the design of functional programs. This wasn’t a haphazard decision: the struc-
ture of the book corresponds to the iterative F# development style. We started with 
simple concepts that allowed us to solve problems succinctly and quickly. In this chap-
ter we took the final step of the iterative development process, exposing our code in 
familiar .NET terms.

 We’ve seen members that allow us to encapsulate functionality related to a type 
with the type itself and intrinsic type extensions that can be used if we already have the 
code as ordinary functions. Next, we looked at abstract types (interfaces) that are 
quite useful when writing behavior-centric applications. We also discussed classes, 
which are particularly important in interoperability scenarios.

 There are still many things that we haven’t covered. In the next few chapters, we’re 
going to turn our attention from architectural aspects back to the core functional pro-
gramming techniques. In the upcoming chapter, we’re going to revisit lists and simple 
recursive functions, and you’ll see essential techniques for writing efficient functional 
code. This is an important aspect that we skipped earlier to make the introduction as 
simple as possible. You’ve already mastered all the basic functional ideas, so we’re now 
ready to dive into important advanced techniques.

 

Licensed to   <kr_wilson@hotmail.com>



Efficiency of 
 data structures
So far in this book, we’ve used functional techniques such as recursion and func-
tional data structures like immutable lists. We’ve written the code in the most 
straightforward way we could, using the basic F# collection type (a list) and express-
ing our intentions directly. This works very well in many situations, but when it 
comes to processing large data sets, “obvious” code sometimes leads to perfor-
mance problems. In this chapter, we’ll look at techniques for writing code that 
work regardless of the size of the input and examine ways to optimize the perfor-
mance of functions working with data. We’ll still strive to keep the code as readable 
as possible.

 If you’ve been developing for any significant length of time, you’ve almost cer-
tainly written a program that caused a stack overflow exception. In functional pro-
gramming this error can easily be caused by a naïvely written recursive function, so 

This chapter covers
■ Optimizing and improving recursive functions
■ Using tail-recursion and continuations
■ Working efficiently with lists and arrays
260

Licensed to   <kr_wilson@hotmail.com>



261Optimizing functions
we’ll explore several ways of dealing with functions that can cause this error when pro-
cessing large amounts of data. This will be our starting topic, and we’ll return to it at 
the end of the chapter.

 In between these discussions on recursion, we’ll discuss functional lists and arrays. 
When working with functional lists, it’s important to understand how they work so you 
can use them efficiently. F# also supports arrays that can give us better performance in 
some situations. Even though arrays are primarily imperative data types, you’ll see that 
we can use them in a very functional way.

10.1 Optimizing functions
In earlier chapters, you learned that recursion is the primary control flow mechanism 
for functions in F#. We first used it for writing simple functions that perform some cal-
culation, such as adding up numbers in a specified range or working out a factorial. 
Later we found it invaluable while working with recursive data structures—most 
importantly lists.

 You may be familiar with several limitations of recursion, and the possibility of 
stack overflow is the most obvious one. As you’ll see, some recursive computations can 
be very inefficient too. In imperative languages, you’d often use nonrecursive func-
tions to avoid problems. Functional languages have developed their own ways of deal-
ing with these problems and can work with recursion efficiently. First let’s concentrate 
on correctness: it’s no good being really efficient with up to 1 KB of data if an extra 
byte blows your stack…

10.1.1 Avoiding stack overflows with tail recursion

For every function call, the runtime allocates a stack frame. These frames are stored on 
a stack maintained by the system. A stack frame is removed when a call completes; if a 
function calls another function, then a new frame is added on top of the stack. The 
size of the stack is limited, so too many nested function calls leave no space for 
another stack frame, and the next function can’t be called. When this happens in 
.NET, a StackOverflowException is raised. In .NET 2.0 and higher, this exception
can’t be caught and will bring down the whole process.

 Recursion is based on nested function calls, so it isn’t surprising that you’ll 
encounter this error most often when writing complex recursive computations. 
(That may not be true. The most common cause in C# is probably writing a prop- 
erty that accidentally refers to itself instead of its backing field. We’ll ignore such 
typos and only consider intentional recursion.) Just to show the kind of situation 
we’re talking about, let’s use the list-summing code from chapter 3, but give it a 
really big list.

> let test1 = [ 1 .. 10000 ]    
   let test2 = [ 1 .. 100000 ];;  
val test1 : int list

Listing 10.1 Summing list and stack overflow (F# Interactive)

Creates lists 
for testing
Licensed to   <kr_wilson@hotmail.com>



262 CHAPTER 10 Efficiency of data structures
val test2 : int list

> let rec sumList(lst) =
     match lst with
     | [] -> 0                           
     | hd::tl -> hd + sumList(tl);;  
val sumList : int list -> int

> sumList(test1)         
val it : int = 50005000 

> sumList(test2)         
Process is terminated due to StackOverflowException.

Just like every recursive function, sumList contains a case that terminates the recur-
sion B and a case where it recursively calls itself C. The function completes a certain 
amount of work before performing the recursive call (it performs pattern matching 
on the list and reads the tail), then it executes the recursive call (to sum the numbers 
in the tail). Finally, it performs a calculation with the result: it adds the value stored in 
the head with the total sum returned from the recursion. The details of the last step 
are particularly important, as you’ll see in a moment.

 As we might have predicted, there’s a point when the code stops working. If we 
give it a list with tens of thousands of elements D, it works fine. For a list with hun-
dreds of thousands of elements, the recursion goes too deep and F# Interactive 
reports an exception E. Figure 10.1 shows what’s happening: the arrows above the 
diagram represent the first part of the execution, before and during the recursive call. 
The arrows below the diagram represent the recursion returning the result.

 We used a notation [ 1.. ] to denote a list containing series that begins with 1. In 
the first case, F# Interactive starts executing sumList with a list from 1 to 10000 as its 
argument. The figure shows how a stack frame is added to the stack for each call. 
Every step in the process takes the tail of the list and uses it as an argument for a recur-
sive call to sumList. In the first case, the stack is a sufficient size, so we eventually 
reach a case where the argument is an empty list. In the second case, we use up all of 
the space after roughly 64,000 calls. The runtime reaches the stack limits and raises 
a StackOverflowException. 

B
C

D

E

sumList
lst = [ 1.. ]

sumList
lst = [ 64201.. ]

sumList
lst = [ 2.. ]

...F# Interactive

sumList
lst = [ 1.. ]

sumList
lst = [ 10000 ]

sumList
lst = [ 2.. ]

...F# Interactive sumList
lst = [ ]

stack limit

Executing sumList test1:

Executing sumList test2:

Figure 10.1 Stack frames when summing numbers in a list. In the first case, the 
stack frames fit within the limit, so the operation succeeds. In the second case, the 
calculation reaches the limit and an exception is thrown.
Licensed to   <kr_wilson@hotmail.com>



263Optimizing functions
Both arrows from the left to the right and back again do some work. The first part of the 
operation is executed before the recursive call and decomposes a list into head and tail 
components. The second part, executed after the recursive call completes, adds the 
value from the head to the total.

 Now we know why it’s failing, what can we do about it? The essential idea is that we 
only need to keep the stack frame because we need to do some work after the recur-
sive call completes. In our example, we still need the value of the head element so we 
can add it to the result of the recursive call. If the function didn’t have to do anything 
after the recursive call completed, it could jump from the last recursive call back, 
directly to the caller, without using anything from the stack frames in between. Let’s 
demonstrate this with the following trivial function:

let rec foo(arg) = 
   if (arg = 1000) then true
   else foo(arg + 1)

As you can see, the last operation that the foo function performs in the else branch is 
a recursive call. It doesn’t need to do any processing with the result; it returns the 
result directly. This kind of recursive call is called tail recursion. Effectively, the result of 
the deepest level of recursion—which is a call to foo(1000)—can be directly returned 
to the caller.  

In figure 10.2, you can see that the stack frames created during the computation 
(while jumping from the left to the right) are never used on the way back. This means 
that the stack frame is only needed before the 
recursive call, but when we recursively call 
foo(2) from foo(1), we don’t need the stack 
frame for foo(1). The runtime can simply 
throw it away to save the space. Figure 10.3 
shows the actual execution of the tail-recursive 
function foo.

 Figure 10.3 shows how F# executes tail-recur-
sive functions. When a function is tail recursive, 
we need only a single slot on the stack. This 
makes the recursive version as efficient as an 
iterative solution. 

 You may be wondering whether every 
recursive function can be rewritten to use tail 

foo
arg = 1

foo
arg = 1000

foo
arg = 2 ...F# Interactive

Figure 10.2 The recursive function foo doesn’t do anything after 
the recursive call. The execution can jump directly to the caller (F# 
Interactive) from the last recursive call, which is foo(1000).

foo
arg = 1F# Interactive

foo
arg = 2F# Interactive

...

foo
arg = 1000F# Interactive

Figure 10.3 Execution of a tail-
recursive function. The stack frame can 
be dropped during the recursive call, so 
only a single frame is needed at any point 
during the execution.
Licensed to   <kr_wilson@hotmail.com>



264 CHAPTER 10 Efficiency of data structures
recursion. The answer is yes, but the general technique, which we’ll discuss in sec-
tion 10.3, is a bit complicated. The rule of thumb is that if a function executes a 
single recursive call in each branch, we should be able to use a relatively straightfor-
ward trick.
USING AN ACCUMULATOR ARGUMENT

Let’s think about how we’d make the sumList function tail recursive. It only performs 
the recursive call once in the branch where the argument is a cons cell (a nonempty 
list). Our rule of thumb suggests that it shouldn’t be difficult—but at the moment it 
does more than return the result of the recursive call: it adds the value from the head 
to the total number.

 To turn this into a tail-recursive function, we can use a technique that supplies an 
accumulator argument. Instead of calculating the result as we jump from the right to the 
left (in the earlier figures, as we’re coming back toward the original function call), we 
can calculate the result as part of the operation that runs before the recursive call. 
We’ll need to add another parameter to the function to provide the current result. 
Listing 10.2 shows this technique.

 

Tail recursion in the .NET ecosystem
When compiling function that uses tail recursion, the F# compiler uses two tech-
niques. In cases when the function calls itself (such as foo in the previous example), 
it translates the recursive code to equivalent code that uses imperative loops. Tail 
calls also occur when several functions recursively call each other. In this case the 
compiler cannot easily rewrite the code and uses a special tailcall instruction that 
is directly supported by the Intermediate Language (IL).

In the debug configuration, the second optimization is turned off by default, because 
it complicates debugging. In particular, the stack frames are dropped during a tail call, 
so you can’t see them in the stack trace window. You can turn this feature on in the 
project properties using the “Generate tail calls” check.

Since tail calls are directly supported by IL, the C# compiler could also spot tail-recur-
sive calls and make use of this optimization. At the moment, it doesn’t do so, be-
cause C# developers normally design code in imperative fashion where tail recursion 
isn’t needed. 

That’s not to say that the runtime won’t use tail call optimizations with code written 
in C#. Even if the IL doesn’t contain explicit hints that it wants to use a tail call, the 
just-in-time compiler (JIT) may notice that it can do so safely and go ahead. The 
rules for when this happens are complicated, and vary between the x86 and x64 JIT 
compilers. They’re subject to change at any time. In .NET 4.0 the JIT was improved 
in many ways, so it uses tail recursion more often. Also it never ignores the 
tailcall instruction, which was occasionally the case in .NET 2.0, especially in 
the x64 version.
Licensed to   <kr_wilson@hotmail.com>



265Optimizing functions
> let rnd = new System.Random()
   let test1 = List.init 10000 (fun _ -> rnd.Next(-50, 51))    
   let test2 = List.init 100000 (fun _ -> rnd.Next(– 50, 51);;  
val rnd : Random
val test1 : int list = [1; -14; -35; 34; -1; -39; ...]
val test2 : int list = [29; -44; -1; 25; -33; 36; ...]

> let sumList(lst) =
     let rec sumListUtil(lst, total) =   
        match lst with 
        | [] -> total                     
        | hd::tl ->  
           let ntotal = hd + total   
           sumListUtil(tl, ntotal)          
     sumListUtil(lst, 0);;        
val sumList : int list -> int

> sumList(test1);; 
val it : int = -2120  

> sumList(test2);; 
val it : int = 8736 

Listing 10.2 begins by generating two lists containing random numbers B. We’re using 
a function List.init that takes the required length of the list as the first argument and 
calls the provided function to calculate value of the element at the specified index. 
We’re not using the index in the computation, so we used “_” to ignore it. The reason 
we need better testing input is that if we added all numbers between 1 and 100,000, we’d 
get incorrect results, because the result wouldn’t 
fit into a 32-bit integer. We’re generating ran-
dom numbers between –50 and +50, so in prin-
ciple the sum should be very close to zero.

 The most interesting part of the listing is the 
sumList function. When we use an accumulator 
argument, we need to write another function with 
an additional parameter. We don’t usually want 
this to be visible to the caller, so we write it as a 
local function C. The accumulator argument (in 
our example, total) stores the current result. 
When we reach the end of the list, we already have 
the result, so we can just return it D. Otherwise, 
we add the value from the head to the result and 
perform a recursive call with the accumulator set 
to the new value E. Figure 10.4 shows how the 
new computation model works. Both the call to 
the utility function and the recursive call inside it 
return the result immediately, so they can be exe-
cuted using the tail call. 

Listing 10.2 Tail-recursive version of the sumList function (F# Interactive)

B

C

D

E Makes 
recursive call

Calls helper 
with total=0

Both calls 
compute 
the result!

sumListUtil
lst = [ 31; -28; 5; …; 7 ]

total = 0
F# Interactive

sumListUtil
lst = [ -28; 5; …; 7 ]

total = 31
F# Interactive

sumListUtil
lst = [ 7 ]

total = 8729
F# Interactive

...

sumList
lst = [ 31; -28; 5; …; 7 ]

F# Interactive

Figure 10.4 Execution of the tail-
recursive sumList function. The first 
call invokes the utility function, which 
keeps track of the current result of 
summing all preceding elements using 
an accumulator argument (total).
Licensed to   <kr_wilson@hotmail.com>



266 CHAPTER 10 Efficiency of data structures
 The sumList example isn’t difficult, but it demonstrates the idea of using an accu-
mulator. We add another parameter to the function and use it to calculate a tempo-
rary result before making the recursive call. When you’re trying to make a function 
tail recursive, look at the information you’re currently using after the recursive call, 
and try to find a way to pass it into the recursive call instead.

 We’ll see some trickier examples when we talk about list processing, but we’ll take 
a detour first, via another important optimization technique: memoization. 

10.1.2 Caching results using memoization

Memoization, described as caching the results of a function call, may sound compli-
cated, but the technique is very simple. As we mentioned earlier, most functions in 
functional programming do not have side effects. This means that if we call a function
with the same argument twice, we’ll get the same result. 

 If we’re going to get the same result we got last time, why would we want to go to 
all the trouble of executing the function again? Instead, we can cache the results. If we 
store the result of the first call in some dictionary, we won’t need to recompute the 
value for the second call. We can read the result from the dictionary and return it 
right away. Listing 10.3 shows a function that adds two integers.

> open System.Collections.Generic;;

> let addSimple(a, b) =         
     printfn "adding %d + %d" a b      
     a + b
  ;;
val addSimple : int * int -> int

> let add =                                    
     let cache = new Dictionary<_, _>()
     (fun x ->                                          
        match cache.TryGetValue(x) with
        | true, v -> v                           
        | _ -> let v = addSimple(x)       
               cache.Add(x, v)               
               v)                                 
  ;;
val add : (int * int -> int)

> add(2,3);;                   
adding 2 + 3                      
val it : int = 5               

> add(2,3);;                   
val it : int = 5               

The first part of listing 10.3 is a normal addition function B with the slight twist that it 
logs its execution to the console. Without this we wouldn’t see any obvious differences 
between the original and memoized version, because the change in efficiency is really 
small for this example.

Listing 10.3 Adding numbers with memoization (F# Interactive)

B
Prints debugging info

C Creates function 
that uses cache

Reads value 
from cache or 
calculates it

Executes 
addSimple 
only once
Licensed to   <kr_wilson@hotmail.com>



267Optimizing functions
 The function that implements addition with caching is called add C. It uses the 
.NET Dictionary type to store the cached results. The cache is declared as a local 
value and is used from the lambda expression that’s assigned to the add value. We 
used a similar pattern in chapter 8 when we were talking about capturing mutable 
state using closures. Here, the cache value is also mutable (because Dictionary is a 
mutable hash table) and is also captured by a closure. The point is that we need to use 
the same cache value for all calls to the add function, so we have to declare it before 
the function, but we don’t want to make it a global value.

 The last part of the function is the lambda itself. It only uses the addSimple func-
tion when the result isn’t cached already. As you can see from the F# Interactive ses-
sion, the function that does the calculation is executed only for the first time. 

 This technique is more widely applicable than tail recursion. It can be applied to 
any function that doesn’t have any side effects.1 This means that we can use it success-
fully from C# 3.0 as well. In the next subsection, we’re going to use C# 3.0 to write a 
more generic version of the code.
REUSABLE MEMOIZATION IN C# AND F#

If you look at the code that builds the add value from listing 10.3, you can see that it 
doesn’t really know about addition. It happens to use the addSimple function, but it 
could just as well work with any other function. To make the code more general, we 
can turn this function into a parameter. 

 We’re going to write a function (or method in C#) that takes a function as an argu-
ment and returns a memoized version of this function. The argument is the function 
that does the actual work and the returned function is augmented with caching capa-
bility. You can see the C# version of the code in listing 10.4.

Func<T, R> Memoize<T, R>(Func<T, R> func) {  
   var cache = new Dictionary<T, R>();       
   return arg => {
      R val;
      if (cache.TryGetValue(arg, out val)) return val;  
      else {
         val = func(arg);      
         cache.Add(arg, val);  
         return val;             
      } };
}

The code is similar to the addition-specific function in listing 10.3. Again, we first cre-
ate a cache, then return a lambda function that captures the cache in the closure. 
This means that there will be exactly one cache for each returned function, which is 
just what we want.

1 This may be somewhat confusing, because the function in the previous listing had a side effect (printing to 
the screen). This is a “soft side effect” that we can safely ignore. The core requirement is that the result should 
depend only on the arguments passed to the function.

Listing 10.4 Generic memoization method (C#)

B
Captures cache 
by closure

Returns 
cached value

Calculates value, 
adds it to cache
Licensed to   <kr_wilson@hotmail.com>



268 CHAPTER 10 Efficiency of data structures
 The method signature B indicates that it takes a function Func<T, R> and returns 
a function of the same type. This means that it doesn’t change the structure of the 
function; it wraps it into another function that does the caching. The signature is 
generic, so it can be used with any function which takes a single argument. We can 
overcome this limitation with tuples. The following code shows the C# version of the 
memoized function for adding two numbers:

var addMem = Memoize((Tuple<int, int> arg) => {
   Console.Write("adding {0} + {1}; ", arg.Item1, arg.Item2);
   return arg.Item1 + arg.Item2; });

Console.Write("{0}; ", addMem(Tuple.Create(19, 23)));
Console.Write("{0}; ", addMem(Tuple.Create(19, 23)));  

Console.Write("{0}; ", addMem(Tuple.Create(18, 24)));   

If you run the code, you’ll see that the second block of code prints “adding 19+23” 
only once B and the third block prints “adding 18 + 24” C. This means that the first 
addition executed only once, because when the cache compares two tuple values, it 
will find a match when their elements are equal. This wouldn’t work with our first 
implementation of Tuple because it didn’t have any implementation of value equality; 
the Tuple type in .NET 4.0 as well as the version in the source code for this chapter 
overrides the Equals method to compare the component values. This is called struc-
tural comparison, and you’ll learn more about it in chapter 11. Another option to 
make the Memoize method work with functions with multiple parameters would be to 
overload it for Func<T1, T2, R>, Func<T1, T2, T3, R> and so on. We would still use 
tuple as a key in the cache, but this would be hidden from the user of the method.

 The same code in F# shows how easy it is to make code generic. We’ll take the code 
we wrote for addition in listing 10.3 and make the function that does the computation 
parameter of the memoization function. You can see the F# version in listing 10.5.

> let memoize(f) =    
     let cache = new Dictionary<_, _>()  
     (fun x ->
        match cache.TryGetValue(x) with
        | true, v -> v
        | _ -> let v = f(x)
               cache.Add(x, v)
               v);;
val memoize : ('a -> 'b) -> ('a -> 'b)  

In the F# version, the type signature is inferred B, so we don’t have to make the func-
tion generic by hand. The F# compiler uses generalization to do this for us; the 
inferred signature corresponds to the explicit one in the C# code.

 This time, we’ll use a more interesting example to demonstrate how effective 
memoization can be. We’ll go back to the world’s favorite recursion example: the fac-
torial function. Listing 10.6 attempts to memoize this, but it doesn’t quite go accord-
ing to plan… 

Listing 10.5 Generic memoization function (F# Interactive)

B

C

Initializes cache 
captured by closure

B

Licensed to   <kr_wilson@hotmail.com>



269Optimizing functions
> let rec factorial(x) =       
     printf "factorial(%d); " x
     if (x <= 0) then 1 else x * factorial(x - 1);;  
val factorial : int -> int

> let factorialMem = memoize factorial  
val factorial : (int -> int)

> factorialMem(2);;
factorial(2); factorial(1); factorial(0);  
val it : int = 1

> factorialMem(2);;
val it : int = 1       

> factorialMem(3);;
factorial(3); factorial(2); factorial(1); factorial(0)  
val it : int = 2

At the first glance, the code seems correct. It first implements the factorial computa-
tion as a straightforward recursive function B and then creates a version optimized 
using the memoize function D. When we test it later by running the same call twice, it 
still seems to work. The result is cached after the first call and it can be reused.

 The last call E doesn’t work correctly—or more precisely, it doesn’t do what we’d 
like it to. The problem is that the memoization covers only the first call, which is fac-
torialMem(3). The subsequent calls made by the factorial function during the 
recursive calculation call the original function directly instead of calling the 
memoized version. To correct this, we’ll need to change the line that does the recur-
sive call C to use the memoized version (factorialMem). This function is declared 
later in the code, so we could use the let rec... and... syntax to declare two mutu-
ally recursive functions.

 A simpler option is to use lambda functions and only expose the memoized version 
as a reusable function. Listing 10.7 shows how we can do this with just a few lines 
of code.

> let rec factorial = memoize(fun x ->
     printfn "Calculating factorial(%d)" x
     if (x <= 0) then 1 else x * factorial(x - 1));;          
warning FS0040: This and other recursive references to the      
object(s) being defined will be checked for initialization-      
soundness at runtime through the use of a delayed reference...

val factorial : (int -> int)

> factorial(2);;
factorial(2); factorial(1); factorial(0);  
val it : int = 2

> factorial(4);;
factorial(4); factorial(3);  
val it : int = 24

Listing 10.6 Difficulties with memoizing recursive function (F# Interactive)

Listing 10.7 Correctly memoized factorial function (F# Interactive)

B

C

D

Calculates 2! 
for first time

Uses cached 
value

Why is the value 
of 2! recalculated?

E

B

C

Computes first 
few values

Computes only 
missing value
Licensed to   <kr_wilson@hotmail.com>



270 CHAPTER 10 Efficiency of data structures
The factorial symbol in this example refers to a value. It’s not syntactically defined 
as a function with arguments; instead it’s a value (which happens to have a function 
type) returned by the memoize function. This means that we’re not declaring a recur-
sive function but a recursive value. We used let rec to declare recursive values in chap-
ter 8 when creating the decision tree, but we only used it for writing nodes in a more 
natural order—there weren’t any recursive calls within the code.

 This time, we’re creating a truly recursive value, because the factorial value is 
used within its own declaration B. The difficulty with recursive values is that if we’re 
not careful, we can write code that refers to some value during the initialization of 
that value, which is an invalid operation. An example of incorrect initialization looks 
like this:

let initialize(f) = f()
let rec num = initialize (fun _ -> num + 1)

Here, the reference to the value num occurs inside a lambda function, which is 
invoked during the initialization when the initialize function is called. If we run 
this code, we’ll get a runtime error at the point where num is declared. When using 
recursive functions, the function will always be defined at the time when we’ll perform 
a recursive call. The code may keep looping forever, but that’s a different problem.

 In our declaration of factorial the reference to the factorial value occurs in a 
lambda function, which is not called during initialization, so it’s a valid declaration. The 
F# compiler can’t distinguish these two cases at compile time, so it emits a warning C
and adds runtime checks. Don’t be too scared by this! Just make sure that the lambda 
function containing the reference won’t be evaluated during the initialization.

 Since the declaration of factorial uses the memoized version when it makes the 
recursive call, it can now read values from the cache for any step of the calculation. 
For example, when we calculate factorial of 4 after we’ve already calculated the facto-
rial of 2, we only need to compute the two remaining values. 

NOTE So far we’ve seen two optimization techniques used in functional pro-
gramming. Using tail recursion, we can avoid stack overflows and write 
better recursive functions. Memoization can be used for optimizing any 
functions without side effects. 

Both techniques fit perfectly with the iterative development style that 
we consider an important aspect of F# programming. We can start with a 
straightforward implementation—often a function, possibly recursive, 
with no side effects. Later in the process, we can identify areas of code 
that need to be optimized. Just as we saw how it’s easy to evolve the struc-
ture of the code earlier and add object-oriented aspects, the changes 
required for optimization are reasonably straightforward to make. The 
iterative process helps us to pay the small additional price in complexity 
only in places where the benefit is actually significant.

So far we’ve seen general-purpose tricks for writing efficient functions. There’s one 
type of data structure that lends itself to very specific optimizations: collections. In the 
Licensed to   <kr_wilson@hotmail.com>



271Working with large collections
next section we’ll talk about functional lists and also look at how we can use .NET
arrays in a functional way. 

10.2 Working with large collections
We mentioned that we’d come back to tail recursion and show some slightly more 
complicated situations involving lists. Hopefully by now any recursion-induced head-
aches will have worn off, and after a fresh cup of coffee you should be ready for the 
upcoming examples.

 As well as making sure our programs don’t blow up with stack overflow exceptions, 
we want them to run in a reasonable amount of time as well. (What is it with employ-
ers making such unrealistic demands?) Functional lists are fabulously useful and can
be used very efficiently, but if you use them in the wrong way you can end up with pain-
fully slow code. We’ll show you how to avoid these problems.

10.2.1 Avoiding stack overflows with tail recursion (again!)

Our naïve list processing functions in chapter 6 weren’t tail recursive. If we passed 
them very large lists, they would fail with a stack overflow. We’ll rewrite two of them 
(map and filter) to use tail recursion, which will remove the problem. Just for refer-
ence, we’ve included the original implementations in listing 10.8. To avoid name 
clashes, we’ve renamed them to mapN and filterN.

// Naïve 'map' implementation
let rec mapN f list =
   match list with
   | []      -> []
   | x::xs -> let xs = (mapN f xs)        
                  f(x) :: xs                                        

// Naïve 'filter' implementation
let rec filterN f list =
   match list with
   | []      -> []
   | x::xs -> let xs = (filterN f xs)  
                  if f(x) then x::xs else xs                

Both functions contain a single recursive call B, which isn’t tail recursive. In each 
case the recursive call is followed by an additional operation C. The general scheme 
is that the function first decomposes the list into a head and a tail. Then it recursively 
processes the tail and performs some action with the head. More precisely, mapN
applies the f function to the head value and filterN decides whether the head value 
should be included in the resulting list. The last operation is appending the new head 
value (or no value in case of filtering) to the recursively processed tail, which has to be 
done after the recursive call. 

 To turn these into tail-recursive functions, we use the same accumulator argument
technique we saw earlier. We collect the elements (either filtered or mapped) as we 

Listing 10.8 Naïve list processing functions (F#)

B
C

Licensed to   <kr_wilson@hotmail.com>



272 CHAPTER 10 Efficiency of data structures
iterate over the list and store them in the accumulator. Once we reach the end, we can 
return elements that we’ve collected. Listing 10.9 shows the tail-recursive implementa-
tions for both mapping and filtering.

// Tail-recursive 'map' implementation
let map f list =
   let rec map' f list acc =
      match list with
      | []      -> List.rev(acc)                                 
      | x::xs -> let acc = f(x)::acc                                        
                     map' f xs acc                                                                   
      map' f list []

// Tail-recursive 'filter' implementation
let filter f list =
   let rec filter' f list acc =
      match list with
      | []      -> List.rev(acc)                                  
      | x::xs -> let acc = if f(x) then x::acc else acc               
                     filter' f xs acc                                                          
   filter' f list []

As usual when implementing tail-recursive functions, both functions contain a local 
utility function that has an additional accumulator parameter. This time, we added a 
single quote (') to the name, which may look strange at first. F# treats this single quote 
as a standard character that can be used in the name, so there’s no magic going on.

 Let’s start by looking at the branch that terminates the recursion B. We said that 
we just return the collected elements, but we’re actually reversing their order first by 
calling List.rev. This is because we’re collecting the elements in the “wrong” order. 
We always add to the accumulator list by prepending an element as the new head, so 
the first element we process ends up as the last element in the accumulator. The call to 
the List.rev function reverses the list, so we end up returning the results in the right 
order. This approach is more efficient than appending elements to the end as we’ll 
see in section 10.2.2.

 The branch that processes a cons cell is now tail recursive. It processes the element 
from the head and updates the accumulator as a first step C. It makes the recursive 
call D and returns the result immediately. The F# compiler can tell that the recursive 
call is the last step, and optimize it using tail recursion.

 We can easily spot the difference between the two versions if we paste them into F# 
Interactive and try to process a large list. For these functions, the depth of the recursion 
is the same as the length of the list, so we run into problems if we use the naïve version:

> let large = [ 1 .. 100000 ]
val large : int list = [ 1; 2; 3; 4; 5; ...]

> large |> map (fun n -> n*n);;                       
val it : int list = [1; 4; 9; 16; 25; ...] 

> large |> mapN (fun n -> n*n);;                      
Process is terminated due to StackOverflowException.

Listing 10.9 Tail recursive list processing functions (F#)

B
C

D

Licensed to   <kr_wilson@hotmail.com>



273Working with large collections
As you can see, tail recursion is an important technique for recursive processing func-
tions. Of course, the F# libraries contain tail-recursive functions for working with lists, 
so you don’t really have to write your own map and filter implementations as we have 
here. In chapters 6, 7, and 8 we saw that designing our own data structures and writing 
functions that work with them is the key to functional programming. 

 Many of the data structures that you’ll create will be reasonably small, but when 
working with a large amount of data, tail recursion is an essential technique. Using 
tail recursion, we can write code that works correctly on large data sets. Of course, 
just because a function won’t overflow the stack doesn’t mean it will finish in a rea-
sonable amount of time—which is why we need to consider how to handle lists effi-
ciently, too.

10.2.2 Processing lists efficiently

Tail-recursive functions usually improve efficiency slightly to start with, but usually the 
choice of algorithm is much more important than micro-optimization of its imple-
mentation. Let’s demonstrate with an example, where we want to add elements to an 
existing list.
ADDING ELEMENTS TO A LIST

So far we’ve seen how to append elements to the front of an existing (functional) list. 
What if we wanted to append elements at the end of the list? This sounds like a rea-
sonable requirement, so let’s try to implement it. Listing 10.10 shows the difference in 
performance between inserting at the front of a list and a naïve attempt to insert at 
the end. 

> let prepend el list = el::list;;  
val prepend : 'a -> 'a list -> 'a list    

> let rec append el list =  
     match list with 
     | []    -> [el]                   
     | x::xs -> x::(append el xs)      
val append : 'a -> 'a list -> 'a list

> #time;;                    
> let l = [ 1 .. 30000 ];;
val l : int list

> for i = 1 to 100 do ignore(prepend 1 l);;
Real: 00:00:00.000, CPU: 00:00:00.000        

> for i = 1 to 100 do ignore(append 1 l);; 
Real: 00:00:00.434, CPU: 00:00:00.421     

The implementation of prepend is trivial B, because we can simply construct a new 
list cell using the cons operator (::). Appending an element to the end of the list 
requires writing a recursive function C. This follows the normal pattern for recursive 
list processing, with one case for an empty list and another for a cons cell. 

Listing 10.10 Adding elements to a list (F# Interactive)

B

C Appends to 
empty list

Appends to the 
rest recursively

D

Shows that 
append is 
much slower
Licensed to   <kr_wilson@hotmail.com>



274 CHAPTER 10 Efficiency of data structures
 Next, we enter a very useful F# Interactive command, #time, which turns on tim-
ing D. In this mode, F# will automatically print the time taken to execute the com-
mands that we enter. We can see that appending an element at the end of large list 
is much slower. We run this one hundred times in a for loop and the time needed 
for appending to the front is still reported as zero, but appending elements to the 
end takes a significant amount of time. Any “simple” operation that takes half a sec-
ond for only a hundred iterations is a concern.

 Our appending function isn’t tail recursive, but that’s not a problem here. Tail recur-
sion helps us to avoid stack overflow, but it only affects performance slightly. The prob-
lem is that functional lists are not suitable for the operation that we’re trying to execute.

 Figure 10.5 shows why this operation can’t be implemented efficiently for functional 
lists. Appending an element to the front is 
easy. Because a list is an immutable data 
structure, we can create a single cell and ref-
erence the original list. Immutability guar-
antees that nobody can mutate the original 
list later, changing the contents of the “new” 
list behind our back. Compare that with 
appending an element to the end, which 
requires changing the last element. Previ-
ously the last element “knew” it came last, 
whereas we need it to have the new element 
following it. The list is immutable so we can’t 
change the information stored in the last ele-
ment. Instead, we have to clone the last element, which also means cloning the previous 
element (so it knows that it’s followed by the cloned last element) and so on.

 Of course, there are various data structures and each of them has different opera-
tions that can be executed efficiently. There’s always a trade-off and that’s why it’s 
important to choose the right data structure for your problem.   

Complexity of algorithms
Computer scientists use very precise mathematical terms to talk about complexity of 
algorithms, but the concepts behind these terms are important even when we use 
them informally. In general, the complexity of an operation tells us how the number of 
“primitive” steps the algorithm requires depends on the size of the input. It doesn’t 
predict the exact number of steps—just its relationship to the size of the input.

Let’s analyze our previous example. Appending an element to the front of the list al-
ways involves a single step: creating a new list cons cell. In the formal notation this 
is written as O(1), which means that the number of steps is constant, no matter how 
large the list. Adding an element to the start of a list with a million elements is as 
cheap as adding an element to the start of a list with just one element!

list1 18 35 9 87

list2 42

Append to the front:

list1 18 35 9 87

list2 42

Append to the end:

18 35 9 87

Figure 10.5 When appending an element  
to the front, we create a new cons cell and 
reference the original list. To append an 
element to the end, we need to iterate  
over and clone the whole list.
Licensed to   <kr_wilson@hotmail.com>



275Working with large collections
So far we’ve talked about functional lists, the most important collections in functional 
programming. Let’s take a big leap and look at the collection that exists in almost all 
imperative programming languages: the humble array. F# is a .NET language, so it can 
use normal .NET arrays too.

10.2.3 Working with arrays 

Arrays correspond closely to a simple model of computer memory—essentially a 
sequence of numbered boxes, where you can read or change the value in any box 
cheaply if you know the number. Arrays form continuous blocks of memory, so the 
overheads are small and they are useful for storing larger data sets. Arrays are allo-
cated in advance: once they are created, the size is fixed; we can’t add a new value to 
an existing array.

 Arrays are mutable data structures, so we can easily update them. This is sometimes 
useful, but for a functional programmer, it means that we’re losing many guarantees 
about the program state. First let’s look at the basic F# syntax for arrays, as shown in 
listing 10.11.

> let arr = [| 1 .. 5 |];;                
val arr : int array = [|1; 2; 3; 4; 5|]

> arr.[2] <- 30;;  
val it : unit = ()

> arr;;
val it : int array = [|1; 2; 30; 4; 5|]

> let mutable sum = 0               
  for i in 0 .. arr.Length – 1 do  
     sum <- arr.[i] + sum;;         
val mutable sum : int = 42

Arrays in F# support all basic operations that we’d expect from an array. We start by 
initializing arr using syntax very similar to list initialization B. Next, we use the 
assignment operator to mutate the array and set the value at the specified index C. 

Listing 10.11 Creating and using arrays (F# Interactive)

(continued)
Appending an element to the end of the list is trickier. If the list has N elements at 
the beginning, we’ll need to process and duplicate N cons cells. This would be written 
as O(N), which means that the number of steps is roughly proportional to the size of 
the list: adding an element to the end of a list of size 1000 is roughly twice as expen-
sive as adding an element to the end of a list of size 500.

If we wanted to append, for example, M new elements to the list, the complexity would 
be multiplied by M. This means that appending to the front would require O(M) steps, 
because 1 * M = M. Using similar reasoning, appending to the end would require 
O(N*M) steps, which could be bigger by an order of magnitude. 

B

C

D

Licensed to   <kr_wilson@hotmail.com>



276 CHAPTER 10 Efficiency of data structures
Note that when accessing an element in F#, we have to write a dot (.) before the 
square braces that specify the index. The next couple of lines show how we can pro-
cess an array in an imperative style D. It uses a for loop to iterate over all the ele-
ments and a mutable value to store a sum of them.

 Don’t worry if you feel slightly dirty looking at listing 10.11. It means you’re 
becoming accustomed to the functional style. We wouldn’t normally write code like 
this—it’s only for the sake of demonstrating the syntax.

 Even though arrays are typically used in imperative programming, we can work 
with them in a functional style. Aside from the basic operations we’ve just seen, F# 
provides several higher-order functions similar to those for working with lists. Let’s see 
how we can use arrays without feeling dirty. 
USING ARRAYS IN A FUNCTIONAL WAY

We’ll start by looking at an F# example that shows a couple of useful higher-order 
functions for working with arrays from the F# library and then implement the same 
functionality in C#. Listing 10.12 shows a script that first initializes an array with ran-
dom numbers, then calculates their squares.

> let rnd = new System.Random();;   
val rnd : System.Random

> let numbers = Array.init 5 (fun _ -> rnd.Next(10));;  
val numbers : int array = [|1; 0; 7; 2; 2|]

> let squares = numbers |> Array.map (fun n -> (n, n*n));;  
val squares : (int * int) array = [| ... |]

> for sq in squares do              
     printf "%A " sq;;                 
(1, 1) (0, 0) (7, 49) (2, 4) (2, 4)

The first higher-order function that we’re working with is Array.init B, which is sim-
ilar to List.int that we discussed in listing 10.2. It initializes the array using the spec-
ified function. The second function is Array.map C, which does the same thing as the 
familiar List.map function. In this example we use it to create an array of tuples 
where each element of the result contains the original integer and its square.

 The interesting thing about this example is that we don’t use the assignment oper-
ator anywhere in the code. The first operation constructs a new array. The second one 
doesn’t modify it, but instead returns another newly created array. Even though arrays 
are mutable, we can work with them using higher-order functions that never mutate 
them in our code. This example would have worked in a similar fashion if we had used 
functional lists. 

 Our previous examples have shown us how to use some of the basic operations that 
are available for arrays although we’ll often need to write some similar operations our-
selves. Listing 10.13 shows a function that works with arrays in a functional style: it takes 
one array as an argument and returns a new one calculated from the inputs. The func-

Listing 10.12 Functional way of working with arrays (F# Interactive)

B

C

Prints tuples from 
resulting array
Licensed to   <kr_wilson@hotmail.com>



277Working with large collections
tion is used to “smooth” or “blur” an array of values, so that each value in the new array 
is based on the corresponding value in the original and the values either side of it.

let blurArray (arr:int[]) =
   let res = Array.create arr.Length 0
   res.[0] <- (arr.[0] + arr.[1]) / 2                                               
   res.[arr.Length-1] <- (arr.[arr.Length-2] + arr.[arr.Length-1]) / 2  
   for i in 1 .. arr.Length - 2 do
      res.[i] <- (arr.[i-1] + arr.[i] + arr.[i+1]) / 3   
   res

The function starts by creating an array for storing the result, which has the same size 
as the input. It then calculates the values for the first and the last element B of the 
new array (these are average values over two elements). These values are calculated 
separately from the rest of the array because they’re edge cases that don’t quite fit the 
rest of the pattern. Finally, it iterates over the elements in the middle of the array, tak-
ing the average of three values and writing the results to the new array C.

 The function uses mutation internally. It creates an array filled with zeros at the 
beginning and later writes the calculated values to this array. This mutation isn’t visible 
from outside: by the time the caller is able to use the array, we’ve finished mutating it. 
When we use this function, we can safely use all the normal functional techniques:

Listing 10.13 Functional implementation of blur for arrays (F#)

Choosing between arrays and lists
We’ve seen that arrays and lists can be used in similar ways, so you need to know 
when to pick which option. The first point to consider is whether or not the type is mu-
table. Functional programming puts a strong emphasis on immutable data types, and 
we’ll see practical examples showing why this is valuable in the next chapter and in 
chapter 14. We can work with arrays in a functional way, but lists give us much stron-
ger guarantees about the correctness of our programs.

Another point is that some operations are easier or more efficient with one data type 
than the other. Appending an element to the front of a list is much easier than copying 
the contents of one array into a slightly bigger one. On the other hand, arrays are much 
better for random access. Operations that process arrays are often somewhat faster. 
We can see this with a simple example using the #time directive:

let l = [  1 .. 100000  ]
let a = [| 1 .. 100000 |];;
for i in 1 .. 100 do 
   ignore(l |> List.map  (fun n -> n));;  
for i in 1 .. 100 do 
   ignore(a |> Array.map (fun n -> n));;  

In general, arrays are useful if you need to work efficiently with large data sets. In most 
situations you should use aim for clear and simple code first, and functional lists usu-
ally lead to greater readability.

Takes 109ms

Takes 
885ms

B

C

Licensed to   <kr_wilson@hotmail.com>



278 CHAPTER 10 Efficiency of data structures
> let ar = Array.init 10 (fun _ -> rnd.Next(20));;       
val ar : int [] = [|14; 14; 4; 16; 1; 15; 5; 14; 7; 13|]

> ar |> blurArray;;               
val it : int [] = [|14; 10; 11; 7; 10; 7; 11; 8; 11; 10|]

> ar |> blurArray |> blurArray |> blurArray;;             
val it : int [] = [|7; 8; 9; 9; 9; 9; 9; 9; 8; 8|]

The blurArray function has type int[] -> int[], which makes it compositional. In 
the second command, we use the pipeline operator to send a randomly generated 
array to this function as an input and the F# Interactive console automatically prints 
the result. The final command shows that we can also call the function several times in 
a sequence in the same way we would use map or filter operations on a list.

 You can probably imagine extending this example to process images, turning our 
blurArray function into a real blur filter working with bitmaps. If you want to try this 
out, you’ll need to use the Array2D module, which has functions for working with 2D 
arrays, and the .NET Bitmap class with functions such as GetPixel and SetPixel for read-
ing and writing graphical data. We’ll get back to this problem in chapter 14 where we’ll 
also discuss how to use parallelism to perform the operation more efficiently.

 Having seen how we can use arrays neatly in F#, we’ll turn our attention back to 
C#. All C# programmers already know the basics of how to use arrays—what we’re 
interested in is how we can write C# code that uses arrays in a functional style.
USING ARRAYS IN A FUNCTIONAL WAY IN C#

You can already use many functional constructs with arrays in C# 3.0 thanks to LINQ
to Objects. Most LINQ operators don’t return arrays: if you call Enumerable.Select
on an array, it will return the result as IEnumerable<T>. In some situations we’d pre-
fer to keep the results in an array, and we may wish to avoid the overhead of calling 
Enumerable.ToArray to copy the result sequence back into an array.

 Some common functional operations for arrays are already available as static meth-
ods of the System.Array class. They use different naming conventions than F# and 
LINQ, so you’ll find, for example, the map operation under name ConvertAll. We’ll 
implement our version with the standard name to demonstrate how the operation 
looks. Listing 10.14 also adds method similar to F# Array.int function.

static class ArrayUtils {
   public static T[] int<T>(int length, Func<int, T> init) {  
      T[] arr = new T[length];
      for (int i = 0; i < length; i++) arr[i] = init(i);
      return arr;
   }
   public static R[] Select<T, R>(this T[] arr, Func<T, R> map) {  
      R[] res = new R[arr.Length];
      for (int i = 0; i < arr.Length; i++) res[i] = map(arr[i]);
      return res;
   }
}

Listing 10.14 Methods for functional array processing (C#)

initializes 
random array

Blurs array once

Blurs 3 times 
using pipelining

B

C

Licensed to   <kr_wilson@hotmail.com>



279Introducing continuations
The int method is a normal static method B. It takes a function init as an argu-
ment and uses it to initialize the elements of the array. The Select method is an 
extension method that applies a mapping function to each element in the original 
array, and returns the result as a new array. It hides the standard Select operation 
provided by LINQ. We can use these methods in a similar way to the earlier corre-
sponding F# functions:

var rnd = new Random();
var numbers = ArrayUtils.int(5, n => rnd.Next(20));                
var squares = numbers.Select(n => new { Number = n, Square = n*n });  

foreach (var sq in squares)
   Console.Write("({0}, {1}) ", sq.Number, sq.Square);

Just like in the F# version, we don’t modify the array once it’s created. From a high-level 
perspective, it’s a purely functional code working with an immutable data structure. Of 
course, we’re actually performing mutations—but only within the ArrayUtils class, 
and only on collections that haven’t been exposed to any other code yet. The mutation
isn’t observable to the outside world. This way of writing code is even more valuable in 
C#, where functional lists are harder to use than they are in F#.

 Our final topic in the chapter deals with continuations. These can be somewhat 
hard to wrap your head around, but once you understand them there are some amaz-
ing possibilities. The good news is that if you’ve ever written any asynchronous code in 
.NET, you’ve already been using continuations in some sense—but F# makes them a 
lot easier. We’ll look at them in more detail in chapter 13, but using continuations is 
an interesting optimization technique for recursive functions, which is the aspect we’ll 
concentrate on here.

10.3 Introducing continuations
We began this chapter with a discussion about recursive calls. We’ve seen an important 
technique called tail recursion that allows us to perform a recursive call without allo-
cating any space on the stack. Thanks to tail recursion, we can write functional list pro-
cessing functions that can handle large data sets without breaking into a sweat.

 We’ve seen how to rewrite many functions to use tail recursion using an accumula-
tor argument, but not every function can be rewritten to use it. If a function needs to 
perform two recursive calls, then it clearly can’t be written in this way. (They can’t both
be the very last thing to be executed before returning, after all.)

10.3.1 What makes tree processing tricky?

Let’s take a simple example working with trees. Listing 10.15 declares a type represent-
ing a tree of integers, and shows a recursive function that sums all the values in the tree.

> type IntTree =                       
     | Leaf of int
     | Node of IntTree * IntTree;;
type IntTree = (...)

Listing 10.15 Tree data structure and summing elements (F# Interactive)

B

Licensed to   <kr_wilson@hotmail.com>



280 CHAPTER 10 Efficiency of data structures
> let rec sumTree(tree) =  
     match tree with
     | Leaf(n)     -> n
     | Node(l, r) -> sumTree(l) + sumTree(r);;  
val sumTree : IntTree -> int

The IntTree type B used for representing the tree is a discriminated union with two 
options. Note that this is actually quite similar to the list type! A tree value can repre-
sent either a leaf that contains an integer or a node. A node doesn’t contain a 
numeric value, but it has two subtrees of type IntTree. The recursive function for cal-
culating sum C uses pattern matching to distinguish between these two cases. For a 
leaf, it returns the numeric value; for a node, it needs to recursively sum the elements 
of both the left and right subtrees and add the two values together. 

 If we look at the sumTree function, we can see that it isn’t tail recursive. It performs 
a recursive call to sumTree to sum the elements of the left subtree and then needs to 
perform some additional operations. More specifically, it still has to sum the elements 
of the right subtree and finally it has to add these two numbers. We don’t know how to 
write this function in a tail-recursive way, because it has two recursive calls to perform. 
The last of these two calls could be made tail recursive with some effort (using some 
sort of accumulator argument), but we’d still have to do one ordinary recursive call! 
This is annoying, because for some kinds of large trees, this implementation will fail 
with a stack overflow.

 We need to think of a different approach. First let’s consider what trees might actu-
ally look like. Figure 10.6 shows two examples.

The balanced tree in figure 10.6 is a fairly typical case where the elements of the tree are 
reasonably divided between the left and the right subtrees. This isn’t too bad, as we 
never end up recursing particularly deeply. (With our current algorithm, the maximum 
recursion depth is the longer path that exists between the root of the tree and a leaf.) 
The imbalanced example is much nastier. It has many Node elements on the right side, 
so when we process it recursively we’ll have to make a large number of recursive calls. 
The difference between the handling of these two trees is shown in listing 10.16.

> let tree = Node(Node(Node(Leaf(5), Leaf(8)), Leaf(2)), 
                  Node(Leaf(2), Leaf(9)))
  sumTree(tree);;
val it : int = 26

Listing 10.16 Summing tree using naïve recursive function (F# Interactive)

C

Recursively sums 
values in subtrees

5 8

2 3 9

99
98

97
96

1

...

0

Balanced tree Imbalanced tree

Figure 10.6 An example of 
balanced and imbalanced trees. 
Dark circles correspond to the 
Node case and light circles 
containing values correspond to 
the Leaf case
Licensed to   <kr_wilson@hotmail.com>



281Introducing continuations
> let numbers = List.init 100000 (fun _ -> rnd.Next(– 50, 51);;
val numbers : int list = [29; -44; -1; 25; -33; 36; ...]

> let imbalancedTree = 
     numbers |> List.fold (fun currentTree num -> 
        Node(Leaf(num), currentTree)) (Leaf(0));;  
val imbalancedTree : IntTree

> sumTree(imbalancedTree);;
Process is terminated due to StackOverflowException.

The first command creates a simple tree and sums the leaf values. The second com-
mand uses the fold function to create a tree similar to the imbalanced example in fig-
ure 10.6 but bigger. It starts with a leaf containing zero and in each step appends a 
new node with a leaf on the left and the current tree on the right B. It takes the num-
bers from the list that we created in listing 10.2 and that contains 100,000 
random numbers between –50 and +50. As a result, we’ll get a tree with a height 
of 100,000 nodes. When we try to sum the leaves of this tree, we get a stack overflow. 
This isn’t a particularly typical situation, but we can still encounter it in our tree-
processing code. Luckily, continuations give us a way to write functions that work cor-
rectly even on trees like this one.

10.3.2 Writing code using continuations

The problem is that we want to make a tail-recursive call, but we still have some code 
that we want to execute after the tail-recursive call completes. This looks like a tricky 
problem, but there’s an interesting solution. We’ll take all the code that we want to exe-
cute after the recursive call completes and provide it as an argument to the recursive 
call. This means that the function we’re writing will contain just a single recursive call.

 Think of this as another sort of accumulator argument: instead of accumulating 
values, we’re accumulating “more code to run later.” Now, how can we take the 
remaining code and use it as an argument to a function? This is possible thanks to first 
class functions, and this last argument is called a continuation because it specifies how 
the execution should continue.

 This will all become much clearer after looking at some practical examples. List-
ing 10.17 shows a simple function implemented first in the normal style and then 
using continuations. We’re using C# here so that there’s only one new concept to 
understand, but bear in mind that C# doesn’t support tail recursion: this technique 
can’t be used as an optimization for recursion in C#. (Continuations are still useful 
in C#, just not for recursion.)

// Reports result as return value
int StringLength(string s) {
   return s.Length;
}
void AddLengths() {                
   int x1 = StringLength("One");

Listing 10.17 Writing code using continuations (C#)

Creates node with 
current tree on right

B

B

Licensed to   <kr_wilson@hotmail.com>



282 CHAPTER 10 Efficiency of data structures
   int x2 = StringLength("Two");
   Console.WriteLine(x1 + x2);
}

// Reports result using continuations
void StringLengthCont(string s, Action<int> cont) {
   cont(s.Length);                                           
}
void AddLengthsCont() {
   StringLengthCont("One", x1 =>  
      StringLengthCont("Two", x2 =>  
         Console.WriteLine(x1 + x2)
   ));
}

In both versions, we first declare a function that calculates the length of the string. In 
the usual programming style, it gives the result as a return value. When using continu-
ations, we add a function (a continuation) as the last argument. To return the result, 
the StringLengthCont function invokes this continuation C. We’re using a function 
instead of the usual return statement, which means that the value is given as an argu-
ment to a function instead of storing it as a result on the stack.

 The next function, called AddLengths, B calculates the length of two strings, adds 
these values, and prints the result. In the version using continuations, it includes only 
a single top-level call to the StringLengthCont function D. The first argument to this 
call is a string, and the second one is a continuation. The top-level call is the last thing 
that the function does, so in F# it would be executed using a tail call and it wouldn’t 
occupy any stack space. 

 The continuation receives the length of the first string as an argument. Inside it, we 
call StringLengthCont for the second string. Again, we give it a continuation as a last 
argument and once it’s called, we can sum the two lengths and print the result. In F#, 
the call inside the continuation E would be again a tail call, because it’s the last thing 
that the code in the lambda function does. Let’s now look how we can use this style of 
programming to optimize our previous function for summing elements of a tree.
TREE PROCESSING USING CONTINUATIONS

To change our previous implementation of the sumTree function into a version that 
uses continuations, we’ll first add an additional argument (a continuation) to the 
function. We’ll also need to update how the function returns the result. Instead of 
simply returning the value, we’ll call the continuation given as the argument. The 
final version of the code is shown in listing 10.18.

> let rec sumTreeCont tree cont = 
     match tree with
     | Leaf(num) -> cont(num)
     | Node(left, right) -> 
        sumTreeCont left (fun leftSum ->  
           sumTreeCont right (fun rightSum ->  
              cont(leftSum + rightSum)));;          
val sumTreeCont : IntTree -> (int -> 'a) -> 'a

Listing 10.18 Sum elements of a tree using continuations (F# Interactive)

C

D
E

B
C

D

Licensed to   <kr_wilson@hotmail.com>



283Summary
Modifying the branch for the leaf case is quite easy, because it previously returned the 
value from the leaf. The second case is far more interesting. We’re using a pattern sim-
ilar to the one in the previous C# example. We call the function to sum the elements of 
the left subtree B (this is a tail recursion) and give it a lambda function as the second 
argument. Inside the lambda we do a similar thing for the right subtree C (again, a tail-
recursive call). Once we have sums of both subtrees, we invoke the continuation that we 
originally got as the argument D (which is once more a tail-recursive call).

 Another interesting thing about the function that we’ve just written is its type sig-
nature. As usual, we didn’t write any types explicitly and F# inferred the types for us. 
The function takes the tree as the first argument and the continuation as the second 
one. The continuation now has a type int -> 'a and the overall result of the function 
is 'a. In other words, the return type of the whole function is the same as the return 
type of the continuation.

 Earlier we mentioned that all recursive calls in the code are now tail recursive, so 
we can try this function on the imbalanced tree that failed in the previous version:

> sumTreeCont imbalancedTree (fun r -> 
     printfn "Result is: %d" r);;
Result is: 8736
val it : unit = ()

> sumTreeCont imbalancedTree (fun a -> a);;  
val it : int = 8736

As you can see, the code now works on very large trees without any trouble. In the first 
example, we print the result directly in the continuation and the continuation doesn’t 
return any value, so the overall result of the expression is unit. In the second case, we 
give it an identity function (a function that just returns its argument) as the continua-
tion. The identity function is already available in F# libraries, so we could write id. 
The return type of the continuation is int, and the value returned from the call to 
sumTreeCont is the sum of all the elements in the tree.

10.4 Summary
In this chapter, we explored topics related to the efficiency of functional programs, 
and we discussed how to deal with large amounts of data in a functional way. Since 
most of the functional programs are implemented using recursion, a large part of the 
chapter was dedicated to this topic.

 You saw that when using recursion we have to write our code carefully to avoid 
errors caused by the stack overflowing if the recursion level becomes too deep. In the 
beginning of the chapter, we looked at a technique called tail recursion that allows us 
to rewrite familiar list processing functions (such as map and filter) in a way that 
makes them immune to stack overflow. Tail recursion alone can’t help us in every situ-
ation, so we also looked at continuations and used them to write a robust version of a 
simple tree-processing function.

 We also explored techniques for optimizing the performance of processing func-
tions. In particular, we looked at memoization, which allows us to cache results of 

Returns sum from 
the continuation
Licensed to   <kr_wilson@hotmail.com>



284 CHAPTER 10 Efficiency of data structures
functions without side effects. Effective optimization relies on complexity analysis, so 
we looked at functional data structures and their performance characteristics. We 
have to be careful when choosing algorithms and operations, as some differences 
that look small—such as whether we add elements to the head or tail of functional 
lists—can have a significant impact on performance. We also talked about arrays, 
which aren’t primarily functional data structures but can be used functionally if 
we’re careful.

 In the next chapter, we’ll continue our exploration of common tricks for imple-
menting algorithms in a functional language. Many of the topics from the following 
chapter are related to the use of immutable data types and mathematical clarity of 
functional programming.
Licensed to   <kr_wilson@hotmail.com>



Refactoring and testing 
functional programs
One theme of this book is that functional programming makes it easier to under-
stand code just by reading it. This is particularly important when you need to mod-
ify an unfamiliar program or implement behavior by composing existing functions 
or when refactoring existing code. Functional programming makes refactoring eas-
ier thanks to both clarity and modularity: you can make improvements to the code 
and be confident that the change doesn’t break other parts of the program.

 As with many things in functional programming, the idea of modifying code with-
out changing its meaning is closely related to math, because operations that don’t 
change the meaning of an expression are the basis of many mathematical tasks. We 
can take a complex equation and simplify it to get an equation that’s easier to read but 
means the same thing. Let’s take the following equation: y = 2x + 3(5 - x). If we 

This chapter covers
■ Refactoring functional programs
■ Reasoning about code using immutability
■ Writing unit tests for F# programs
■ Caching results using lazy values
285

Licensed to   <kr_wilson@hotmail.com>



286 CHAPTER 11 Refactoring and testing functional programs
multiply the expression in parentheses by 3, we can write it as y = 2x + 15 - 3x, which in 
turn can be simplified to: y = 15 – x. 

 Another technique we can learn from math is substitution. If we have two equations, 
y = x/2 and x = 2z, we can substitute the right-hand side of the second one into the first 
one and we’ll get (after simplification) y = z. The important point is that by substituting 
the correct equation into another one, the substituted equation can’t suddenly become 
incorrect. This technique appears in functional programming as composition.

 Functional programming is closely related to mathematics, so it’s not surprising 
that some of the techniques used in algebra can be applied to functional programs, 
too. In the programming world, the simplification of equations corresponds to refac-
toring, which is the centerpiece of this chapter. In particular, we’ll look at reducing 
code duplication and discuss code dependencies. 

 Substitution is also a form of refactoring, but you’ll learn that it has other impor-
tant practical benefits, particularly when unit testing. Substitution allows us to focus 
on testing primitive functions and spend much less time testing functions that are 
composed from simple building blocks, because the composition can’t break already 
tested components. 

 We’ll also examine a topic that’s closely related to refactoring. When a program 
lacks side effects, we should get the same result regardless of the order in which the 
individual parts are executed. A value can be calculated as soon as it’s declared, or we 
can delay execution until the value is really needed. This technique is called laziness 
(or lazy evaluation), and we’ll show you some of the practical benefits when we explore 
potentially infinite data structures and caching of computer values.

11.1 Refactoring functional programs
Refactoring is an integral part of many modern development methodologies. In some 
languages, this technique is also supported by IDEs such as the C# editor in Visual Stu-
dio. Most of the refactoring techniques have been developed for the object-oriented
paradigm, but we’ll be looking at it from a functional point of view.

Refactoring is the process of modifying source code to improve its design 
without changing its meaning. The goal of refactoring is to make the 
code more readable, easier to modify or extend in the future, or to 
improve its structure. A simple example of refactoring is renaming a 
method to make the name more descriptive; another is turning a block 
of code into a method and reusing it to avoid code duplication.

Refactoring allows us to write code that works first, and then make it “clean.” Perform-
ing these two tasks separately simplifies testing because refactoring shouldn’t affect the 
behavior of the application. While some changes such as renaming are fairly simple 
(particularly with help from tools), others can involve more thoughtful consideration.

 If you switch the order of two statements, will the code behave the same way after-
ward? With imperative code using side effects, you’d have to look carefully at the two 
statements. Functional programming makes reasoning about the code easier, so 

REFACTORING
Licensed to   <kr_wilson@hotmail.com>

http://www.codeplex.com/xunit
http://www.codeplex.com/xunit
http://www.codeplex.com/xunit


287Refactoring functional programs
refactoring becomes easier too. We’ll take a look at several examples in this section, 
but let’s start with a common functional refactoring that removes code duplication. 

11.1.1 Reusing common code blocks

One of the best programming practices is to avoid duplicating the same code in multi-
ple places. If you have two routines that look similar, it’s worth considering how they 
could be merged into one. The new routine would take a new argument that specifies 
what code path to follow in the part that was originally different.

 In functional programming, we have one powerful weapon: the ability to use func-
tion values as arguments. This makes it much easier to parameterize a function or 
method. To demonstrate, let’s say we have a database with information about cities 
and we want to generate several reports from the data.

 We’ll start by writing a function that loads the data. To make the example simpler, 
we won’t look at working with databases. You could do that yourself by using standard 
.NET database API, which works smoothly with F#. Instead, we’ll use the following 
function, which simply returns a list that we create by hand:

let loadPlaces() =
  [ ("Seattle", 594210);   ("Prague", 1188126)
     ("New York", 7180000); ("Grantchester", 552)
     ("Cambridge", 117900) ]

The data structure is simple, but it’s close to what we could use in a real-world applica-
tion. Instead of using tuples for storing the name and the population, we’d probably 
use records or object types. Listing 11.1 shows two functions that generate reports 
from the data: one prints a list of cities with more than one million inhabitants, and 
the other prints all the locations in alphabetical order. In a real application this might 
generate an HTML report, but we’ll keep things simple and print it to the console as 
plain text. 

let printBigCities() =
   let places = loadPlaces()
   printfn "===== Big cities ====="                      
   let selected = List.filter (fun (_, p) -> p > 1000000) places  
   for name, population in selected do
      printfn " - %s (%d)" name population

let printAllByName() =
   let places = loadPlaces()
   printfn "===== All by name ====="  
   let selected = List.sortBy fst places  
   for name, population in selected do
      printfn " - %s (%d)" name population

The two functions have very similar structure, but there are some differences. The 
most important one is that they select the list of places to print in different ways. The 
printBigCities function filters places using List.filter C, while printAllNames

Listing 11.1 Printing information about places (F#)

Prints report titleB

C

Lists cities with 
population over 

1 million
Prints report 
title

D

E
Sorts cities by 
their name
Licensed to   <kr_wilson@hotmail.com>



288 CHAPTER 11 Refactoring and testing functional programs
uses List.sortBy to reorder them E. They also differ in terms of the report title 
that’s printed B D.

 They share many common aspects. Both functions first call loadPlaces to obtain 
the collection of places, then process this collection in some way and finally print the 
result to the screen.

 When refactoring the code, we want to write a single function that can be used for 
both tasks. We also want to make the code more extensible. It should be possible to 
use the printing function with a completely different strategy. If we were creating a 
crossword, we might look for cities with the specified length starting with a particular 
letter. This means that we should be able to provide almost any strategy as an argu-
ment. Functional programming gives us a great way to do this kind of parameteriza-
tion using functions.

 Listing 11.2 shows a higher-order function, printPlaces, and we’ll soon see that 
we can use it to replace both of the functions from the previous listing. 

> let printPlaces title select =
     let places = loadPlaces()
     printfn "== %s ==" title  
     let sel = select(places)    
     for name, pop in sel do
        printfn " - %s (%d)" name pop
  ;;
val printPlaces : string ->                                    
    ((string * int) list -> #seq<string * int>) -> unit  

Our new function has two parameters. These specify what to do in places where the 
original two functions were different from each other. The first is the report title B, 
and the second is a function that selects the places to be printed C. We can learn 
more about this function by looking at its type in the printed type signature D.

 The argument of the function is a list of tuples, each of which contains a string and 
an integer. This is our data structure for representing places. We’d expect the return 
type of the function to be the same, because the function returns a collection of 
places in the same data format, but the type inferred by F# is #seq<string * int>. The 
difference is that instead of list it inferred the #seq type.

 This choice is interesting for two reasons. 

■ seq<'a> is a common interface implemented by all collections and is an alias 
for the standard .NET IEnumerable<T> type. This means that the function can
return a list, but could equally return an array, because the only thing we need 
is the ability to iterate over all the elements in the collection. We’ll go into more 
detail about sequences in the next chapter, but if you know LINQ to Objects this 
should be familiar territory: most of the common operators work with (and 
return) IEnumerable<T>.

Listing 11.2 Reusable function for printing information (F# Interactive)

B
C

D

Licensed to   <kr_wilson@hotmail.com>



289Refactoring functional programs
■ The hash symbol means that the returned collection doesn’t have to be upcast 
to the seq<'a> type explicitly. This means we can provide a function that’s actu-
ally typed to return a list<'a>, for example. In the strictly typed sense, this is a 
different type of function, but the hash symbol adds some valuable flexibility. 
Most of the time you don’t need to worry about this very much; it just means 
that the compiler inferred that the code can be more generic.

Now that we have the function, we need to show that it can really be used in place of 
the two functions that we started with. Listing 11.3 shows arguments we can supply to 
get the same behavior as the original functions.

// Writing lambda function explicitly
printPlaces "Big cities" (fun places ->           
   List.filter (fun (_, s) -> s > 1000000) places)

// Using partial function application
printPlaces "Big cities" (List.filter (fun (_, s) -> s > 1000000))  
printPlaces "Sorted by name" (List.sortBy fst)                       

The only interesting aspect of the first example B is the lambda function that we use 
as the second parameter. It takes the data set as an argument and filters it using 
List.filter to select only cities with more than one million inhabitants. The next 
example C shows that we can write the call more succinctly using partial function 
application. In the last example D we use List.sortBy to sort the collection. 

 As you can see in listing 11.3, using the function that we created during refactoring 
is quite easy. It could be used to print different lists just by specifying another function 
as the second argument.

 The refactoring we performed in this section relied on the ability to use functions 
as arguments. C# has the same ability, so the same kind of refactoring can be applied 
effectively there, using delegates. We could specify the data transformation argument 
either as a lambda expression or by creating the delegate from another method with 
an appropriate signature.

 Another functional principle that’s very valuable when refactoring code is the use 
of immutable data. The impact here is slightly more subtle than simply being able to 
express differences in behavior using functions, but it’s no less important.

11.1.2 Tracking dependencies and side effects

One of the many benefits of immutability is the clarity it provides. If a function takes a 
collection as an argument and returns a number, you can safely assume that it calcu-
lates the result based on the collection content, but does not modify the collection. We 
don’t have to look at any code to reach that conclusion; we don’t have to examine the 
implementation or any other functions that it calls. Let’s start by looking at an exam-
ple that demonstrates how easy it is to introduce errors when using mutable objects.

Listing 11.3 Working with ‘printPlaces’ function (F#)

B

C
D

Licensed to   <kr_wilson@hotmail.com>



290 CHAPTER 11 Refactoring and testing functional programs
USING MUTABLE DATA STRUCTURES

In listing 11.4 you can see two functions that work with a collection storing names of 
places from the previous example. This time, we’re using C# and storing the names in 
the standard List<T> type, which is mutable.

List<string> LoadPlaces() {                         
   return new List<string> { "Seattle", "Prague", 
      "New York", "Grantchester", "Cambridge" };
}
void PrintLongest(List<string> names) {  
   var longest = names[0];                            
   for(int i = 1; i < names.Count; i++)
      if (names[i].Length > longest.Length) longest = names[i];  
   Console.WriteLine(longest);
}
void PrintMultiWord(List<string> names) {  
   names.RemoveAll(s => !s.Contains(" "));                
   Console.WriteLine("With space: {0}", names.Count);
}

The code first shows a function that loads sample data B. It’s like our loadPlaces func-
tion from earlier, but without the population values. Next, we implement two process-
ing functions. The first one C finds the place with the longest name; the second D
determines how many names contain more than one word by removing any name that 
doesn’t contain a space. Even though the method uses lambda function syntax, it’s def-
initely not functional: the RemoveAll method modifies the names collection. If we 
wanted to use these functions later in our program, we could write the following code:

PrintMultiWord(LoadPlaces());   // Prints '1'
PrintLongest(LoadPlaces());      // Prints 'Grantchester'

This gives the correct results although, we’re calling the LoadPlaces function twice, 
which seems to be unnecessary. If the function loaded data from a database, it would 
be better to retrieve the data only once for performance reasons. A simple refactoring 
is to call the function once and store the places in a local variable:

var places = LoadPlaces();
PrintMultiWord(places);         // Prints '1'
PrintLongest(places);            // Prints 'New York'

After this simple change we get incorrect results! If you’ve been following the source 
code carefully, you’ve probably spotted the problem: List<T> is a mutable data struc-
ture and the function PrintMultiWord accidentally mutates it when it calls RemoveAll. 
When we call PrintLongest later in the code, the collection places contains only a 
single item, which is “New York.” Now let’s see why we couldn’t make a similar mistake 
if we used immutable data structures. 
USING IMMUTABLE DATA STRUCTURES

To demonstrate how to write the same code in an immutable fashion, we don’t neces-
sarily have to use a functional list. We can avoid mutating the collection even when 

Listing 11.4 Working with places stored in List<T> (C#)

B

C
Starts with first place

Remembers 
new longest 

name

Removes all 
single-word 
names

D

Licensed to   <kr_wilson@hotmail.com>



291Refactoring functional programs
using the standard List<T> type. Then it’s unfortunately our responsibility to ensure 
that we’re not modifying the list accidentally, which can be difficult.

 A better approach is to work with a type that doesn’t allow mutation. We could 
use a truly immutable type such as FuncList<T> from chapter 3 or the ReadOnly-
Collection<T> available in .NET Framework. We can get a good safety guarantee 
even when working with IEnumerable<T>. It can be used for enumerating elements 
of any collection type (including both mutable and immutable), but it doesn’t give 
us any direct way for modifying the underlying collection. If we were mutating the 
collection from another thread, we could still get unexpected results, but that’s not 
the case in this example.

 Let’s implement the same example using IEnumerable<T>. The LoadPlaces and 
PrintLongest methods don’t change very much, so we’ve omitted them here. 
The PrintMultiWord method is more interesting: we can’t use our previous strategy 
of using RemoveAll, because the IEnumerable<T> type is immutable. Earlier we 
used this method to remove all single-word names from the collection. This side 
effect made the method harder to reason about. If we want the same kind of 
results using immutable types we have to be more explicit about it, as shown in list- 
ing 11.5.

IEnumerable<string> PrintMultiWord(IEnumerable<string> names) {
   var namesSpace = names.Where(s => s.Contains(" "));             
   Console.WriteLine("With space: {0}", namesSpace.Count());
   return namesSpace;                                                    
}

We can’t modify a collection when we’re working with immutable data structures, so 
the method first creates a new collection that contains only multiword names B. 
We’ve also made the side effect from the previous implementation explicit, so the 
method now returns the new collection. Of course, it isn’t really a side effect at all 
now—it’s a return value. It achieves the same result of making the multiword names 
list available to the caller if they want it C.

 Our first example was searching for the longest name from all the names and our 
second example (which printed “New York”) returned the longest name containing a 
space. Listing 11.6 shows how both of these examples can be implemented using our 
new function.  

Listing 11.5 Implementation of PrintMultiWord using IEnumerable<T> (C#)

Listing 11.6 Printing the longest and the longest multiword name (C#)
IEnumerable<string> places = IEnumerable<string> places = 
   LoadImmutablePlaces();    LoadImmutablePlaces();

PrintMultiWord(places); var placesSpace = 
PrintLongest(places);    PrintMultiWord(places);

PrintLongest(placesSpace);

B

C

B C
D

Licensed to   <kr_wilson@hotmail.com>



292 CHAPTER 11 Refactoring and testing functional programs
Now that we’ve made the mutation more explicit, it won’t surprise you that the results 
will differ. The version on the left side prints “Grantchester” B, while the version 
where we select the longest name containing a space prints “New York” D.

 Listing 11.6 also demonstrates that using immutable data types makes it easier to 
reason about the program and decide which refactorings are valid. In the example on 
the left side, we could change the order of PrintMultiWord and PrintLongest and 
they’d still print the same results (in the opposite order). We can’t change the order 
of the calls in the right side of listing 11.6, because the value placesSpace is the result 
of the first call C.

 This means that when refactoring functional code, we can track dependencies of 
the computations more easily. We can see that a function depends on other calls if it 
takes a result of these calls as an argument. Because this is explicitly visible in the 
code, we can’t make accidental refactoring errors because incorrectly modified code 
won’t compile. This is also useful when testing the code using unit tests.

11.2 Testing functional code
Neither functional programming nor any other paradigm can eliminate bugs entirely 
or prevent us from introducing bugs when making changes to existing code. This is 
one reason behind the widespread adoption of unit testing. The good news is that 
most of the unit-testing techniques that you already use when testing C# code can be 
applied to F# programs as well. Additionally, functional programming and F# make 
testing easier in many ways.

When we’ve discussed testing so far, we’ve usually talked about checking whether the 
code works immediately after writing it in the F# Interactive shell. If you’re a veteran 

Choosing a unit-testing framework for F#
As we saw in chapter 9, we can write standard classes in F#, so any of the unit-testing 
frameworks for .NET works as normal. Why should we write unit tests in F# as mem-
bers of a class rather than simply using functions declared with let bindings? Class-
es certainly have some benefits, such as enabling sophisticated setup and teardown
code. However, most of the unit tests that we’ll write benefit from using the simplest 
possible syntax.

In this chapter we’ll use the xUnit.net framework. This works with standard F# func-
tions as well as F# classes. F# functions written using let bindings are compiled 
into static methods of a class. When we wrap the code inside a module, the mod-
ule name is used as the name of the static class. Otherwise, F# generates a class 
based on the name of the file. The xUnit.net framework supports unit tests that 
are implemented as static methods without applying a special attribute (such as 
TestFixture) to the class, which makes it friendlier to F# programmers. If you 
don’t have xUnit.net installed, you can get the latest version from http://
www.codeplex.com/xunit. Other unit-testing frameworks should work in a similar 
way, but xUnit.net was the first one to provide smooth integration with F#.
Licensed to   <kr_wilson@hotmail.com>

http://www.codeplex.com/xunit
http://www.codeplex.com/xunit


293Testing functional code
of unit testing, you may well have been thinking to yourself that a test which can’t be 
reproduced later on is hardly worth running. Well, let’s see how this kind of test can 
evolve into a unit test.

11.2.1 From the interactive shell to unit tests

Testing code interactively is valuable when you’re writing the initial implementation, 
but we’d also like to make sure that the code keeps giving the same results even if you 
change it. This can be done easily by turning the one-off interactive test code into a 
solid unit test that we keep alongside our production code and run repeatedly. You 
may be surprised at how small a change is required to achieve this.
TESTING PROGRAMS IN F# INTERACTIVE

Let’s demonstrate the whole process from the beginning. We’ll use two functions sim-
ilar to PrintLongest and PrintMultiWord from the previous section, but this time 
we’ll implement them in F#. As you can see in listing 11.7, we’ll use the interactive 
shell slightly differently. 

> #if INTERACTIVE                                          
   #r @"C:\Program Files\xUnit\xunit.dll"  
   #endif                                                       
  open Xunit;;

> let getLongest(names:list<string>) =                
     names |> List.maxBy (fun name -> name.Length);;  
val getLongest : list<string> -> string

> let test = [ "Aaa"; "Bbbbb"; "Cccc" ];;
val test : string list = ["Aaa"; "Bbbbb"; "Cccc"]

> Assert.Equal("Bbbbb", getLongest(test));;   
val it : unit = ()

First, we need to place the code into a file with an extension of .fs such as Program.fs 
(as opposed to .fsx files that represent interactive scripts) because we want to compile 
the program into a .NET assembly. Also, we need to add a reference to the xUnit.net 
core library . This is simply a matter of using the Add Reference dialog box in Visual 
Studio. We also want to run the code interactively, so we have to load the library in F# 
Interactive. We’d usually do that using the #r directive, but this directive is allowed 
only in F# scripts (FSX files). Fortunately, F# supports conditional compilation and 
defines the INTERACTIVE symbol when running the code from the command shell, 
which mean the initial part of the listing B will work whether or not we’re running 
it interactively.

 Next we implement the function for finding the longest name from a given list C. 
The code is quite simple because it uses a higher-order function from the F# library. 
This function selects the element for which the given function returns the largest value. 
Once we have the function, we test it in the next two lines. The most interesting line is 
the one D, where we use the Assert.Equals method. This is imported from the Xunit

Listing 11.7 Testing code interactively using xUnit.net (F# Interactive)

B Refers to 
xUnit.net library

C Returns 
longest name

Tests function 
using xUnit.net

D

Licensed to   <kr_wilson@hotmail.com>



294 CHAPTER 11 Refactoring and testing functional programs
namespace and verifies that the actual value (given as the second argument) matches 
the expected value (the first argument). The method throws an exception if that’s not 
the case—the fact that it returned unit as the result means the test passed.
WRITING UNIT TESTS IN F#

If we write our immediate testing code in this manner, it’s easy to turn it into a unit 
test and make it part of a larger project. We’ll discuss how to do that using xUnit.net 
soon, but first let’s write another call that should be definitely covered by the unit 
tests: calling the getLongest function with a null value as the argument: 

> getLongest(null);;
Program.fs(24,12): error FS0043: The type 'string list' 
does not have 'null' as a proper value

We haven’t tried that before, and as you can see F# Interactive reports a compile-time 
error rather than an exception. This means that we can’t even write code like that, 
which means that if we’re only using the function from F# we don’t need to test that 
possibility. Values of types that were declared in F# (including discriminated unions, 
records, but also F# class declarations) simply aren’t allowed to be null. They always 
have to be initialized to a valid value. As you learned in chapter 5, the right way to rep-
resent a missing value in F# is to use the option type. This rule is used only for types 
declared in F# and used in F#. When calling a usual .NET method that takes an exist-
ing .NET type as a parameter, you can specify null as a valid argument value.

NOTE Other languages such as C# don’t understand the restriction to disallow 
null as a value for an F# type. This means that an F# function such as get-
Longest still can receive null as an argument if it’s called from C#. We can 
check this case inside the function by using the generic Unchecked. 
defaultof<'T> value, which gives us an unsafe way to create a null value 
of any reference type in F# or to get the default value of a value type. In 
other words, it’s the equivalent of default(T) in C#. Then we should also 
use this trick to write unit tests to verify the behavior of the function. This 
isn’t necessary very often because public API of F# libraries tend to use 
standard .NET types such as seq<'T>, which have null as a valid value, and 
so we can write the unit test for the API in the usual manner.

We only intend to use our simple function from F#, so we don’t have to handle the 
case when a C# user calls it with a null argument. Listing 11.8 shows several other 
tests that we can add. Note that a large part of the listing is a slightly modified version 
of the code that we wrote in listing 11.7 when testing the function interactively. The 
most notable differences are that we’ve wrapped the testing code inside functions and 
added an attribute that marks it as an xUnit.net test.

#if INTERACTIVE
#r @"C:\Programs\Development\xUnit\xunit.dll"
#endif
open Xunit

Listing 11.8 Function with unit tests to verify its behavior (F#)
Licensed to   <kr_wilson@hotmail.com>



295Testing functional code
let getLongest(names:list<string>) =
   names |> List.maxBy (fun name -> name.Length)

module LongestTests = 
   [<Fact>]                       
   let longestOfNonEmpty() = 
      let test = [ "Aaa"; "Bbbbb"; "Cccc" ]     
      Assert.Equal("Bbbbb", getLongest(test))   

   [<Fact>]
   let longestFirstLongest() = 
      let test = [ "Aaa"; "Bbb" ]                
      Assert.Equal("Aaa", getLongest(test))  

   [<Fact>]
   let longestOfEmpty() = 
      let test = []                              
      Assert.Equal("", getLongest(test))  

In addition to wrapping every test into a function, we’ve also created a module to keep 
all the unit tests together in a single class. This isn’t technically necessary, but it’s a 
good idea to keep the tests separated from the main part of the program. Depending 
on your preferences, you can move the tests to the end of the file, to a separate file in 
a single project, or even to a separate project.

 The xUnit.net framework uses an attribute called Fact to mark methods that rep-
resent unit tests B. We can apply this to F# functions declared with let bindings, as 
they’re compiled as methods. The first test in the module is an adjusted version of the 
code we wrote when testing the code interactively, but we’ve also added two new tests.

 The second test C verifies that the getLongest function returns the first of the ele-
ments that have the maximal length when there are several of them. The maxBy func-
tion from the F# libraries follows this rule, but it isn’t documented so it may depend on 
the implementation; testing it explicitly is a good idea. The last test D checks that the 
function returns an empty string when we pass it an empty list. This is one of the corner 
cases that are worth considering. Returning an empty string may be the desired behav-
ior when you’re displaying the result in a UI, for example. As you’ve probably guessed, 
our original implementation doesn’t follow this rule. If you run the xUnit.net GUI on 
the compiled assembly, you’ll get a result similar to the one in figure 11.1.

 Now that we’ve clarified the required behavior of the getLongest function, we can 
fix it easily by adding a pattern to match the empty list: 

let getLongest(names:list<string>) =
   match names with
   | [] -> ""
   | _ -> names |> List.maxBy (fun name -> name.Length)

All three unit tests pass after this change. So far, the tests have been quite simple and 
we’ve only had to check whether the returned string matched the expected one. 
Often unit tests are more involved than this. Let’s look at how we might test a more 
complicated function and in particular how to compare an actual value with an 
expected one when a function returns a list.

Marks tests 
using attribute

B

Adjusted 
interactive test

C Requires first of the 
longest elements

D Requires empty string 
for an empty list
Licensed to   <kr_wilson@hotmail.com>



296 CHAPTER 11 Refactoring and testing functional programs
11.2.2 Writing tests using structural equality

Testing for equality with complicated data structures can be tricky in C#. If we con-
struct a new object with the same properties and compare the two using the == opera-
tor, the result is likely be false, because we’d be comparing two distinct instances. 

 The == operator can be overloaded in C#, and Object.Equals can be overridden, 
but both should usually only be done for value types or immutable data structures. 
When you compare two different instances of mutable types, it’s important to distin-
guish between them, because the data can change later on. On the other hand, if we 
have two immutable types storing the same values, we can treat them as equal. The 
data can’t change in the future, so the two objects will always be equal.
STRUCTURAL EQUALITY AND COMPARISON

As most of the types that we can declare in F# are immutable, the F# compiler auto-
matically implements the IComparable<T> interface and overrides the Equals method 
if we don’t provide an explicit implementation. It does this using a comparison for 
structural equality. This isn’t done automatically for F# classes—just for simple func-
tional types like records and discriminated unions, and tuples, which don’t have to be 
declared explicitly.

 Values of types that use this comparison are considered equal if they’re equal sim-
ple types, such as integers or strings, or they’re composed from the same values, using 

Figure 11.1 Instead of returning an empty string, the tested function throws an exception when given 
an empty list as its argument.
Licensed to   <kr_wilson@hotmail.com>



297Testing functional code
structural equality recursively. Listing 11.9 demonstrates structural equality with 
records containing tuples and primitive values.

> type WeatherItem = 
     { Temperature : int * int; 
        Text : string }
   let winter1 = { Temperature = -10, -2; Text = "Winter" }   
   let winter2 = { Temperature = -10, -2; Text = "Winter" };;  
(...)

> System.Object.ReferenceEquals(winter1, winter2);;  
val it : bool = false

> winter1.Equals(winter2);;
val it : bool = true              

> winter1 = winter2;;         
val it : bool = true           

First we declare an F# record type, which contains two fields. The first field type is a 
tuple of two integers, and the second is a string. We create two values of the record 
type using the very same value for each corresponding field.

 We can see that we genuinely have two instances: a test for reference equality B
returns false. If we use an overridden Equals method or the standard F# operator 
for testing equality C, the runtime will use structural equality, and it will report that 
the values are equal. First the two tuple values are compared for structural equality, 
then the two strings are compared.

 As we said earlier, this technique works for records, tuples, discriminated unions, 
and arrays. Since immutable F# lists are declared as discriminated unions, they receive 
the same treatment. We’ll use this feature when writing a unit-test expectation, but 
first let’s look at one more feature of the automatically generated functionality. We’ve 
seen how to use structural equality to test whether values are equal, but F# also pro-
vides structural comparisons for ordering:

> let summer = { Temperature = 10, 20; Text = "Summer" };;
(...)

> summer = winter1;;
val it : bool = false

> summer > winter1;;
val it : bool = true

This snippet creates a new value of the record type declared in listing 11.9 and com-
pares it with the value from the previous listing. The first result isn’t surprising: the 
two values are different. The second one deserves an explanation. Why should the 
summer value be considered to be larger than the winter1 value? The reason is that the 
F# compiler also generates a default comparison for the WeatherItem type. The com-
parison uses the values of the fields in the order in which they’re declared: a tuple
value (10, 0) is larger than a tuple (9, 100), for example. This default behavior can 

Listing 11.9 Comparing records with structural equality (F# Interactive)

Creates records con-
taining same values

B
Values represented 
by different instances

C …but considered 
as equal
Licensed to   <kr_wilson@hotmail.com>



298 CHAPTER 11 Refactoring and testing functional programs
be useful, particularly if you take it into consideration when you design your type, but 
for the rest of this chapter we’ll be focusing on structural equality.
WRITING TESTS FOR LISTS

The function we’re going to test is a generalized version of the one that printed 
names consisting of multiple words. The difference is that instead of printing the 
names, the function will return them as a result. The result will be a tuple of two lists: 
one containing the multiword names, and one containing the single-word names. In 
functional terminology this operation is called partitioning, and we can easily imple-
ment our function using the List.partition function from the standard F# library:

> let partitionMultiWord(names:list<string>) =
     names |> List.partition (fun name -> name.Contains(" "));;
val partitionMultiWord : string list -> string list * string list

The partition function takes a predicate as an argument and divides the input list 
into two lists. The first list contains elements for which the predicate returned true, 
and the second contains the remaining elements. Listing 11.10 shows two unit tests 
for the function declared earlier.

module PartitionTests = 
   [<Fact>]
   let partitionKeepLength() = 
      let test = ["A"; "A B"; "A B C"; "B" ]
      let multi, single = partitionMultiWord(test)
      Assert.True(multi.Length + single.Length = test.Length)  

   [<Fact>]
   let partitionNonEmpty() = 
      let test = ["Seattle"; "New York"; "Reading"]
      let expected = ["New York"], ["Seattle"; "Reading"]
      Assert.Equal(expected, partitionMultiWord(test))  

Listing 11.10 shows two unit tests implemented as functions marked with the Fact
attribute. The first test B checks that the lengths of the two lists returned as results 
add up to the same number as the length of the original input. This is a simple way to 
partially verify that no elements are lost by the partitioning. We’re using only a single 
input (the value test) in the listing, but we could simply extend the test to use multi-
ple input lists.

 The second test is more interesting, because it uses the structural equality feature 
we discussed earlier. It declares a value with the test input and a value that represents 
the expected output of the tests. The expected value is a tuple of two lists. The first list 
contains a single element, which is the only name composed from multiple words. 
The second list contains single-word names in the same order in which they occur in 
the input list. If you run the test, the assertion C succeeds, because the runtime uses 
structural equality to compare the tuples and the lists contained in the tuple. This 
means that it compares all the individual strings in the lists.

Listing 11.10 Unit tests for the partitioning operation (F#)

Verifies length 
of returned 
lists

B

Tests result using 
structural equality

C

Licensed to   <kr_wilson@hotmail.com>



299Testing functional code
 As we’ve seen, structural equality is a simple but valuable feature that streamlines 
unit testing, even though it’s not a fundamental aspect of functional programming. A 
more important and more inherently functional technique that aids testing is func-
tion composition.

11.2.3 Testing composed functionality

In section 11.1.2 when we discussed tracking dependencies in code, we used C# meth-
ods similar to the two F# functions from the last two examples to demonstrate how 
functional programming makes it easier to recognize what a function does and what 
data it accesses. This is useful when writing the code, but it’s also extremely valuable 
when testing it.

 In section 11.1, we wrote an imperative method for printing names consisting of 
multiple words, but with the side effect of removing elements from the mutable list
passed to it as argument. This didn’t cause any problems as long as we weren’t using 
the same list later. Any unit tests for that method that checked the printed output 
would have succeeded.

 What made the method tricky was that if we used it in conjunction with another 
method that was also correct, we could get unexpected results. This makes it hard to 
test imperative code thoroughly. In principle we should test that every method does 
exactly what it’s supposed to do and nothing more. Unfortunately, the “and nothing 
more” part is really hard to test, because any piece of code can access and modify any 
part of the shared mutable state.

 In functional programming we shouldn’t modify any shared state, so we only need 
to verify that the function returns correct results for all the given inputs. This also 
means that when we’re using two tested functions together, we only have to test that 
the combination has the appropriate result: we don’t need to verify that the functions 
don’t tread on each other’s data in subtle ways. Listing 11.11 shows the kind of test 
that looks completely pointless—but imagine what it might show if we were working 
with List<T> instead of immutable F# lists.

[<Fact>]
let partitionThenLongest() = 
   let test = ["Seattle"; "New York"; "Grantchester"]
   let expected = ["New York"], ["Seattle"; "Grantchester"]

   let actualPartition = partitionMultiWord(test)
   let actualLongest = getLongest(test)                

   Assert.Equal(expected, actualPartition)      
   Assert.Equal("Grantchester", actualLongest)  

As you can see, the unit test runs the two functions in sequence B, but only uses the 
results in the section where we verify whether the results match our expectations C. 
This means that the function calls are independent, and if they don’t contain any side 
effects we can reorder the calls freely. In a functional world, this unit test isn’t needed 

Listing 11.11 Testing calls to two side effect–free functions (F#)

B

C

Licensed to   <kr_wilson@hotmail.com>



300 CHAPTER 11 Refactoring and testing functional programs
at all: we’ve already written unit tests for the individual functions and this test doesn’t 
verify any additional behavior.

 However, if we’d written similar code using the mutable List<T> type, this test 
could catch the error we found in section 11.1. If the partitionMultiWord function 
modified the list referenced by the value test, removing all single-word names, the 
result of the second call wouldn’t be “Grantchester,” as expected by the test. This is an 
important general observation about functional code: if we test all the primitive pieces 
properly and test the code that composes them, we don’t need to test whether the 
primitive pieces will still behave correctly in the new configuration.

 So far we’ve talked about refactoring and testing functional programs. We’ve seen 
that first-class functions allow us to reduce code duplication and immutable data 
structures help us to understand what the code does as well as reduces the need to test 
how two pieces of code might interfere with each other.

 The remainder of this chapter discusses when (and if) code is executed, and how 
we can take advantage of this to make our code more efficient. First we need to get a 
clear idea of when some flexibility is available, and how F# and C# decide when to exe-
cute code.

11.3 Refactoring the evaluation order
We’ve looked at how to track dependencies between functions in code that uses 
immutable data structures. Once we know what the dependencies are, we can some-
times reorder operations to make the program more efficient but keep the original 
meaning. Listing 11.12 shows a simple example of this kind of optimization.   

In the first version, we call the Calculate1 function at the beginning of the program B. 
The result of this call is used only if TestCondition returns true. If that’s not the case, 
we executed the Calculate1 function without any reason and we’re wasting our CPU
time! In the second version, we moved this computation inside the if condition C, so 
it will be calculated only if the result will be needed.

 This was a simple modification and you’d probably have written the more efficient 
version without even thinking about it. As a program grows larger, optimizations like 
this become more difficult to spot. Listing 11.13 shows a slightly trickier example.

int TestAndCalculate(int num) {
   var test = TestCondition();  
   if (test == true) 

Listing 11.12 Reordering calculations in a program (C#)
var num = Calculate1(10);   var test = TestCondition();

var test = TestCondition(); if (test == true) {
if (test == true)    var num = Calculate1(10);
   return Calculate2(num);    return Calculate2(num); 
else return 0; } else return 0;

Listing 11.13 Passing a computed result to a function (C#)

B

C

B

Licensed to   <kr_wilson@hotmail.com>



301Refactoring the evaluation order
      return Calculate2(num);  
   else return 0;
}

TestAndCalculate(Calculate1(10));  

The function in this example takes a value num as an argument—but this value may 
not be needed by the function at all. If the condition B evaluates to false, the 
function returns 0 and the value of num isn’t relevant. When calling this function D, 
the function Calculate1 is executed even if we later find out that we don’t need 
its result.

 In Haskell (another popular functional language) this code wouldn’t call Calcu-
late if it didn’t need the result, because Haskell uses a different evaluation strategy. 
Let’s look at a few options before we return to optimizing listing 11.13.

11.3.1 Different evaluation strategies

Haskell is a purely functional language. One of its interesting aspects is that it 
doesn’t allow any side effects. There are techniques for printing to a screen or work-
ing with file systems, but they’re implemented in a way that they don’t actually look 
like side effects to the programmer. In a language like that, it’s possible to reorder 
expressions when evaluating them, so Haskell doesn’t evaluate a function unless it 
needs the result. This doesn’t affect the program’s result because the function can’t 
have side effects. 

 Both C# and F# functions can have side effects. They’re discouraged in F# and 
the language supports many ways to avoid them, but they can still be present in the 
program. Both languages specify the order in which the expressions will run, as oth-
erwise we couldn’t tell which side effect would occur first, making reliable program-
ming impossible!
EAGER EVALUATION IN C# AND F#

In most mainstream languages, the rule that specifies evaluation order is quite simple: 
to make a function call, the program evaluates all the arguments, then executes the 
function. Let’s demonstrate using our previous example:

TestAndCalculate(Calculate(10));

In all mainstream languages, the program will execute Calculate(10) and then pass 
the result as the argument to TestAndCalculate. As we’ve seen in the previous exam-
ple, this is unfortunate if the function TestAndCalculate doesn’t need the value of 
the argument. In that case, we just wasted some CPU cycles for no good reason! This is 
called an eager evaluation strategy. 

 The benefit of eager evaluation is that it’s easy to understand how the program 
executes. In C# and F# this is clearly important, because we need to know the order in 
which side effects (such as I/O and UI manipulation) will run. In Haskell this is con-
trolled by arguments and the return values of functions, so we don’t need to know 
that much about the order.

C

Used later in 
the program

D

Licensed to   <kr_wilson@hotmail.com>



302 CHAPTER 11 Refactoring and testing functional programs
LAZY EVALUATION STRATEGY IN HASKELL

In a lazy evaluation strategy, arguments to a function aren’t evaluated when the func-
tion is called, but later when the value is needed. Let’s return to the previous example:

TestAndCalculate(Calculate(10));

Here, Haskell jumps directly into the body of TestAndCalculate. The name of the 
argument is num, so Haskell remembers that if it needs the value of num later, it 
should run Calculate(10) to get it. Then it continues to execute by getting the 
result of TestCondition. If this function returns true, it needs the value of num and 
executes Calculate(10). If TestCondition returns false, the Calculate function is 
never called. 

11.3.2 Comparing evaluation strategies 

We can demonstrate different evaluation strategies using the computation by calcula-
tion technique described in chapter 2. This shows how the program runs step by step, 
so you can clearly see the difference between lazy and eager evaluation. Listing 11.14 
shows evaluation of an expression that uses two functions: PlusTen(a) returns a + 10
and TimesTwo(a) returns a * 2.   

The lazy evaluation strategy starts by evaluating PlusTen and doesn’t evaluate the 
argument first. In the next step it will need to add 10 to the argument B, but the 
argument hasn’t been evaluated yet. Since the value of the argument is needed to 
make further progress, the call to TimesTwo is executed C and we get the final result.

 The eager evaluation strategy starts by evaluating the argument, so in the first step 
it evaluates TimesTwo(4) to obtain the value 8 D. All arguments to the function Plus-
Ten have now been evaluated, so it can continue by evaluating this function E and 
calculating the result. 

 So far we’ve only looked at one motivation for using a lazy evaluation strategy, but 
it seems useful already. Why have we brought it up at all if it only exists in Haskell? 
Similar effects can be achieved in F# and C# 3.0.

Listing 11.14 Lazy evaluation and eager evaluation 

Listing 11.17 Lazy evaluation Listing 11.17 Eager evaluation

PlusTen(TimesTwo(4)) PlusTen(TimesTwo(4))

// Start calculating PlusTen: // To get values of all arguments,
TimesTwo(4) + 10               // calculate result of TimesTwo: 

PlusTen(8)                      
// Calculate TimesTwo, because
// we need its result now: // Evaluate PlusTen next:
8 + 10                         8 + 10                          

// Calculate the result: // Calculate the result:
18 18

B
D

C E
Licensed to   <kr_wilson@hotmail.com>



303Refactoring the evaluation order
11.3.3 Simulating lazy evaluation using functions

The evaluation order in F# and C# is eager: expressions used as arguments to a func-
tion are evaluated before the function itself starts to execute. In both C# and F#, we 
can simulate lazy evaluation using function values, and F# even supports lazy evalua-
tion via a special keyword. 

 But first, there’s one exception from the eager evaluation rule. You definitely know 
about it and use it frequently, but it’s so common that you may not realize that it’s 
doing something special. Certain C# operators such as logical or (||), logical and 
(&&), the conditional operator (?:), and the null-coalescing operator (??) implement 
short-circuiting behavior and evaluate only those operands that they need for comput-
ing the result. This means that we can’t, for example, easily implement an Or method 
that would have the same behavior as the || operator:

if (Foo(5) || Foo(7))
   Console.WriteLine("True"); 
if (Or(Foo(5), Foo(7)))
   Console.WriteLine("True"); 

Let’s say that the Foo method returns true when the parameter is less than 10. This 
means that when the value of Foo(5) is evaluated, the built-in || operator already 
knows that the overall result will be true and so it doesn’t evaluate the result of 
Foo(7). On the other hand, when calling the Or method, both of the arguments will 
be evaluated prior to the method call. Is there any way to write the code so that the 
Foo(7) expression isn’t evaluated if the Foo(5) expression evaluates to true?

 One possible answer is to use function values. Instead of having a method with a 
parameter of type bool, we’ll make it take Func<bool>. When we need the value later 
in the code, we can execute the function, which will in turn evaluate the value of the 
expression. You can see how to write the or operator (now called LazyOr) using this 
trick in listing 11.15. 

bool Foo(int n) {
   Console.WriteLine("Foo({0})", n);  
   return n <= 10;
}
bool LazyOr(Func<bool> first, Func<bool> second) {  
   if (first()) return true;                            
   if (second()) return true;       
   return false;
}

if (LazyOr(() => Foo(5), () => Foo(7)))       
    Console.WriteLine("True"); 

We’re demonstrating the problem using a Foo method that writes to the screen B so 
we can track how it’s being called. The original arguments to the or operator are now 
wrapped inside lambda functions. When the method is called, its arguments are 

Listing 11.18 Lazy or operator using functions (C#)

B

C

Evaluates second 
argument

Evaluates first 
argument

Prints Foo(5) only
Licensed to   <kr_wilson@hotmail.com>



304 CHAPTER 11 Refactoring and testing functional programs
eagerly evaluated, but the value of the argument is a function. The expression inside
the lambda function isn’t evaluated until the function is called. 

 Look at the LazyOr method C. In the places where we need to access the Boolean 
value that we’re calculating with, we call the function provided by that argument. If 
the function first returns true, then the LazyOr method immediately returns true
and the second function never gets called. This means that the code behaves just like 
the built-in logical or operator.

 Suppose we needed to access the argument value more than once. Should we 
invoke the function multiple times? That doesn’t sound like a very efficient solution, 
so we’d probably want to store the result locally. In F#, this is made simpler using a fea-
ture called lazy values. First we’ll look at some F# code, and then we’ll implement the 
same behavior in C#. After that, we’ll look at a sample application that may give you 
some ideas for places to use this technique in your own code.

11.3.4 Lazy values in F#

A lazy value in F# is a way to represent delayed computation—this means a computa-
tion that’s evaluated only when the value is needed. In the previous section, we imple-
mented a similar thing using functions in C#, but lazy values automatically calculate 
the value only once and remember the result.

 The best way to explore this feature is to play with it inside F# Interactive. A script 
that demonstrates how to use it is in listing 11.16.

> let foo(n) =
     printfn "foo(%d)" n
     n <= 10;;
val foo : int -> bool

> let n = lazy foo(10);;                       
val n : Lazy<bool> = Value is not created.  

> n.Value;;                          
foo(10)                
val it : bool = true  

> n.Value;;                          
val it : bool = true  

We start by writing a function similar to our C# Foo method. This lets us track when 
the computation is evaluated by writing to the console. The second command uses the 
F# lazy keyword B. If you mark an expression with lazy, the expression won’t be 
evaluated immediately and will be wrapped in a lazy value. As you can see from the 
output, the foo function hasn’t been called yet and the created value has type 
Lazy<bool>. This represents a lazy value that can evaluate to a Boolean value.

 On the next line, you can see that lazy values have a member called Value C. This 
property evaluates the delayed computation. In our case, this means calling the foo
function. The last command shows that accessing Value again D doesn’t reevaluate 

Listing 11.19 Introducing lazy values (F# Interactive)

B

Calls foo to get 
the resultC

Returns 
immediatelyD
Licensed to   <kr_wilson@hotmail.com>



305Refactoring the evaluation order
the computation. If you look at the output, you can see that the foo function wasn’t 
called. That said, we can clearly see that Lazy<'T> is a mutable type. If we used a 
purely functional function without side effects as its argument we wouldn’t be able to 
observe that.

 In the earlier chapters, we’ve emphasized the functional way of looking at data 
types, and we’ve seen that it’s useful to know what kind of operations are needed to 
work with a type. Let’s look at lazy values using this point of view.

Our motivation when we started talking about lazy values was that we couldn’t write 
our own implementation of the logical or operator that would only evaluate the argu-
ment on the right-hand side if and when it needed to. Let’s try again now, armed with 
our new knowledge of lazy values.
IMPLEMENTING OR AND LAZY OR

Since we’re implementing an operator, we’re going to define it as a true operator 
rather than just as a normal function. As you learned in chapter 6, we can introduce 
our own operators in F#, so listing 11.17 shows two different variations of the 
or operator.   

Listing 11.20 Comparing eager and lazy or operators (F# Interactive)
let (||!) a b =    let (||?) (a:Lazy<_>) (b:Lazy<_>) =
   if a then true    if a.Value then true       
   elif b then true    elif b.Value then true
   else false    else false

Specifying lazy values using operations
If the F# language didn’t have the lazy keyword and didn’t allow us to write objects 
with properties, we’d need two operations—one to construct the lazy value and one 
to extract the actual value:

val create : (unit -> 'T) -> Lazy<'T>
val force : Lazy<'T> -> 'T

As you can see, the argument of the create operation is a function that’s wrapped 
inside the Lazy<'T> value. In functional programming, other types exist that repre-
sent delayed computations, so when a function takes a function of type unit -> 'T
as an argument and returns some generic type, the type likely represents a delayed 
computation. The signature of the force operation is even more straightforward. It 
simply extracts the actual value from the type that wraps it. The signature doesn’t tell 
us how the actual value is wrapped, but since we have the force operation, we can 
always extract it. 

As we’ll see in the next chapter, this abstract description of a type in terms of ba-
sic operations that we can use for working with it is useful in functional program-
ming. Even though F# provides a more convenient way to work with lazy values 
than using functions, it’s still helpful to realize what the primitive operations are.

B
C

Licensed to   <kr_wilson@hotmail.com>



306 CHAPTER 11 Refactoring and testing functional programs
Arguments of the eager version of the operator B are Boolean values, so we can use 
them directly in the if condition. The lazy version takes lazy values wrapping a compu-
tation that returns a Boolean value. To read the value, we use the Value property C.

 When using the eager operator D, we specify the arguments as normal. As the out-
put shows, both of the arguments are evaluated. In fact, they’re evaluated even before 
the body of our custom operator executes. When using the lazy version E we add 
additional lazy keywords to delay both arguments. The result is that only one expres-
sion is evaluated, because that’s enough to calculate the final result.

 In many ways this example was only a curiosity, but it was useful to demonstrate 
how we can programmatically achieve an element of laziness that’s already familiar 
through language constructs. Next we’ll implement lazy values as a type we can use 
from C#. It’s not quite as syntactically compact, but even in this form it can be useful.

11.3.5 Implementing lazy values for C#

In section 11.3.3 we represented delayed computation in C# using functions. The 
Lazy<T> type that we’ve just explored in F# adds the ability to cache the value when its 
value is calculated. Since Visual Studio 2010, the type is available in the core .NET
libraries under the name System.Lazy<T>, so we don’t have to implement it ourselves. 

 Listing 11.18 shows a simple implementation of the Lazy<T> class. The code is sim-
plified, because it isn’t thread-safe and doesn’t handle exceptions in any way, but it 
shows the core idea.

public class Lazy<T> {
   readonly Func<T> func;
   bool evaluated = false;
   T value;                      

   public Lazy(Func<T> func) {  
      this.func = func;
   }
   public T Value {  
      get {
         if (!evaluated) {
           value = func();   
           evaluated = true;  
         }
         return value;
      }

Listing 11.17 Comparing eager and lazy or operators (F# Interactive) (continued)

// Using in F# Interactive
> if (foo(5) ||! foo(7)) > if lazy foo(5) ||? lazy foo(7)
     then printfn "True";;      then printfn "True";;
foo(5) foo(5)
foo(7) True
True

Listing 11.18 Class for representing lazy values (C#) 

D E

Represents state 
of the cache

B

C

Computes value, 
modifies state
Licensed to   <kr_wilson@hotmail.com>



307Using lazy values in practice
   }
}
public class Lazy {                                          
   public static Lazy<T> Create<T>(Func<T> func) {
      return new Lazy<T>(func);
   }
}

The first important part of the class is a constructor B that takes a function and stores 
it inside a readonly field. The function doesn’t take any arguments, but evaluates the 
value when it’s called, so we’re using the Func<T> delegate. There’s also a static 
method in a nongeneric type to make it easier to use C#’s type inference when we cre-
ate lazy values. 

 The lazy value uses a flag to specify whether the value has already been evaluated. 
Note that we’re using generics, so we can’t easily represent this using the null value, 
and even if we added a restriction to force T to be a reference type, we need to allow 
for the possibility that the function could return null as the computed value.

 Most of the code that uses the cached value is in the Value property C getter. 
From the user’s perspective this is the second important part of the class. First it tests 
whether we’ve already evaluated the function. If we have, we can use the value we 
computed earlier. If not, it calls the function and marks a flag so that we don’t evalu-
ate it multiple times. 

 Let’s look at a simple code snippet that shows how we can work with this type:

var lazy = Lazy.Create(() => Foo(10));
Console.WriteLine(lazy.Value);            // Prints 'Foo(10)' and 'True'
Console.WriteLine(lazy.Value);            // Prints only 'True'

If you try this code, you should see exactly the same behavior as in the F# version. 
When creating the lazy value, we give it a function: the Foo method won’t be called 
at this point. The first call to Value evaluates the function and calls Foo; any subse-
quent call to Value uses the cached value computed earlier, so the last line prints 
the result.

 So far, our motivation for exploring lazy values was the difficulty with implement-
ing lazy version of the or operator. In the next section we’ll look at two more compli-
cated examples of using lazy values in practice.

11.4 Using lazy values in practice
Lazy values are useful when we have a set of computations that can take a long time 
and we need to calculate the value (or values) on demand. In that case, we can benefit 
from the caching that we’ve implemented in C# in the previous section and use lazy 
values as a cache that’s populated on demand.

 Another important use of laziness is when expressing some concept that’s hard to 
encode in other ways. We’ll start our discussion about practical uses of lazy values with 
a couple of examples that are motivated by Haskell—the fact that Haskell uses lazy 
evaluation everywhere makes it a very expressive language.

Enables type inference 
when creating values
Licensed to   <kr_wilson@hotmail.com>



308 CHAPTER 11 Refactoring and testing functional programs
11.4.1 Introducing infinite lists

The heading of this section may sound a little odd (or insane), so we’ll offer a word of 
explanation. One of the data structures that we’ve used quite a lot is the functional 
list. We might also want to represent logically infinite lists, such as a list of all prime 
numbers. In reality we wouldn’t use all the numbers, but we can work with a data struc-
ture like this without worrying about the length. If the list is infinite, we know that 
we’ll be able to access as many numbers as we need. 

 Aside from mathematical challenges, the same concept can be useful in more 
mainstream programming. When we drew a pie chart in chapter 4, we used random 
colors, but we could instead use an infinite list of colors generated in a way that makes 
the chart look clear. We’ll see all these examples in the next chapter, but now we’ll 
show you how the idea can be represented using lazy values.

 Storing an infinite list of numbers in memory seems like a tricky problem. Obvi-
ously we can’t store the whole data structure, so we need to store part of it and repre-
sent the rest as a delayed computation. As we’ve seen, lazy values are a great way to 
represent the delayed computation part.

 We can represent a simple infinite list in a similar way to an ordinary list. It is a cell 
that contains a value and the rest of the list. The only difference is that the rest of the 
list will be a delayed computation that gives us another cell when we execute it. We can 
represent this kind of list in F# using a discriminated union, as shown in listing 11.19.

type InfiniteInts =
   | LazyCell of int *            
                      Lazy<InfiniteInts>  

This discriminated union has only a single discriminator, which means it’s similar to a 
record. We could have written the code using a record instead, but discriminated 
unions are more convenient for this example, because we can use the nice pattern-
matching syntax to extract the carried values. The only discriminator is called 
LazyCell, and it stores the value stored in the current cell B and a reference to the 
“tail” C. The tail is a lazy value, so it will be evaluated on demand. This way, we’ll be able 
to evaluate the list cell by cell and when a cell is evaluated, the result will be cached. 

Listing 11.19 Infinite list of integers (F#)

B
C

Lazy lists in F# and Haskell
As mentioned earlier, Haskell uses lazy evaluation everywhere. This means that a 
standard list type in Haskell is automatically lazy. The tail isn’t evaluated until the 
value is accessed somewhere from the code.

In F#, lazy lists aren’t used very frequently. We’ll see a more elegant way of writing 
infinite collections in F# and also in C# 2.0 in the next chapter. F# provides an im-
plementation of lazy lists similar to the type we’ve implemented in this section. 
You can find it in the FSharp.PowerPack.dll library as LazyList<'a>.
Licensed to   <kr_wilson@hotmail.com>



309Using lazy values in practice
Now that we’ve got our type, let’s use it to create a simple infinite list that stores inte-
gers 0, 1, 2, 3, …. Listing 11.20 also shows how to access values from the list.

> let rec numbers(num) =                      
     LazyCell(num, lazy numbers(num + 1));;      
val numbers : int -> InfiniteInts

> numbers(0);;                                                           
val nums : InfiniteInts = LazyCell(0, Value is not created.)

> let next(LazyCell(hd, tl)) =  
     tl.Value;;                                   
val next : InfiniteInts -> InfiniteInts

> numbers(0) |> next |> next |> next |> next |> next;;         
val nums : InfiniteInts = LazyCell(5, Value is not created.)

We begin by writing a recursive function numbers B that returns an infinite list of 
integers starting with the number given as an argument and continuing to infinity. It 
returns a cell that contains the first value and a tail. The tail is a lazy value that (when 
evaluated) recursively calls numbers to get the next cell.

 If we call the function with 0 as an argument, we’ll get an infinite list starting 
from 0 C. The output from the F# Interactive isn’t particularly readable, but you 
can spot that the first value is 0 and that the tail is a value of type Lazy<Infi-
niteInts>. The subsequent command declares a function next, which gives us the 
next cell of the list D. We use pattern matching in the declaration to decompose the 
only argument. This looks a bit unusual, because you don’t typically use discrimi-
nated unions with only a single discriminator, but it’s the same principle as decom-
posing a tuple into its components. In the body of the function, we read the Value
property, which evaluates the next cell. Finally, the last line uses the next function 
several times to read the sixth value from the list.

 There are many more things that we could do with lazy lists, but we won’t go into 
them here as we’ll see a more idiomatic F# technique in the next chapter. There are 
situations where the LazyList<'a> type is quite useful. Even though we haven’t 
worked with the F# library type directly, you won’t have problems using it now that you 
understand the principles. 

 In this introduction to infinite data structures, we’ve focused more on the func-
tional style without even showing a C# example. It would be possible to write the same 
type in C# now that we know how to write a lazy value in C#, but in the next chapter 
we’ll see a more natural way for representing infinite structures or streams of values 
in C#.

 The lazy lists in this example had one very interesting aspect. Once we evaluated 
the list to some point, the evaluated values remained available in memory, and we 
didn’t have to recalculate them each time. As we’ll see in the next section, this aspect 
of lazy values can be used as a simple but elegant caching mechanism.

Listing 11.20 Creating a list containing 0, 1, 2, 3, 4, … (F# Interactive)

B Creates next cell as 
delayed computation

C

D Evaluates lazy value 
representing next cell

Accesses sixth 
value from list
Licensed to   <kr_wilson@hotmail.com>



310 CHAPTER 11 Refactoring and testing functional programs
11.4.2 Caching values in a photo browser

In our next example, we’re going to write an application that finds all the photos in a 
specified folder and displays a list of them. When the user selects a photo, the applica-
tion resizes it and shows it in a window. (For simplicity, we won’t allow the user to 
resize the window.) When we draw the photo, we’ll need to resize it to fit the screen 
and show the resized image. 

 Obviously, we don’t want to resize all photos when the application starts: it could 
take an enormous amount of time for a large set of photos. We also don’t want to 
resize the photo every time we draw it because we’d have to resize the same photo 
again and again. From the description it’s fairly obvious that lazy values can help us. 
We’ll demonstrate how to write the application in F#, but you can find the equivalent 
C# version on the book’s website. 
CACHING USING LAZY VALUES

The most interesting part of the application is the code that’s executed when the 
application starts. It finds all the files in the specified directory and creates an array 
with information about each file. This information contains the name of the file and 
the lazy value that will evaluate to the resized preview. Listing 11.21 shows how we can 
create this data structure.

open System.IO
open System.Drawing

type ImageInfo = { Name : string; Preview : Lazy<Bitmap> }  

let dir = @"C:\My Photos"                                               
let createLazyResized(file) =          
   lazy( use bmp = Bitmap.FromFile(file)      
            let resized = new Bitmap(400, 300)
            use gr = Graphics.FromImage(resized)

Listing 11.21 Creating a collection of photo information (F#)

Writing functions for working with infinite lists
When working with the standard list type, we can use functions like List.map and 
List.filter. We can implement the same functions for infinite lists as well, but of 
course, not all of them. For example, List.fold and List.sort need to read all the 
elements, which isn’t possible for our lazy list. As an example of what is possible, 
here’s an implementation of the map function:

let rec map f (LazyCell(hd, tl)) =
   LazyCell(f(hd), lazy map f tl.Value)

The structure is similar to the normal map function. It applies the given function to 
the first value in the cell, then recursively processes the rest of the list. The pro-
cessing of the tail is delayed using the lazy keyword. Other common list-process-
ing functions would look similar.

B

Specifies the 
directory with 
your photos

C
Manages 
disposal 
automatically
Licensed to   <kr_wilson@hotmail.com>



311Using lazy values in practice
            let dst = Rectangle(0, 0, 400, 300)                     
            let src = Rectangle(0, 0, bmp.Width, bmp.Height)               
            gr.InterpolationMode <- Drawing2D.InterpolationMode.High
            gr.DrawImage(bmp, dst, src, GraphicsUnit.Pixel)              
            resized)

let files =                                                                  
  Directory.GetFiles(dir, "*.jpg") |> Array.map (fun file ->
    { Name = Path.GetFileName(file)        
      Preview = createLazyResized(file) })                        

We start by declaring a record type B that represents information about the photo. As 
you can see, the type of the preview is Lazy<Bitmap>, which is a delayed computation 
that will give us a Bitmap when we’ll need it. Next, we implement a function that returns 
a lazy value representing the resized bitmap C. To draw the preview, we write the usual 
code to resize a Bitmap object and wrap the entire body using the lazy keyword.

 Next, we create the data structure that contains information about photos D. We 
obtain an array of files using a normal .NET method call and use the Array.map func-
tion to create an ImageInfo value for every photo. Inside the lambda function, we cre-
ate a record value containing the name and the lazy preview returned by the 
createLazyResized function E.

 One interesting property of the program is that we could delete all uses of the lazy
keyword, change all types from Lazy<'T> to 'T, and delete all uses of the Value property, 
and the code would still work correctly, except everything will be evaluated eagerly.
IMPLEMENTING THE USER INTERFACE

Now that we have all the data we need about the photos, we can add a simple GUI
using Windows Forms. In listing 11.22, we’ll create a couple of controls to show the 
data and code that shows the selected photo.

open System
open System.Windows.Forms

let main = new Form(Text="Photos", ClientSize=Size(600,300))
let pict = new PictureBox(Dock=DockStyle.Fill)
let list = new ListBox(Dock=DockStyle.Left, Width=200, 
                               DataSource=files, 
                               DisplayMember = "Name")  
list.SelectedIndexChanged.Add(fun _ ->                          
   let info = files.[list.SelectedIndex]
   pict.Image <- info.Preview.Value)  
main.Controls.Add(pict)
main.Controls.Add(list)

[<STAThread>]
do Application.Run(main)  

To show the list of photos in the ListBox control, we use data binding B, which is a 
feature used in many .NET controls. We simply specify that the DataSource for the 
control is our array of files. To specify what should be displayed, we set the DataMem-
ber property to the name of the record member that we want to display (Name).

Listing 11.22 Adding a user interface for the photo browser (F#)

Draws 
resized 
bitmap 
to target

D

E

Displays Name 
property from 
files array

B

Handles change 
of selection

C
Evaluates 
lazy value

Runs 
application

D

Licensed to   <kr_wilson@hotmail.com>



312 CHAPTER 11 Refactoring and testing functional programs
 Next, we register a lambda function as a handler for the SelectedIndexChanged
event of the ListBox. When this is triggered, we choose the selected ImageInfo value 
and use the Value property to get the resized bitmap. If this is the first time that partic-
ular bitmap has been shown, it will be resized at that point; if we’ve seen it before, we 
can immediately use the cached result. Listing 11.22 shows the code as a standalone 
application, which means that we run it using the Application.Run() method D. In F# 
Interactive, you’d use main.Show() to display the form instead. You can see how the 
application looks in figure 11.2.

 If you run the application using a folder containing large photos, the difference 
made by lazy values is obvious. Selecting a “new” photo can take some time, but if you 
revisit a photo you’ve already seen, it will be rendered immediately.

NOTE You may be wondering if we could improve this application using multi-
ple threads. There are two areas where using multiple threads could help 
here. First, we could start the computation when a user selects a file with-
out blocking the UI. Currently, the application is frozen until the image 
is resized. To this end, we could use asynchronous programming tech-
niques such as the F# asynchronous workflows discussed in chapter 13.

Another possibility is that the application could precompute the 
resized bitmaps in the background. Instead of doing nothing, it could 
resize some images in advance so that the user wouldn’t have to wait 
when clicking on the photo. In chapter 14, we’ll see that this is quite 
easy—we’ll look at the Task<T> type, which is like Lazy<T>, except that it 
isn’t as lazy and computes the value on a background thread.

We’re sure you have a pretty good idea how you’d implement the same application 
using our Lazy<T> class in C#, so we won’t discuss that in this book. You can find the 
source code of the application at the book’s website. One of the interesting things in 

Figure 11.2 Photos can be selected from the list on the left side. The resized version is 
cached automatically thanks to the use of lazy values.
Licensed to   <kr_wilson@hotmail.com>



313Summary
the C# version is that you can use C# 3.0 anonymous types for representing informa-
tion about photos if you write the code inside a single method.

11.5 Summary
The general theme of this chapter was refactoring of functional programs, even 
though we’ve seen a larger number of examples and concepts. We started by talking 
about the equivalent of refactoring in mathematics, and you saw that in mathematics, 
we can more easily reason about the “code,” so we can see when a particular change is 
correct. Thanks to its roots in mathematics, functional programming often has the 
same property.

 We first explored how we can use the function type to reduce code duplication, 
which is the simple case of refactoring. Then we’ve seen how functional programming 
makes it easier to track dependencies in the code, and as a result, we can see whether 
or not a particular refactoring is correct.

 Next we focused on unit testing of functional programs using xUnit.net. You 
learned how to combine unit testing and interactive testing using F# Interactive, so if 
you were worried about interactive testing in one of the earlier chapters, you now 
know that interactive tests are only a part of a larger testing story. In addition, we dem-
onstrated how immutability makes it simpler to test code, because we only need to test 
that a function gives the expected result: we don’t need to worry about side effects.

 Then we turned our attention to laziness. We’ve seen that laziness can be used to 
cache the results of a computation, so that the code runs more efficiently next time we 
access the value. As long as we work only with immutable data structures, this modifi-
cation doesn’t change the result of the program, so we can view it as just another form 
of useful refactoring. You also learned that laziness can be used to express interesting 
functional concepts such as infinite data types. In fact, this was only a teaser for the 
next chapter, where we’ll talk about C# iterators and F# sequence expressions, both of 
which allow us to express a sequence of values in a much more natural way. This is just 
one example of a bigger idea, so we’ll also look at how we can change or extend the 
meaning of code in general.
Licensed to   <kr_wilson@hotmail.com>



Sequence expressions and 
alternative workflows
Before we can start talking about sequence expressions, you must know what a 
sequence is. This is another F# term that comes from mathematics, where a sequence 
is an ordered list containing a possibly infinite number of elements. Don’t worry if 
that all sounds a bit abstract; you’re already familiar with the type that expresses the 
same idea in .NET: IEnumerable<T>.

 The primary reason for having the IEnumerable<T> type in the .NET Framework 
is it gives us a unified way to work with collections of data such as arrays, dictionar-
ies, mutable lists, and immutable F# lists. In F# we’ll be talking about sequences, 
because this is a more general term. A sequence can represent a finite number of 
elements coming from a collection, but it can be also generated dynamically and 
retrieved on an on-demand basis. You’ll learn that infinite sequences, which sound 
somewhat academic, can still be useful in real applications.

This chapter covers
■ Processing and generating sequences of values
■ Working with F# sequence expressions
■ Understanding monads and LINQ expressions
■ Implementing F# computation expressions
314

Licensed to   <kr_wilson@hotmail.com>



315Generating sequences
 We’ll begin by looking at ways to create and process sequences. The traditional 
functional technique is to use higher-order functions, but modern languages often 
provide an easier way. In C#, we can use iterators to generate a sequence and LINQ
queries to process an existing one. The F# language unifies these two concepts into 
one and allows us to write most of the operations using sequence expressions.

 The syntax used for writing sequence expressions in F# isn’t a single-purpose lan-
guage feature designed only for sequences. That is just one (very useful!) application 
of a more general construct called computation expressions. Computation expressions 
can be used for writing code that looks like ordinary F# but behaves differently. In the 
case of sequence expressions, a sequence of results is generated instead of just one 
value, but we’ll look at other examples. We’ll show you how to use computation 
expressions for logging, and how they can make option values easier to work with. 

NOTE Computation expressions can be used for customizing the meaning of 
the code in many ways, but some limits exist. In particular, the code writ-
ten using computation expressions has to be executed as compiled .NET
code and we can customize only a few primitives inside it. It can’t be used 
to manipulate the code and execute it in a different environment, in the 
way that LINQ to SQL does, for example. To do similar things in F#, we 
have to combine ideas from this chapter with a feature called F# quota-
tions, which isn’t discussed in this book. You’ll find resources about quo-
tations on the book’s website.

We’ll start by talking about sequences, and once you become familiar with sequence 
expressions, we’ll look at computation expressions and how they relate to LINQ que-
ries in C#. Let’s take our first steps with sequences. Before we can start working with 
them, we need to know how to create them.

12.1 Generating sequences
There are several techniques for generating sequences, so let’s look at our options. 
The direct way is to implement the IEnumerator<T> interface, providing a Current
property and a MoveNext method, which moves the enumerator object to the next ele-
ment. This forces us to explicitly create an object with mutable state, which obviously 
goes against the functional style. Normally we can apply techniques that hide the 
mutation and give us a more declarative way of expressing the generated sequence’s 
contents. This is similar to using lazy values that we’ve seen in the previous chapter. 
Using mutable state explicitly (for example, to implement caching) doesn’t look like a 
good functional style, but when we hide the mutation into a Lazy<'T> type, we’ll get a 
perfectly reasonable functional code. 

 As usual in functional programming, we can use higher-order functions. The F# 
library supports quite a few of these for working with sequences, but we’ll look at only 
one example. As we’ll see later, both C# and F# give us a simpler way to generate 
sequences. In C#, we can use iterators and F# supports a general-purpose sequence-
processing feature called sequence expressions.
Licensed to   <kr_wilson@hotmail.com>



316 CHAPTER 12 Sequence expressions and alternative workflows
12.1.1 Using higher-order functions

The functions used to work with sequences in F# are in the Seq module, and we’ll 
examine one very general function called Seq.unfold. You can see it as an opposite to 
the fold function, which takes a collection and “folds” it into a single value. unfold
takes a single value and “unfolds” it into a sequence. The following snippet shows how 
to generate a sequence containing numbers up to 10 formatted as strings: 

> let nums = Seq.unfold (fun num -> 
     if (num <= 10) then Some(string(num), num + 1) else None) 0
  ;;
val nums : seq<string> = seq ["0"; "1"; "2"; "3"; ...]

The num value represents the state used during the generation of the sequence. When 
the lambda function is called for the first time, the value of num is set to the initial 
value of the second parameter (zero in our example). The lambda function returns 
an option type containing a tuple. The value None marks the end of the sequence. 
When we return Some, we give it two different values in a tuple: 

■ A value that will be returned in the sequence (in our case, the number con-
verted to a string). 

■ A value that is the new state to use when the lambda function is next called. 

As you can see from the output, the type of the returned value is seq<string>. This is 
an F# type alias for the IEnumerable<string> type. It’s a different way of writing the 
same type, in the same way that float is a C# alias for System.Single, so you can mix 
them freely. The output also shows the first few elements of the sequence, but since the 
sequence can be infinite, the F# Interactive shell doesn’t attempt to print all of them.

 The standard .NET library doesn’t contain a similar method for C#. One of the few 
methods that generate sequences in C# is Enumerable.Range (from the System.Linq
namespace), which returns an ascending sequence of numbers of the specified length 
(second argument) from the specified starting number (the first argument). We 
could implement a function like Seq.unfold in C# as well, but we’ll see that similar 
results can be easily achieved using C# iterators, which we’ll look at next.

12.1.2 Using iterators in C#

When iterators were first introduced in C# 2.0, the most common use for them was to 
simplify implementing the IEnumerable<T> interface for your own collections. The 
programming style used in C# has been evolving, and iterators are now used together 
with other functional constructs for a variety of data processing operations. 

 Iterators can be used for generating arbitrary sequences. We’ll start with a simple 
example that generates a sequence of factorials that are less than 1 million, formatted 
as strings. Listing 12.1 shows the complete source code.

static IEnumerable<string> Factorials() {
   int factorial = 1;                                  
   for(int num = 0; factorial < 1000000; num++) {

Listing 12.1 Generating factorials using iterators (C#)

B

Licensed to   <kr_wilson@hotmail.com>



317Generating sequences
      factorial = factorial * num;                                    
      yield return String.Format("{0}! = {1}", num, factorial);   
   }
}

The C# compiler performs a rather sophisticated transformation on the iterator code 
to create a “hidden” type that implements the IEnumerable<T> interface. The inter-
esting thing about listing 12.1 is how it works with the local state. We declare one local 
variable to store some mutable state B, and a second mutable variable is declared as 
part of the for loop. The algorithm is implemented inside a loop, which is executed 
every time we want to pull another value from the iterator. The loop body updates the 
local state of the iterator C and yields the newly calculated value.

 The code is very imperative, because it heavily relies on mutation, but from the 
outside iterators look almost like functional data types, because the mutable state is 
hidden. Let’s look at the sequence expression, which is the general F# mechanism for 
generating, but also for processing, sequences.

12.1.3 Using F# sequence expressions

Iterators in C# are very comfortable, because they allow you to write complicated 
code (a type that implements the IEnumerable<T>/IEnumerator<T> interfaces) in 
an ordinary C# method. The developer-written code uses standard C# features such 
as loops, and the only change is that we can use one new kind of statement to do 
something nonstandard. This new statement is indicated with yield return

(or yield break to terminate the sequence), and the nonstandard behavior is 
to return a value as the next element of a sequence. The sequence is then accessed 
on demand (end evaluated element-by-element) using the MoveNext method. 
Sequence expressions in F# are similar: they use a construct that’s equivalent to 
yield return. 
WRITING SEQUENCE EXPRESSIONS

In C#, we can use iterators automatically when implementing methods that return 
IEnumerable<T>, IEnumerator<T>, or their nongeneric equivalents. F# sequence 
expressions are marked explicitly using the seq identifier, and don’t have to be used 
as the body of a method or function. As the name suggests, sequence expressions are 
a different type of expression, and we can use them anywhere in our code. Listing 12.2 
shows how to create a simple sequence using this syntax.

> let nums = 
     seq { let n = 10  
             yield n + 1       
             printfn "second.."  
             yield n + 2 };;
val nums : seq<int>  

When writing sequence expressions, we enclose the whole F# expression that gener-
ates the sequence in a seq block B. The block is written using curly braces and the 

Listing 12.2 Introducing sequence expression syntax (F# Interactive)

C

Returns next string

B
C

D

E

Licensed to   <kr_wilson@hotmail.com>



318 CHAPTER 12 Sequence expressions and alternative workflows
seq identifier1 at the beginning denotes that the compiler should interpret the body
of the block as a sequence expression. There are other possible identifiers that specify 
other alternative workflows, as you’ll see later. In the case of seq, the block turns the 
whole expression into a lazily generated sequence. You can see this by looking at the 
inferred type of the value E. 

 The body of the sequence expression can contain statements with a special mean-
ing. Similarly to C#, there’s a statement for returning a single element of the 
sequence. In F# this is written using the yield keyword C. The body can also contain 
other standard F# constructs, such as value bindings, and even calls that perform side 
effects D.

 Similar to C#, the body of the sequence expression executes lazily. When we create 
the sequence value (in our previous example, the value nums), the body of the 
sequence expression isn’t executed. This only happens when we access elements of 
the sequence, and each time we access an element, the sequence expression code only 
executes as far as the next yield statement. In C#, the most common way to access ele-
ments in an iterator is using a foreach loop. In the following F# example, we’ll use the 
List.ofSeq function, which converts the sequence to an immutable F# list:

> nums |> List.ofSeq;;
second..
val it : int list = [11; 12]

The returned list contains both of the elements generated by the sequence. This means 
that the computation had to go through the whole expression, executing the printfn
call on the way, which is why the output contains a line printed from the sequence 
expression. If we take only a single element from the sequence, the sequence expres-
sion will only evaluate until the first yield call, so the string won’t be printed:

> nums |> Seq.take 1 |> List.ofSeq;;
val it : int list = [11]

We’re using one of the sequence processing functions from the Seq module to take 
only a single element from the sequence. The take function returns a new sequence 
that takes the specified number of elements (one in the example) and then termi-
nates. When we convert it to an F# list, we get a list containing only a single element, 
but the printfn function isn’t called. 

 When you implement a sequence expression, you may reach a point where the 
body of the expression is too long. The natural thing to do in this case would be to 
split it into a couple of functions that generate parts of the sequence. If the sequence 
uses multiple data sources, we’d like to have the code that reads the data in separate 
functions. So far, so good—but then we’re left with the problem of composing the 
sequences returned from different functions.

1 You may be surprised that we’re referring to seq as an identifier instead of a keyword, but you’ll see later that 
it’s an identifier (that we could even define ourselves) rather than a special keyword built into the F# lan-
guage. The seq identifier also isn’t defined automatically by the seq<'a> type. The name is the same, but 
seq identifier here is a different symbol defined by the F# library.
Licensed to   <kr_wilson@hotmail.com>



319Generating sequences
COMPOSING SEQUENCE EXPRESSIONS

The yield return keyword in C# only allows us to return a single element, so if we 
want to yield an entire sequence from a method implemented using iterators in C#, 
we’d have to loop over all elements of the sequence using foreach and yield them one 
by one. This would work, but it would be inefficient, especially if we had several 
sequences nested in this way. In functional programming, composability is a more 
important aspect, so F# allows us to compose sequences and yield the whole sequence 
from a sequence expression using a special language construct: yield! (usually pro-
nounced yield-bang). Listing 12.3 demonstrates this, generating a sequence of cities in 
three different ways.

> let capitals = [ "Paris"; "Prague" ];;  
val capitals : string list

> let withNew(name) =    
     seq { yield name
             yield "New " + name };;
val withNew : string -> seq<string>

> let allCities = 
     seq { yield "Oslo"  
             yield! capitals          
             yield! withNew("York") };;  
val allCities : seq<string>

> allCities |> List.ofSeq;;
val it : string list = ["Oslo"; "Paris"; "Prague"; "York"; "New York"]  

Listing 12.3 starts by creating two different data sources. The first one is an F# list that 
contains two capital cities. The type of the value is list<string>, but since F# lists 
implement the seq<'a> interface, we can use it as a sequence later in the code. The 
second data source is a function that generates a sequence containing two elements. 
The next piece of code shows how to join these two data sources into a single 
sequence. First, we use the yield statement to return a single value B. Next, we use 
the yield! construct to return all the elements from the F# list C. Finally, we call the 
function withNew D (which returns a sequence) and return all the elements from 
that sequence. This shows that you can mix both ways of yielding elements inside a sin-
gle sequence expression. 

 Just like yield, the yield! construct also returns elements lazily. This means that 
when the code gets to the point where we call the withNew function, the function gets 
called, but it only returns an object representing the sequence. If we wrote some code 
in the function before the seq block it would be executed at this point, but the body 
of the seq block wouldn’t start executing. That only happens after the withNew func-
tion returns, because we need to generate the next element. When the execution 
reaches the first yield construct, it will return the element and transfers the control 
back to the caller. The caller then performs other work and the execution of the 
sequence resumes when the caller requests another element.

Listing 12.3 Composing sequences from different sources (F# Interactive)

Lists capital cities
Returns name and 
name with prefix

B
C

D All data composed 
together
Licensed to   <kr_wilson@hotmail.com>



320 CHAPTER 12 Sequence expressions and alternative workflows
 We’ve focused on the syntax of sequence expressions, but they can sound quite 
awkward until you start using them. There are several patterns that are common when 
using sequence expressions; let’s look at two of them.

12.2 Mastering sequence expressions
So far, we’ve seen how to return single elements from a sequence expression and also 
how to compose sequences in F#. We haven’t yet examined the F# version of the previ-
ous factorial example using mutable state. Somewhat predictably, the F# code will be 
quite different.

12.2.1 Recursive sequence expressions

The primary control flow structure in functional programming is recursion. We’ve 
used it in many examples when writing ordinary functions, and it allows us to solve the 
same problems as imperative loops but without relying on mutable state. When we 
wanted to write a simple recursive function, we used the let rec keyword, allowing 
the function to call itself recursively.

 The yield! construct for composing sequences also allows us to perform recursive 
calls inside sequence expressions, so we can use the same functional programming 
techniques when generating sequences. Listing 12.4 generates all factorials under 1 
million just like the C# example in listing 12.1.

> let rec factorialsUtil(num, factorial) =  
     seq { if (factorial < 1000000) then
                  yield sprintf "%d! = %d" num factorial  
                  let num = num + 1
                  yield! factorialsUtil(num, factorial * num) };;  
val factorialsUtil : int * int -> seq<string>

> let factorials = factorialsUtil(0, 1)  
val factorials : seq<string> = 
   seq ["0! = 1"; "1! = 1"; "2! = 2"; "3! = 6"; "4! = 24 ...]

Listing 12.4 begins with a utility function that takes a number and its factorial as an 
argument B. When we want to compute the sequence of factorials later in the code, 
we call this function and give it the smallest number for which a factorial is defined to 
start the sequence E. This is zero, because by definition the factorial of zero is one.

 The whole body of the function is a seq block, so the function returns a sequence. 
In the sequence expression, we first check whether the last factorial is smaller than 1 
million, and if not, we end the sequence. The else branch of the if expression is 
missing, so it won’t yield any additional numbers. If the condition is true, we first yield 
a single result C, which indicates the next factorial formatted as a string. Next, we 
increment the number and perform a recursive call D. This returns a sequence of 
factorials starting from the next number; we use yield! to compose it with the cur-
rent sequence.

Listing 12.4 Generating factorials using sequence expressions (F# Interactive)

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



321Mastering sequence expressions
 Note that converting this approach to C# is difficult, because C# doesn’t have an 
equivalent of the yield! feature. We’d have to iterate over all the elements using a 
foreach loop, which could cause stack overflow. Even if it worked, it would be ineffi-
cient due to a large number of nested loops. In F#, there’s an optimization for tail-
recursive calls using yield!, similar to the usual function calls. This means that when 
a sequence expression ends with the yield! call and there’s no subsequent code (like 
in the previous example), the call won’t add any inefficiency even if we use several 
nested yield! calls. 

 This example shows that we can use standard functional patterns in sequence 
expressions. We used the if construct inside the sequence expression and recursion 
to loop in a functional style. F# allows us to use mutable state (using reference cells) 
and imperative loops such as while inside sequence expressions as well, but we don’t 
need them very often. On the other hand, for loops are used quite frequently, as we’ll 
see when we discuss sequence processing later in this chapter.

Take another look at listing 12.4, where we generated factorials up to a certain limit. 
What would happen if we removed that limit (by removing the if condition)? In 
ordinary F# we’d get an infinite loop, but what happens in a sequence expression? 

List and array expressions
So far, we’ve seen sequence expressions enclosed in curly braces and denoted by 
the seq identifier. This kind of expression generates a lazy sequence of type 
seq<'a>, which corresponds to the standard .NET IEnumerable<T> type. F# also 
provides support for creating immutable F# lists and .NET arrays in a simple way. 
Here’s a snippet showing both collection types:

As you can see, we can also enclose the body of the sequence expression 
in square brackets just as we normally do to construct F# lists, and in square 
brackets followed by the vertical bar symbol (|) to construct arrays. F# treats the 
body as an ordinary sequence expression and converts the result to a list or an ar-
ray, respectively.

When we use array or list expressions, the whole expression is evaluated eagerly, 
because we need to populate all the elements. Any side effects (such as printing 
to the console) will be executed immediately. Although sequences may be infinite, 
arrays and lists can’t: evaluation would continue until you ran out of memory.

> let cities = > let cities =
    [ yield "Oslo"      [| yield "Barcelona"
      yield! capitals ]         yield! capitals |]
  ;;   ;;
val cities : string list = val cities : string array =
  [ "Oslo";   [| "Barcelona";
    "London"; "Prague" ]      "London"; "Prague" |]
Licensed to   <kr_wilson@hotmail.com>



322 CHAPTER 12 Sequence expressions and alternative workflows
The answer is we’d create an infinite sequence, which is a valid and useful func-
tional construct. 

12.2.2 Using infinite sequences

In the previous chapter, we briefly demonstrated how to implement a lazy list using 
lazy values. This data structure allowed us to create infinite data structures, such as a 
list of all integers starting from zero. This was possible because each evaluation of an 
element was delayed: the element’s value was only calculated when we accessed it, and 
each time we only forced the calculation of a single element.

 Sequences represented using seq<'a> are similar. The interface has a MoveNext
method, which forces the next element to be evaluated. The sequence may be infi-
nite, which means that the MoveNext method will be always able to calculate the next 
element and never returns false (which indicates the end of sequence). Infinite 
sequences may sound just like a curiosity, but we’ll see that they can be quite valuable 
and give us a great way to separate different parts of an algorithm and make the code 
more readable. 

 In chapter 4, we talked about drawing charts. We used random colors to fill the 
individual parts, which didn’t always give the best result. You can represent colors of 
the chart as an infinite sequence. In listing 12.5, we’ll start by generating sequence of 
random colors, but we’ll look at other options soon.

// C# version using loops
IEnumerable<Color> RandomColors(){
   var rnd = new Random();
   while(true) {                                                                
      int r = rnd.Next(256), g = rnd.Next(256), b = rnd.Next(256);
      yield return Color.FromArgb(r, g, b);                            
   }
}

// F# version using recursion
let rnd = new Random()
let rec randomColors = seq {                                         
   let r, g, b = rnd.Next(256), rnd.Next(256), rnd.Next(256) 
   yield Color.FromArgb(r, g, b)                                    
   yield! randomColors }     

Both implementations contain an infinite loop that generates colors. In C#, the loop 
is achieved using while(true) B. The functional way to create infinite loops is to use 
recursion F. In the body of the infinite loop, we yield a single randomly generated 
color value. In F# we use the yield construct E and in C# we use yield return C.

 If you compile the F# version of the code, you’ll get a warning on the line with the 
recursive call F. The warning says that the recursive reference will be checked at run-
time. We saw this warning in chapter 8. It notifies us that we’re referencing a value 
inside its own definition. In this case, the code is correct, because the recursive call 
will be performed later, after the sequence is fully initialized.

Listing 12.5 Generating an infinite sequence of random colors in C# and F#

B

C

D

E
F

Licensed to   <kr_wilson@hotmail.com>



323Mastering sequence expressions
 Listing 12.5 also uses a different indentation style when enclosing F# code in a seq
block D. Instead of starting on a new line and indenting the whole body, we added 
the seq identifier and the opening curly brace to the end of the line. We’ll use this 
option in some listings in the book, to make the code more compact. In practice, both 
of these options are valid and you can choose whichever you find more readable.

 Now that we have an infinite sequence of colors, let’s use it. Listing 12.6 demon-
strates how infinite sequences allow a better separation of concerns. Only the F# code 
is shown here, but the C# implementation (which is very similar) is available at the 
book’s website. 

open System.Drawing
open System.Windows.Forms

let dataSource = [ 490; 485; 450; 425; 365; 340; 290; 230; 130; 90; 70; ]
let coloredSequence = Seq.zip dataSource randomColors                      
let coloredData = coloredSequence |> List.ofSeq    

let frm = new Form(ClientSize = Size(500, 350))
frm.Paint.Add(fun e -> 
   e.Graphics.FillRectangle(Brushes.White, 0, 0, 500, 350)
   coloredData |> Seq.iteri(fun i (num, clr) ->              
      use br = new SolidBrush(clr)
      e.Graphics.FillRectangle(br, 0, i * 32, num, 28) )            
   )
frm.Show()   

To provide a short but complete example, we’ve just defined some numeric data by 
hand. We use the Seq.zip function to combine it with the randomly generated col-
ors B. This function takes two sequences and returns a single sequence of tuples: the 
first element of each tuple is from the first sequence, and the second element comes 
from the second sequence. In our case, this means that each tuple contains a number 
from the data source and a randomly generated color. The length of the returned 
sequence is the length of the shorter sequence from the two given sequences, so it 
will generate a random color for each of the numeric value and then stop. This 
means that we’ll need only limited number of colors. We could generate, say, one 
hundred colors, but what if someone gave us 101 numbers? Infinite sequences give us 
an elegant way to solve the problem without worrying about the length.

 Before using the sequence, we convert it to a list C. We do this is because the 
sequence of random colors isn’t pure and returns different colors each time we reeval-
uate it. This means that if we didn’t convert it to a list before using it, we’d get differ-
ent colors during each redraw of the form. Once we have the list of data with colors, 
we need to iterate over its elements and draw the bars. We’re using Seq.iteri D, 
which calls the specified function for every element, passing it the index of the 
element in the sequence and the element itself. We immediately decompose the ele-
ment using a tuple pattern into the numeric value (the width of the bar) and the gen-
erated color.

Listing 12.6 Drawing a chart using sequence of colors (F#)

B
C

D Calculates 
location of bar 
using index
Licensed to   <kr_wilson@hotmail.com>



324 CHAPTER 12 Sequence expressions and alternative workflows
Figure 12.1 A chart painted using color 
gradient generated as a sequence of colors

 What makes this example interesting is that we can easily use an alternative way 
to generate colors. If we implemented it naïvely, the color would be computed in the 
drawing function D. This would make it relatively hard to change which colors are 
used. However, the solution in listing 12.6 completely separates the color-generation 
code from the drawing code, so we can change the way chart is drawn just by provid-
ing a different sequence of colors. Listing 12.7 shows an alternative coloring scheme.

// C# version using loops
IEnumerable<Color> GreenBlackColors() {
   while(true) {                               
      for(int g = 0; g < 255; g += 25)
         yield return Color.FromArgb(g / 2, g, g / 3);
   }
}

// F# version using loop and recursion
let rec greenBlackColors = seq {
   for g in 0 .. 25 .. 255 do                 
      yield Color.FromArgb(g / 2, g, g / 3)
   yield! greenBlackColors }                

The code in listing 12.7 again contains an infinite loop, implemented either using a 
while loop B or recursion D. In the body of the loop, we generate a color gradient con-
taining 10 different colors. We’re using a for loop to generate the green component of 
the color and calculating the blue and red components from that. This example also 
shows the F# syntax for generating a sequence of numbers with a specified step C. The 
value of g will start off as 0 and increment by 25 
for each iteration until the value is larger 
than 250. Figure 12.1 shows the end result. 

 As you can see, infinite sequences can be 
useful in real-world programming, because 
they give us a way to easily factor out part of the 
code that we may want to change later. Infinite 
sequences are also curious from the theoretical 
point of view. In Haskell, they’re often used to 
express numerical calculations.  

 So far we’ve mostly examined creating
sequences. Now we’re going to have a look at 
some techniques for processing them.    

Listing 12.7 Generating a sequence with color gradients (C# and F#)

B

C

D

Infinite lists in Haskell and sequence caching in F#
As we mentioned in chapter 11, Haskell uses lazy evaluation everywhere. We’ve seen 
that Lazy<'a> type in F# can simulate lazy evaluation for values when we need it, 
and sequences enable us to emulate some other Haskell constructs in the same way. 
Licensed to   <kr_wilson@hotmail.com>



325Processing sequences
12.3 Processing sequences
When processing sequences, we have a wide variety of options ranging from low-level 
techniques where we can control all the details, but that make it difficult to express 
more complicated but common processing patterns, to higher-level techniques that 
can’t express everything we may want, but the rest can be expressed very elegantly. 

(continued)
Let’s look at one slightly obscure example, just to get a feeling for what you can do. 
In Haskell, we can write the following code: 

let nums = 1 : [ n + 1 | n <- nums ]

Once we translate it into F#, you’ll understand what’s going on. The standard 
functional lists in Haskell are lazy (because everything is) and the : operator corre-
sponds to the F# :: operator. The expression in square brackets returns all the num-
bers from the list incremented by 1. In F#, we could write the same thing using 
sequence expressions:

let rec nums = 
   seq { yield 1
           for n in nums do yield n + 1 };;

The code constructs a sequence that starts with 1 and recursively takes all numbers 
from the sequence and increments them by 1. This means that the returned se-
quence will contain numbers 1, 2, 3, and so on. The F# version is horribly inefficient, 
because in each recursive call, it starts constructing a new sequence from the first 
element. To evaluate the sequence of length 3, we create one instance of nums of 
length 3, one of length 2, and one of length 1.

The idiomatic version of the code in F# would look differently. Just like when gener-
ating factorials in listing 12.4, we could implement a utility function that generates 
sequence from the given number. Then we’d recursively call it using the optimized 
yield! primitive. In Haskell, the situation is different because evaluated values are 
cached. This means that it doesn’t have to recalculate the sequence from the begin-
ning. We can get similar behavior in F# using a function Seq.cache:

let rec nums = 
   seq { yield 1
           for n in nums do yield n + 1 } |> Seq.cache;;

The Seq.cache function returns a sequence that caches values that have already 
been calculated, so this version of the code performs a lot more sensibly. Access-
ing the 1000th element is about 100 times faster with the caching version than 
with the original. Combining caching and sequence expressions gives us some 
of the same expressive power as the more mathematically oriented Haskell. How-
ever, it’s usually a better idea to look for an idiomatical F# solution, in this case 
using yield!.
Licensed to   <kr_wilson@hotmail.com>



326 CHAPTER 12 Sequence expressions and alternative workflows
 In C#, the lowest level (aside from implementing the IEnumerable<T> interface 
directly) is to use iterator blocks and read the input sequence using either foreach or 
the enumerator object. At the higher level, we can use predefined (or our own) 
higher-order methods such as Where and Select, and if the processing involves only 
certain operations, we can use the C# 3.0 query syntax.

 The most common approach for processing sequences in F# is similar to those for 
other collection types. We’ve seen that lists can be processed with functions like 
List.filter and List.map, and that similar functions are available for arrays in the 
Array module. It should come as no surprise that the same set of functions exists for 
sequences as well, in the Seq module. The F# language doesn’t explicitly support any 
query syntax, but we’ll see that sequence expressions to some point unify the ideas 
behind lower-level iterators and higher-level queries.

12.3.1 Transforming sequences with iterators

So far, we’ve only used iterators to generate a sequence from a single piece of data (if 
any). However, one common use of iterators is to transform one sequence into 
another in some fashion. As a simple example, here’s a method that takes a sequence 
of numbers and returns a sequence of squares:

IEnumerable<int> Squares(IEnumerable<int> numbers) {
   foreach(int i in numbers)
      yield return i * i;
}

We’re using the familiar foreach construct, but keep in mind that foreach, which 
contains the yield return statement, has a different meaning. It doesn’t run the loop 
eagerly and instead evaluates it on demand. The foreach statement allows us to write 
code that generates some elements for every iteration of the loop, which corresponds 
to pulling a single element from the input sequence and pushing zero or more ele-
ments to the output sequence (in the previous case, we always generate exactly one 
element). We’d use the very same approach if we wanted to implement generic Where
and Select methods from LINQ to Objects.

 As a more complicated example, let’s implement a Zip method with the same 
behavior as the Seq.zip function in F#. We’ll give it two sequences and it will return a 
single sequence containing elements from the given sequences joined in tuples. This 
method is available in the .NET 4.0 libraries, but we’ll look at it, because it shows an 
interesting problem. We can’t use foreach to simultaneously take elements from two 
source sequences. As you can see in listing 12.8, the only option we have is to use the 
IEnumerable<T> and IEnumerator<T> interfaces directly. 

public static IEnumerable<Tuple<T1, T2>> Zip<T1, T2>
      (IEnumerable<T1> first, IEnumerable<T2> second) {
   using(var firstEn = first.GetEnumerator())         
   using(var secondEn = second.GetEnumerator()) {       

Listing 12.8 Implementing the Zip method (C#)

B

Licensed to   <kr_wilson@hotmail.com>



327Processing sequences
      while (firstEn.MoveNext() && secondEn.MoveNext()) {               
         yield return Tuple.Create(firstEn.Current, secondEn.Current);  
      }
   }
}

Looking at the signature of the method, we can see that it takes two sequences as 
arguments. The method is generic, with each input sequence having a separate type 
parameter. We’re using a generic C# tuple, so the returned sequence contains ele-
ments of type Tuple<T1, T2>. In the implementation, we first ask each sequence for 
an enumerator we can use to traverse the elements B. We repeatedly call the Move-
Next method on each enumerator to get the next element from both of the 
sequences C. If neither sequence has ended, we yield a tuple containing the cur-
rent element of each enumerator D. 

 This example shows that sometimes, processing methods need to use the IEnumer-
ator<T> interface explicitly. The foreach loop gives us a way to pull elements from a 
single source one by one, but once we need to pull elements from multiple sources in 
an interleaving order, we’re in trouble. If we wanted to implement Seq.zip in F#, 
we’d have to use the same technique. We could use either a while loop inside a 
sequence expression or a recursive sequence expression. Most of the processing func-
tions we’ll need are already available in the .NET and F# libraries so we’ll use these 
where we can, either explicitly or by using C#’s query expression syntax.

12.3.2 Filtering and projection

The two most frequently used sequence processing operators are filtering and projec-
tion. We used both of them in chapter 6 with functional lists in F# and the generic 
.NET List<T> type in C#. The Where and Select extension methods from LINQ librar-
ies already work with sequences, and in F# we can use two functions from the Seq
module (namely Seq.map and Seq.filter) to achieve the same results.
USING HIGHER-ORDER FUNCTIONS

Working with the Seq module in F# is the same as with List, and we’ve already seen 
how to use LINQ extension methods in C#. There’s one notable difference between 
working with lists and sequences: sequences are lazy. The processing code isn’t exe-
cuted until we take elements from the returned sequence, and even then it only does 
as much work as it needs to in order to return results as they’re used. Let’s demon-
strate this using a simple code snippet:

When we run this code, it won’t process any elements; it only creates an object that 
represents the sequence and that can be used for accessing the elements. This also 
means that the nums value can be an infinite sequence of numbers. If we only access 
the first 10 elements from the sequence, the code will work correctly, because both fil-
tering and projection process data lazily.

var nums1 = let nums1 = 
   nums.Where(n => n%3 == 0)    nums |> Seq.filter (fun n -> n%3=0)
       .Select(n => n * n)         |> Seq.map (fun n -> n * n)

C
D

Licensed to   <kr_wilson@hotmail.com>



328 CHAPTER 12 Sequence expressions and alternative workflows
 You’re probably already familiar with using higher-order processing functions after 
our extensive discussion in chapter 6, and we’ve provided many examples throughout 
the book. In this chapter, we’ll instead look at other ways to express alternative workflows.
USING QUERIES AND SEQUENCE EXPRESSIONS

In C# 3.0, we can write operations with data that involve projection and filtering using 
the new query expression syntax. Query expressions support many other operators, 
but we’ll stick to only projection and filtering in order to demonstrate functional tech-
niques and F# features. 

 Although F# doesn’t have specific query expression support, we can easily write 
queries that project and filter data using sequence expressions. This is due to the way 
that sequence expressions can be used anywhere in F#, rather than just as the imple-
mentation of a function returning a sequence. Listing 12.9 shows how we can imple-
ment our earlier example using a query in C# and a sequence expression in F#.   

In C#, query expressions and iterators are quite different, but sequence expressions 
in F# show how they’re conceptually related. Each part of the query expression has 
an equivalent construct in F#, but it’s always more general: the from clause is 
replaced by a simple for loop, the where clause is replaced by an if condition, and 
the select clause corresponds to the yield statement with the projection expressed 
as a normal calculation.

 C# query expression syntax supports several other operators that aren’t easily 
expressible using F# sequence expressions. This means that the C# version is more 
powerful, but the F# implementation is more uniform.

 Note how both C# query expressions and F# sequence expressions work internally. 
A C# query expression is translated in a well-defined way into a sequence of calls such 
as Where, Select, SelectMany, Join, and GroupBy using lambda expressions. These 
are typically extension methods but they don’t have to be—the compiler doesn’t care 
what the query expression means, only that the translated code is valid. This “data 
source agnosticism” is essential for data processing technologies such as LINQ to 
Objects and LINQ to SQL, but we’ll use it shortly to show how the query syntax can be 
used for working with other kinds of values.

 On the other hand, sequence expressions can be used to express more compli-
cated and general-purpose constructs. We could duplicate the yield construct to 
return two elements for a single item from the data source. This would be easy 
enough to achieve in C# using iterators, but it’s not possible to express the transfor-
mation “inline” using the query syntax.

Listing 12.9 Filtering and projecting sequences in C# and F#

C# F#

var nums1 = let nums1 = seq {
   from n in nums    for n in nums do
   where n%3 == 0       if (n%3 = 0) then
   select n * n;          yield n * n }
Licensed to   <kr_wilson@hotmail.com>



329Processing sequences
The implementation of sequence expressions in the F# compiler is optimized, but 
without these optimizations, it would work similarly to the C# query expressions. An 
arbitrary sequence expression could be translated into a sequence of standard func-
tion calls. Similar to C#, we can provide our own implementation of these functions, 
so it’s wise to look deeper and understand how the translation works in F#. The F# lan-
guage uses a smaller number of operations and heavily relies on a single operation 
called flattening projection.

12.3.3 Flattening projections

A flattening projection allows us to generate a sequence of elements for each element 
from the source collection and merges all the returned sequences. As we’ll soon see, 
it’s an essential operation that can be used to define other processing operations 
including projection and filtering. The unique thing about flattening projection is 
that it lets us generate multiple output elements for each input element. 

Additional query operators in LINQ
Query expression syntax in C# 3.0 is tailored for retrieving and formatting data from 
various data sources, so it includes operations beyond projection and filtering. These 
operators are mostly present for this single purpose, and there’s no special syntax 
for them in F#. All these standard operators are available as regular higher-order func-
tions operating on sequences. For instance, take ordering data:

The function that we give as the first argument to the Seq.sortBy operator specifies 
which property of the processed element should be used when comparing two ele-
ments. In the C# query syntax, this corresponds to the expression following the or-
derby clause. The C# compiler transforms this expression into a call to a standard 
OrderBy method using a lambda function. Another operation that is available only as 
a higher-order function in F# is grouping:

To group a sequence we need to specify a function that returns the key that identifies 
the group in which the element belongs. Again, C# has special syntax for this, but in 
the F# snippet we’re using a standard lambda function. 

In these examples, both versions of the code look reasonable. However, when we 
need to write F# code that mixes projection and filtering together with some opera-
tions that can only be written using higher-order functions, the equivalent C# query 
expression will be easier to understand.

var q = let q =
   from c in customers    customers
   orderby c.Name    |> Seq.sortBy (fun c -> c.City)
   select c;

var q = let q =
   from c in customers    customers

   group c by c.City;    |> Seq.groupBy (fun c -> c.City)
Licensed to   <kr_wilson@hotmail.com>



330 CHAPTER 12 Sequence expressions and alternative workflows
NOTE In LINQ libraries, this operation is called SelectMany. In query expres-
sions it’s represented by having more than one from clause. The name 
reflects the fact that it’s similar to the Select operation with the exception 
that we can return many elements for each item in the source. The F# 
library’s equivalent function is Seq.collect. Here, the name suggests the 
implementation—it’s like calling the Seq.map function to generate a 
sequence of sequences and then calling Seq.concat to concatenate them.

We’ll start off by looking at an example where this is needed, which means that we 
couldn’t write the example just using higher-order functions from the previous sec-
tion. We’ll start by looking at the implementation that uses F# sequence expressions, 
then we’ll gradually change the code to use flattening projection.
FLATTENING PROJECTIONS IN SEQUENCE EXPRESSIONS 

Suppose we have a list of tuples, each of which contains a city’s name and the country 
it’s in, and we have a list of cities selected by a user. We can represent sample data for 
this scenario like this:

let cities = [ ("New York", "USA"); ("London", "UK");
                    ("Cambridge", "UK"); ("Cambridge", "USA") ]
let entered = [ "London"; "Cambridge" ]

Now suppose we want to find the countries of the selected cities. We could iterate over 
the entered cities and find each city in the cities list to get the country. You can 
probably already see the problem with this approach: there is a city named Cambridge 
in both the United Kingdom and the United States, so we need to be able to return 
multiple records for a single city. You can see how to write this using two nested for
loops in a sequence expression in listing 12.10. 

> seq { for name in entered do  
             for (n, c) in cities do   
                if (n = name) then                     
                   yield sprintf "%s (%s)" n c };;  
val it : seq<string> =                                                    
   seq [ "London (UK)"; "Cambridge (UK)"; "Cambridge (USA)" ]  

The outer for loop iterates over the entered names B, and the nested loop iterates 
over the list of known cities C. This means that inside the body of the nested loop, 
we’ll get a chance to compare whether the name of each entered city is equal to a 
name of each of the known cities. The code that’s nested in these two loops D uses 
the yield statement to produce a single item if the names are the same. If the names 
aren’t the same, it doesn’t yield any elements.

 In database terminology, this operation could be explained as a join. We’re joining 
the list of entered names with the list containing information about cities using the 
name of the city as the key. Writing the code using sequence expressions is quite easy, 
and it’s the preferred way for encoding joins in F#. 

Listing 12.10 Joining collections using sequence expressions (F# Interactive)

B
C

D
Both countries 
returned for 
Cambridge
Licensed to   <kr_wilson@hotmail.com>



331Processing sequences
 We mentioned that any sequence expression can be encoded using the flattening 
projection operation, so let’s see how we can rewrite the previous example using 
Seq.collect explicitly. You wouldn’t do this in practice, but it will be invaluable when 
we explore defining our own alternative workflows similar to sequence expressions.
USING FLATTENING PROJECTIONS DIRECTLY

First, let’s see what the flattening projection looks like. As usual, the initial step in 
understanding how the function works is to examine its type signature. Figure 12.2 
compares the signatures of Seq.map (ordinary projection) and Seq.collect (flatten-
ing projection).

As a reminder, the # symbol in the part of the type signature describing the projection 
function passed to collect means that the return type of the function doesn’t have to 
be exactly the seq<'b> type. We talked about types declared using the # symbol in the 
previous chapter—the actual type used in place of the #seq<'b> can be any type 
implementing the seq<'b> interface. This means that we can return a sequence, also 
an F# list, an array, or even our own collection type.

 Now, let’s see how we can rewrite the previous example using the Seq.collect
function. The general rule is that we can replace each use of the for loop inside a 
sequence expression with a single call to Seq.collect. This is exactly how the F# com-
piler compiled sequence expressions in early versions. Since our example has two 
nested loops, we’ll do the transformation in two steps. In listing 12.11, we start by 
replacing the outer loop.

> entered |> Seq.collect (fun name ->  
    seq { for (n, c) in cities do   
            if (n = name) then
              yield sprintf "%s (%s)" n c });;
val it : seq<string> = 
   seq [ "London (UK)"; "Cambridge (UK)"; "Cambridge (USA)" ]

We replaced the outer loop with a flattening projection, so listing 12.11 calls Seq.col-
lect and gives it a list of cities entered by the user as input B. The lambda function 
we provide takes the name of a single city and iterates over the collection of all known 
cities to find the country or countries containing that city C. The searching is imple-
mented using a sequence expression from listing 12.10 with the outer loop deleted. 
The lambda function we use returns a sequence with information about cities with the 

Listing 12.11 Replacing the outer loop with flattening projection (F# Interactive)

Seq.map     : ('a ->      'b ) -> seq<'a> -> seq<'b>
Seq.collect : ('a -> #seq<'b>) -> seq<'a> -> seq<'b>

Projects into a single value

Collections are concatenatedProjects into a collection of values

Input collection
Figure 12.2 Projection 
returns a single element 
for each input element 
while flattening projection 
can return any collection 
of elements.

B
C

Licensed to   <kr_wilson@hotmail.com>



332 CHAPTER 12 Sequence expressions and alternative workflows
specified name, and the Seq.collect function concatenates all of these to return a 
single sequence with results.

 Now we have a combination of function call and a sequence expression, so let’s see 
how we can replace the inner for loop to complete the translation. We could imple-
ment the nested part with Seq.filter and Seq.map, or, even better, with Seq.choose, 
which lets us combine the two operations into one. We’re showing what the compiler 
would do and it would naïvely follow the rule to replace every for loop with a flatten-
ing projection. Listing 12.12 shows the same processing code again, but using only 
Seq.collect calls.

> entered |> Seq.collect (fun name ->
     cities |> Seq.collect (fun (n, c) ->  
        if (n = name) then                                          
           [ sprintf "%s (%s)" n c ]  
        else [] ));;                                                
val it : seq<string> = 
   seq [ "London (UK)"; "Cambridge (UK)"; "Cambridge (USA)" ]

The outer call is the same as in listing 12.11, but inside the lambda function we now 
perform another call to Seq.collect B. The nested call iterates over all the cities and 
for each city returns either an empty list if the name of the city doesn’t match the 
entered name or a list containing a single element when the name matches. As you 
can see, we’ve replaced the use of yield with code that returns a list containing a sin-
gle element. If the code contained multiple yields, we’d return a longer list. It’s also 
worth noting that we had to add an else clause that returns an empty list; inside 
sequence expressions this is implicit.

 Even though the Seq.collect function is sometimes useful when writing 
sequence-processing code using higher-order functions, its real importance is that it 
can be used to translate arbitrary sequence expression into function calls. As we’ll see 
shortly, sequence expressions are one specific example of a more general F# construct 
and the flattening projection is the primitive operation that defines how sequence 
expressions work. We’ll also see that the translation we demonstrated in this section 
works in a similar way for other computations that we can define for our own values.

 We mentioned earlier that we could use projection and filtering to implement the 
nested loop C, but as you can see, for loops in sequence expressions are expressive 
enough to implement the projection, filtering, and joins we’ve seen in this section. 
Now, let’s examine the same operation in C#.
USING FLATTENING PROJECTIONS IN C#

The LINQ operator analogous to the collect function is called SelectMany. Differ-
ences exist between the two versions, because LINQ has different requirements. While 
F# sequence expressions can be expressed using just the collect function, LINQ que-
ries use many other operators, so they need different ways for sequencing operations.

 Let’s again start by looking at the usual syntax and then examine how it’s trans-
lated to the explicit syntax using extension methods. We’ll use the same data as in the 

Listing 12.12 Replacing both loops with flattening projection (F# Interactive)

B

C

Licensed to   <kr_wilson@hotmail.com>



333Processing sequences
previous F# example. The list of cities with the information about the country con-
tains instances of a class CityInfo with two properties, and the list of entered names 
contains only strings. Listing 12.13 shows a LINQ query that we can write to find coun-
tries of the entered cities.

var q =
   from e in entered  
   from known in cities  
   where known.City == e                                                        
   select string.Format("{0} ({1})", known.City, known.Country);  

The query expresses exactly the same idea as we did in the previous implementations. 
It iterates over both of the data sources (B and C), which gives us a cross join of the 
two collections and then yields only records where the name entered by the user cor-
responds to the city name in the “known city” list; finally it formats the output D.

 In C# query expression syntax, we can also use the join clause, which directly spec-
ifies keys from both of the data sources (in our case, this would be the value e and the 
known.City value). This is slightly different: join clauses can be more efficient, but 
multiple from clauses are more flexible. In particular, the second sequence we gener-
ate can depend on which item of the first sequence we’re currently looking at.

 As we said earlier, query expressions are translated into normal member invoca-
tions. Any from clause in a query expression after the first one is translated into a call 
to SelectMany. Listing 12.14 shows the translation as it’s performed by the C# compiler.

var q = entered
   .SelectMany(
      e => cities,                     
      (e, known) => new { e, known })   
   .Where(tmp => tmp.known.City == tmp.e)    
   .Select(tmp => String.Format("{0} ({1})",  
      tmp.known.City, tmp.known.Country));   

Unlike in F#, where the if condition was nested inside the two for loops (flattening 
projections), the operations in C# are composed in a sequence without nesting. The 
processing starts with the SelectMany operator that implements the join; the filtering 
and projection are performed using Where and Select at the end of the sequence. 

 The first lambda function B specifies a collection that we generate for every single 
item from the source list. This parameter corresponds to the function provided as an 
argument to the F# collect function. In the query, we return all the known cities, so 
the operation performs only joining, without any filtering or further processing. The 
second parameter C specifies how to build a result based on an element from the 
original sequence and an element from the newly generated sequence returned by 
the function. In our example, we build an anonymous type that contains both items so 
we can use them in later query operators.

Listing 12.13 Searching for country of entered cities using a query (C#)

Listing 12.14 Query translated to explicit operator calls (C#)

B
C

D

B
C

Filters, formats 
output
Licensed to   <kr_wilson@hotmail.com>



334 CHAPTER 12 Sequence expressions and alternative workflows
 In F#, all the processing is done inside the filtering projection, so we return only 
the final result. In C# most of the processing is done later, so we need to return both 
elements combined into one value (using an anonymous type), so that they can be 
accessed later. In general, the first from clause specifies the primary source of the 
query, and if we add more from clauses, they’re joined with the original source using 
the SelectMany operator. Any further operators such as where and select are 
appended to the end and work with the joined data source. This is different from the 
F# translation, because in F# both filtering and projection are nested in the innermost 
call to Seq.collect. 

 Understanding how the translation works isn’t that important, but we’ll need to 
know a little bit about the translation in the next section. We’ll see that F# sequence 
expressions represent a more general idea that can be also partly expressed using 
LINQ queries. The flattening projection we’ve just been looking at plays a key role.

12.4 Introducing alternative workflows
Computation expressions is an F# feature that has been partly inspired by Haskell monads. 
Monads have an unfortunate reputation for being brain-bustingly difficult—but don’t 
worry. We’ll look at implementing an interesting set of techniques that let us work 
with Option<T> values nicely in C#. We’ll see how to do a similar thing in F# and also 
how to write simple logger with a nice syntax in F#.

 We could do all of this without even mentioning the word monad. Since the book 
is about functional programming in a more general sense, we want to give you more 
than an overview of all F# features. We’ll occasionally explain some of the underlying 
terminology, which can be helpful if you want to look at other programming lan-
guages. You can always skip the part that sounds complicated and move on to the next 
example. You may be surprised to know we’ve already explained monads in this chap-
ter. In fact, you’ve probably used them before even picking up this book: LINQ is 
based on monads too.

 In section 6.7 we looked at the bind function for option values, and you learned 
that a similar operator makes sense for lists as well. Its name in the standard F# librar-
ies is List.collect, so you won’t be surprised to hear that Seq.collect is also a form 
of bind operator, but this time working with sequences. In this chapter, we’ve seen that 
this operation is important in LINQ queries and F# sequence expressions. Again, here 
are the type signatures of the three operations: 

Option.bind   : ('a -> option<'b>) -> option<'a> -> option<'b>
List.collect : ('a -> list<'b>)    -> list<'a>    -> list<'b>
Seq.collect   : ('a -> #seq<'b>)    -> seq<'a>      -> seq<'b>

The function provided as the argument specifies what to do with each value (of type 
'a) contained in the value given as the second argument. For lists and sequences, that 
means the function will be called for each element of the input sequence. For option 
values, the function will be executed at most once, only when the second argument is 
Some value. Just a reminder: the option value can be viewed as a list of either zero or 
one elements.
Licensed to   <kr_wilson@hotmail.com>



335Introducing alternative workflows
 You may already know that you can create your own implementation of LINQ query 
operators and use them to work with your own collection types. Nothing limits us to 
using the query syntax only for working with collections.

12.4.1 Customizing query expressions

In principle, we can use queries to work with any type that supports the bind opera-
tion. This is the standard name used in functional programming for functions with 
type signatures of the form shown in the previous section. Technically speaking, we 
need to implement methods that are used by the C# compiler when translating the 
query expression into standard calls. We’ll implement these for the Option<T> type in 
section 12.6. The type doesn’t implement IEnumerable<T>, so the standard query 
operators can’t be used.

 Let’s first consider what the meaning of a query applied to option types would be. 
Listing 12.15 shows two queries. The one on the left one works with lists and the one 
on the right works with option types. We’re using two simple functions to provide 
input: the ReadIntList function reads a list of integers (of type List<int>) and 
TryReadInt returns an option value (of type Option<int>).   

The queries are the same with the exception that they work with different types of 
data, so they use different query operator implementations. Both read two different 
inputs and return multiples of the entered integers. Table 12.1 gives examples of 
inputs to show what the results would be.  

For lists, the query performs a cross join operation (you can imagine two nested 
for loops as in the F# sequence expression). It produces a single sequence consisting 
of a single entry for each combination of input values. For option values there are 
three possibilities. 

Listing 12.15 Using queries with lists and option values (C#)
var list = var option =  
   from n in ReadIntList()    from n in TryReadInt()
   from m in ReadIntList()    from m in TryReadInt()
   select n * m;    select n * m;

Table 12.1 Results produced by queries working with lists and option values for  
                    different possible inputs

Type of values Input #1 Input #2 Output

Lists [2; 3] [10; 100] [20; 200; 30; 300]

Options Some(2) Some(10) Some(20)

Options Some(3) None None

Options None Not required None
Licensed to   <kr_wilson@hotmail.com>



336 CHAPTER 12 Sequence expressions and alternative workflows
■ When the first input is a value, we need to read the second one. Then, the fol-
lowing two cases can occur depending on the second input:
– If the second input is also a value, the result is again Some value containing 

the result of the multiplication. 
– If the second input is None we don’t have values to multiply, so the query 

returns None. 
■ When the first input is None, we know the result without needing the second 

input. The whole query is executed lazily, so we don’t have to read the second 
input: the TryReadInt function will be called only once.

As you can see, query expressions give us a convenient way of working with option val-
ues. Listing 12.15 is definitely easier to write (and read) than the equivalent code we 
saw in chapter 6, where we used higher-order functions explicitly. We’ll see how to 
implement all the necessary query operators later in this chapter, but let’s first look at 
similar syntax in F#.

12.4.2 Customizing the F# language

So far, we’ve talked about sequence expressions, which were denoted using the seq
identifier preceding the block of code enclosed in curly braces. However, F# allows us 
to create our own identifiers that give a special meaning to a block of code. In gen-
eral, this feature is called computation expressions and sequence expressions are a single 
special case that’s implemented in the F# core and optimized by the compiler.

 We’ve seen that computation expressions can contain standard language con-
structs such as for loops, but also additional constructs like yield. The identifier that 
precedes the block gives the meaning to these constructs in the same way query oper-
ators (such as Select and Where extension methods) specify what a LINQ query does. 
This means that we can create a customized computation expression for working with 
option values. We could work with option values using the for construct, but F# gives 
us a nicer way to customize the expression. You can see these alternative approaches 
in listing 12.16. The first version uses syntax similar to sequence expressions; the sec-
ond is a more natural way of writing the same thing. 

// Value binding using customized 'for' primitive
option {
   for n in tryReadInt() do
      for m in tryReadInt() do
         yield n * m 
}

// Value binding using special 'let!' primitive
option {
   let! n = tryReadInt()
   let! m = tryReadInt()
   return n * m 
}

Listing 12.16 Computation expressions for working with option values (F#)
Licensed to   <kr_wilson@hotmail.com>



337Introducing alternative workflows
The behavior of all custom primitives that occur inside the computation expression 
(such as for, yield, and let!) is determined by the option identifier that defines what 
kind of computation expression we’re writing. Now you can see that a sequence expres-
sion is just a special case that’s defined by the seq identifier. We’ll see how to define 
identifiers in section 12.5, but first let’s look at the two examples in listing 12.16.

 The first version closely resembles the LINQ query in listing 12.15. Each for loop 
can be executed at most once. When the option value contains a value, it will be 
bound to the symbol n or m, respectively, and the body of the loop will execute. Devel-
opers have an expectation that loops work with collections and not option values, so 
the constructs for and yield are usually only used with sequences. When we create a 
computation expression that works with other types of values, we’ll use the later syn-
tax. The second version uses two more computation expression primitives. The first 
one is let! , which represents a customized value binding.

 In both versions, the type of values n and m is int. The customized value binding 
unwraps the actual value from the value of type option<int>. It may fail to assign the 
value to the symbol when the value returned from TryReadInt is None. In that case, 
the whole computation expression will immediately return None without executing 
the rest of the code. The second nonstandard primitive in the expression is return. It 
specifies how to construct an option value from the value. In listing 12.16, we give it an 
int value and it constructs the result, which has a type option<int>.

 The concepts we’ve just seen can be regarded as a functional design pattern. We 
can use F# computation expressions without understanding all the details of the pat-
tern. If you want to learn how to define your own computation expressions, it’s useful 
to learn about the background concepts and terminology. The sidebar “Computation 
expressions and monads” discusses the pattern in more detail and explains how it 
relates to Haskell monads.   

Computation expressions and monads
As we mentioned earlier, computation expressions in F# are an implementation of an 
idea called monads that has proven useful in Haskell. Monad refers to a term from 
mathematics, but F# uses a different name that better reflects how the idea is used 
in the F# language.

When defining a computation expression (or monad), we always work with a generic 
type such as M<'a>. This is often called a monadic type, and it specifies the meaning 
of the computation. This type can augment the usual meaning of the code we write. 
For example, the option<'a>, which we’ve just seen, augments the code with the 
possibility of returning an undefined value (None). Sequences also form a monad. The 
type seq<'a> augments the code with the ability to work with multiple values.

Each computation expression (or monad) is implemented using two functions–bind
and return. bind allows us to create and compose computations that work with val-
ues of the monadic type. In listing 12.16, the bind operation was used whenever we 
used the let! primitive. return is used to construct a value of the monadic type. 
Licensed to   <kr_wilson@hotmail.com>



338 CHAPTER 12 Sequence expressions and alternative workflows
In the next section, we’ll look at the simplest possible custom computation. We’ll 
implement it in both C# and F# to explain what the monadic type is and how the bind
and return operations look.

12.5 First steps in custom computations
The example in this section doesn’t have any real-world benefit, but it demonstrates 
the core concepts. The first task in designing a custom computation is to consider the 
type that represents the values produced by the computation.

12.5.1 Declaring the computation type

The type of the computation (the monadic type in Haskell terminology) in this exam-
ple will be called ValueWrapper<T>, and it will simply store the value of the generic 
type parameter T. It won’t augment the type with any additional functionality. This 
means that the computation will work with standard values, but we’ll be able to write 
the code using query expressions in C# and computation expressions in F#. 

 Listing 12.17 shows the type declaration in both C# and F#. In C#, we’ll create a 
simple class, and in F# we’ll use a simple discriminated union with only a single case.

// C# class declaration
class ValueWrapper<T> {
   public ValueWrapper(T value) {
      this.Value = value;
   }
   public T Value { get; private set; }  
}

// F# discriminated union type
type ValueWrapper<'a> =
   | Value of 'a          

The C# class is a simple immutable type that stores the value of type T B. The use of 
a discriminated union with a single case C in F# is also interesting. It allows us to 
create a named type that is easy to use. As we’ll see shortly, we can access the value 
using pattern matching (using the Value discriminator). Pattern matching with this 
type can never fail because there’s only a single case. This lets us use it directly inside 

Listing 12.17 Value of the computation in C# and F#

(continued)
It’s worth noting that sequence expressions are also an instance of a monad. For se-
quences, the bind operation is Seq.collect, even though in sequence expressions 
we don’t use the let! syntax and instead use the more comfortable for loop syntax. 
Listing 12.16 shows that these two are closely related. The return operation for se-
quences is creating a sequence with a single element. Inside sequence expressions, 
this can be written using a more natural yield primitive.

B

C

Licensed to   <kr_wilson@hotmail.com>



339First steps in custom computations
value bindings, which will prove useful when we implement the computation 
algorithm. First let’s examine the kinds of computation we’ll be able to write with this 
new type.

12.5.2 Writing the computations

C# query expressions and F# computation expressions allow us to use functions that 
behave in a nonstandard way (by returning some monadic value) as if they returned an 
ordinary value. The computation type we’re using in this section is ValueWrapper<T>, 
so primitive functions will return values of type ValueWrapper<T> instead of only T. 

 These functions can be implemented either using another query or computation 
expression, or directly by creating the value of the computation type. Some computa-
tion expressions can encapsulate complicated logic, so it may be difficult to create the 
value directly. In that case, we’d typically write a small number of primitives that 
return the computation type and use these primitives to implement everything else. 
However, constructing a value of type ValueWrapper<T> is not difficult. The following 
code shows how to implement a method in C# that reads a number from the console 
and wraps it inside this computation type:

ValueWrapper<int> ReadInt() {
   int num = Int32.Parse(Console.ReadLine());
   return new ValueWrapper<int>(num);
}

The method reads a number from the console and wraps it inside the ValueWrap-
per<T> type. The F# version is equally simple, so we won’t discuss it here. The impor-
tant point is that these primitive functions are the only place where we need to know 
anything about the underlying structure of the type. For the rest of the computation, 
we’ll need to know only that the type supports all the primitives (most importantly 
bind and return) needed to write a query or computation expression.

 Once we define the value identifier that denotes a computation expression in F# 
(section 12.5.3) and implement the necessary extension methods in C# (section 12.5.4), 
we’ll be able to work with values of the type easily. Note that the type we’re working with 
doesn’t implement the IEnumerable<T> interface. The query syntax and computation 
expression notation works independently from sequences. We’ll define the meaning of 
the code by implementing a couple of methods for working with the ValueWrapper<T>
type. Listing 12.18 shows a snippet that reads two integers using the primitive and per-
forms a calculation with them.   

Listing 12.18 Calculating with computation values in C# and F#

C# F#

var v = value { 
   from n in ReadInt()          let! n = readInt()       
   from m in ReadInt()          let! m = readInt()       
   let add = n + m    let add = n + m
   let sub = n - m    let sub = n - m
   select add * sub;               return add * sub }          

B C

D E
Licensed to   <kr_wilson@hotmail.com>



340 CHAPTER 12 Sequence expressions and alternative workflows
In C# we’re using the from clause to unwrap the value B. In F#, the same thing is 
achieved using the customized value binding C.  

 Once the calculation is done, we again wrap the value inside the computation type. 
In C#, we’re using a select clause D, and in F# we’re using the return primitive E.

 As you can see, the structure of the code in C# and F# is quite similar. The code 
doesn’t have any real-world use, but it will help us understand how nonstandard 
computations work. The only interesting thing is that it allows us to write the code 
in C# as a single expression using the let clause, which creates a local variable. 
This clause behaves very much like the F# let binding, so the whole code is a 
single expression.

 In the following discussion, we’ll focus more on the F# version, because it will 
make it simpler to explain how things work. The query expression syntax in C# is tai-
lored to writing queries, so it’s harder to use for other types of computations. We’ll get 
back to C# once we’ve implemented the F# computation expression. 

 You can see that listing 12.18 is using only two primitives. The bind primitive is 
used when we call the computation primitives C, and the return primitive is used to 
wrap the result in the ValueWrapper<int> type. The next question you probably have 
is how the F# compiler uses these two primitives to interpret the computation expres-
sion and how can we implement them.

12.5.3 Implementing a computation builder in F#

The identifier that precedes the computation expression block is an instance of a class 
that implements the required operations as instance members. Numerous operations 
are available: we don’t have to support them all. The most basic operations are imple-
mented using the Bind and Return members. When the F# compiler sees a computa-
tion expression such as the one in listing 12.18, it translates it to F# code that uses 
these members. The F# example is translated to the following:

value.Bind(ReadInt(), fun n ->
   value.Bind(ReadInt(), fun m ->
      let add = n + m
      let sub = n - m
      value.Return(n * m) ))

Whenever we use the let! primitive in the computation, it’s translated to a call to the 
Bind member. This is because the readInt function returns a value of type Value-
Wrapper<int>, but when we assign it to a symbol, n, using the customized value bind-
ing, the type of the value will be int. The purpose of the Bind member is to unwrap 
the value from the computation type and call the function that represents the rest of 
the computation with this value as an argument.

 You can compare the behavior of the let! primitive with the standard value bind-
ing written using let. If we wrote let n = readInt() in listing 12.18, the type of n
would be ValueWrapper<int> and we’d have to unwrap it ourselves to get the integer. 
In this case, we could use the Value property, but there are computations where the 
value is hidden and the only way to access it is via the Bind member.
Licensed to   <kr_wilson@hotmail.com>



341First steps in custom computations
 The fact that the rest of the computation is transformed into a function gives the 
computation a lot of flexibility. The Bind member could call the function immedi-
ately, or it could return a result without calling the function. For example, when we’re 
working with option values and the first argument to the Bind member is the None
value, we know what the overall result will be (None) regardless of the function. In this 
case, the bind operation can’t call the given function, because the option value 
doesn’t carry an actual value to use as an argument. In other cases, the bind operation 
could effectively remember the function (by storing it as part of the result) and exe-
cute it later. We’ll look at an example of this in the next chapter.

 Our example also shows that multiple let! constructs are translated into nested 
calls to the Bind member. This is because the function given as the last argument to 
this member is a continuation, meaning that it represents the rest of the computation. 
The example ends with a call to the Return member, which is created when we use the 
return construct.

In the previous example, we used an identifier value to construct the computation. 
The identifier is an ordinary F# value and it is an instance of object with specific mem-
bers. The object is called a computation builder in F#. Listing 12.19 shows a simple 
builder implementation with the two required members. We also need to create an 
instance called value to be used in the translation.

type ValueWrapperBuilder() = 
   member x.Bind(Value(v), f) = f(v)  
   member x.Return(v) = Value(v)  

let value = new ValueWrapperBuilder()      

Listing 12.19 Implementing computation builder for values (F#)

Understanding the type signatures of bind and return
The types of the two operations that we need to implement for various computation 
expressions will always have the same structure. The only thing that will vary in the 
following signature is the generic type M:

   Bind    : M<'T> * ('T -> M<'R>) -> M<'R>
   Return : 'T -> M<'T>

In our previous example, the type M<'T> is the ValueWrapper<'T> type. In general, 
the bind operation needs to know how to get the value from the computation type in 
order to call the specified function. When the computation type carries additional in-
formation, the bind operation also needs to combine the additional information car-
ried by the first argument (of type M<'T>) with the information extracted from the 
result of the function call (of type M<'R>) and return them as part of the overall result. 
The return operation is much simpler, because it constructs an instance of the mo-
nadic type from the primitive value.

B
C Creates instance 

of builder
Licensed to   <kr_wilson@hotmail.com>



342 CHAPTER 12 Sequence expressions and alternative workflows
The Bind member B first needs to unwrap the actual value from the ValueWrap-
per<'T> type. This is done in the parameter list of the member, using the Value dis-
criminator of the discriminated union as a pattern. The actual value will be assigned 
to the symbol v. Once we have the value, we can invoke the rest of the computation f. 
The computation type doesn’t carry any additional information, so we can return the 
result of this call as the result of the whole computation. The Return member is trivial, 
because it wraps the value inside the computation type.

 Using the value declared in this listing, we can now run the computation expres-
sion from listing 12.18. F# also lets us use computation expressions to implement the 
readInt function as well. We need to wrap the result in an instance of ValueWrap-
per<int> type, which can be done using the return primitive:

> let readInt() = value { 
     let n = Int32.Parse(Console.ReadLine())
     return n };;
val readInt : unit -> ValueWrapper<int>

This function doesn’t need the bind operation, because it doesn’t use any values of 
type ValueWrapper<'T>. The whole function is enclosed in the computation expres-
sion block, which causes the return type of the function to be ValueWrapper<int>
instead of just int. If we didn’t know anything about the ValueWrapper<'T> type, the 
only way to use the function would be to call it using the let! primitive from another 
computation expression. The important point is that computation expressions give us 
a way to build more complicated values from simpler values by composing them. The 
monadic value is then a bit like a black box that we can compose, but if we want to 
look inside, we need some special knowledge about the monadic type. In the case of 
ValueWrapper<'T>, we need to know the structure of the discriminated union.

 Writing a function like readInt in C# using query syntax isn’t possible, because que-
ries need to have some input for the initial from clause. There is a let clause inside the 
query syntax, which roughly corresponds to a let binding in a computation expression, 
but a query can’t start with it. Nevertheless, as we’ve seen in listing 12.15, there are many 
useful things that we can write using queries, so let’s look at adding query operators for 
our ValueWrapper<'T> type.

12.5.4 Implementing query operators in C#

We’ve seen how the C# queries are translated to method calls in listing 12.14 when we 
were talking about sequences and when we analyzed the SelectMany operation. We’ll 
support only queries that end with the select clause and ignore cases that are useful 
only for collections such as grouping. This means that we’ll need to implement the 
Select extension method.

 We said earlier that the second and subsequent from clauses are translated into a 
call to the SelectMany method. When writing computations using queries, we use the 
from clause in a similar way to the F# let! construct to represent a nonstandard value 
binding, so we’ll use it quite often. This means that we’ll need to implement the 
SelectMany operation for our ValueWrapper<'T> type as well.
Licensed to   <kr_wilson@hotmail.com>



343Implementing computation expressions for options
 You already know that the SelectMany method corresponds to the bind function, 
but it’s slightly more complicated because it takes an additional function that we’ll 
need to run before returning the result. The Select method is simpler, but we’ll talk 
about that after looking at the code. Listing 12.20 shows the implementation of both 
of the primitives.

static class ValueWrapperExtensions {
   public static ValueWrapper<R> Select<T, R>
         (this ValueWrapper<T> source,
          Func<T, R> selector) {
      return new ValueWrapper<R>(selector(source.Value));  
   }
   public static ValueWrapper<R> SelectMany<T, V, R> 
         (this ValueWrapper<T> source, 
          Func<T, ValueWrapper<V>> valueSelector, 
          Func<T, V, R> resultSelector) {
      var newVal = valueSelector(source.Value);                 
      var resVal = resultSelector(source.Value, newVal.Value);  
      return new ValueWrapper<R>(resVal);                         
   }
}

Both methods are implemented as extension methods. This means that C# will be 
able to find them when working with values of type ValueWrapper<T> using the stan-
dard dot notation, which is used during the translation from the query syntax. The 
Select operator implements projection using the given function, so it only needs to 
access the wrapped value, run the given function, then wrap the result again.

 The SelectMany operator is confusing at first, but it’s useful to look at the types of 
the parameters. They tell us what arguments we can pass to what functions. The imple-
mentation starts off like the F# Bind member by calling the function given by the sec-
ond argument after unwrapping the first argument B. We also need to combine the 
value from the source with the value returned by the first function. To obtain the 
result, we call the second function C, giving it both of the values. Finally, we wrap the 
result into the computation type D and return from the method.

 After implementing the operators, the query expression in listing 12.18 will compile 
and run. The computation type that we created in this section doesn’t augment the com-
putation with any additional aspects. The very fact that it was so simple makes it a good 
template for the standard operations. We can implement more sophisticated monadic 
types by starting with this template and seeing where we need to change it. We’ll put this 
idea into practice now by implementing similar operators for the option type.

12.6 Implementing computation expressions for options
We used option values as an example in section 12.4 when we introduced the idea of 
creating nonstandard computations using LINQ queries and F# computation expres-
sions. The code we wrote worked with option values as if they were standard values, 
with a customized value binding to read the actual value. Now that we’ve seen how 

Listing 12.20 Implementing query operators (C#)

Projects value 
using given 
function

B
C

D

Licensed to   <kr_wilson@hotmail.com>



344 CHAPTER 12 Sequence expressions and alternative workflows
computation expressions are translated, we know that our Bind member will receive a 
value and a lambda function. With our option type computation expression, we only 
want to execute the lambda expression if the value is Some(x) instead of None. In the 
latter case, we can return None immediately.

 To run the earlier examples, we’ll need to implement LINQ query operators in C# 
and the option computation builder in F#. Again we’ll start with the F# version. List-
ing 12.21 shows an F# object type with two members. We’ve already implemented the 
Option.bind function in chapter 6, but we’ll reimplement it here to remind you what 
a typical bind operation does.

type OptionBuilder() = 
   member x.Bind(opt, f) = 
      match opt with             
      | Some(value) -> f(value)  
      | _                -> None   
   member x.Return(v) = Some(v)  

let option = new OptionBuilder()

The Bind member starts by extracting the value from the option given as the first 
argument. This is similar to the Bind we implemented earlier for the ValueWrap-
per<'T> type. Again we’re using pattern matching B, but in this case, the value may 
be missing so we’re using the match construct. If the value is defined, we call the spec-
ified function C. This means that we bind a value to the symbol declared using let!
and run the rest of the computation. If the value is undefined, we return None as the 
result of the whole computation expression D. 

 The Return member takes a value as an argument and has to return a value of the 
computation type. In our example, the type of the computation is option<'a>, so we 
wrap the actual value inside the Some discriminator.

 To write the corresponding code in C# using the query syntax, we’ll need to imple-
ment Select and SelectMany methods for the Option<T> type we defined in chapter 5. 
Listing 12.22 implements the two additional extension methods so that we can use 
options in query expressions. This time we’ll use the extension methods we wrote in 
chapter 6 to make the code simpler.

static class OptionExtensions {
   public static Option<R> Select<S, R>
         (this Option<S> source, Func<S, R> selector) {
      return source.Map(selector);                        
   }
   public static Option<R> SelectMany<S, V, R>
         (this Option<S> source, 
          Func<S, Option<V>> valueSelector,
          Func<S, V, R> resultSelector) {
      return source.Bind(sourceValue =>                 

Listing 12.21 Computation builder for option type (F#)

Listing 12.22 Query operators for option type (C#)

B
C

D
Wraps actual 
value

B

C

Licensed to   <kr_wilson@hotmail.com>



345Implementing computation expressions for options
         valueSelector(sourceValue).Map(resultValue =>  
            resultSelector(sourceValue, resultValue)));
   }
}

The Select method should apply the given function to the value carried by the given 
option value if it contains an actual value. Then it should again wrap the result into an 
option type. In F# the function is called Option.map, and we used an analogous name 
(Map) for the C# method. If we’d looked at LINQ first, we’d probably have called the 
method Select from the beginning, but the simplest solution is to add a new method 
that calls Map B.

 SelectMany is more complicated. It’s similar to the bind operation, but in addition 
it needs to use the extra function specified as the third argument to format the result 
of the operation. We wrote the C# version of the bind operation in chapter 6, so we 
can use the Bind extension method in the implementation C. To call the formatting 
function resultSelector, we need two arguments: the original value carried by the 
option and the value produced by the binding function (named selector). We can 
do this by adding a call to Map at the end of the processing, but we need to place this 
call inside the lambda function given to the Bind method D. This is because we also 
need to access the original value from the source. Inside the lambda function, the 
original value is in scope (the variable named sourceValue), so we can use it together 
with the new value, which is assigned to the variable resultValue.

 This implementation is a bit tricky, but it shows that many things in functional pro-
gramming can be composed from what we already have. If you tried to implement this 
on your own, you’d see that the types are invaluable helpers here. You might start just 
by using the Bind method, but then you’d see that the types don’t match. You’d see 
what types are incompatible and if you looked at what functions are available, you’d 
discover what needs to be added in order to get the correct types. At the risk of repeat-
ing ourselves: the types in functional programming are far more important and tell 
you much more about the correctness of your program.

 Using the new extension methods, we can run the examples from section 12.3. In F#, 
we didn’t provide an implementation for the yield and for primitives, so only the ver-
sion using return and let! will work. This is intentional, because the first set of prim-
itives is more suitable for computations that work with sequences of one form or 
another. We still need to implement the TryReadInt method (and the similar F# func-
tion). These are really simple, because they need to read a line from the console, 
attempt to parse it, and return Some when the string is a number or None otherwise.  

D

The identity and maybe monads
The two examples that we’ve just seen are well known in the Haskell world. The first 
one is the identity monad, because the monadic type is the same as the actual type 
of the value, just wrapped inside a named type. The second example is the maybe 
monad, because Maybe is the Haskell type name that corresponds to the op-
tion<'a> type in F#.
Licensed to   <kr_wilson@hotmail.com>



346 CHAPTER 12 Sequence expressions and alternative workflows
So far the examples have been somewhat abstract. Our next section is a lot more con-
crete; we’ll add automatic logging into our code. 

12.7 Augmenting computations with logging
Logging can be usually implemented using global mutable state. However, what if we 
wanted to avoid using global mutable state and keep the program purely functional? 
One option we’d have is to pass the state of the logger as an additional argument to 
every function we call. Implementing that would be quite difficult. (And imagine if we 
decided to add another parameter to the state!) 

 To solve this problem, we can create a custom computation type that enables log-
ging and hides the state of the logger inside the computation type. This is similar to a 
technique that Haskell uses to embed working with state (such as filesystems) in a 
purely functional language without any side effects. The example that we’ll imple-
ment relies on the fact that we can surround any piece of standard F# code with the 
computation expression block. As such, it’s not feasible to use C# for this example. 
We’ll start off by designing the computation type (monadic type) we need to allow 
simple logging.

12.7.1 Creating the logging computation

The computation will produce a value and will allow us to write messages to a local 
logging buffer. This means that the result of the computation will be a value and a list 
of strings for the messages. Again we’ll use a discriminated union with a single dis-
criminator to represent the type:

type Logging<'T> = 
   | Log of 'T * list<string>

This type is quite similar to the ValueWrapper<'a> example we discussed earlier, but 
with the addition of an F# list of the messages written to the log. Now that we have the 
type, we can implement the computation builder. As usual, we’ll need to implement 
the Bind and Return members. We’ll also implement a new member called Zero, 
which enables us to write computations that don’t return any value. We’ll see how 
that’s used later.

 The implementation of the builder is shown in listing 12.23. The most interesting 
is the Bind member, which needs to concatenate the log messages from the original 
value and the value generated by the rest of the computation (which is the function 
given as an argument to the Bind member).

(continued)
The first example was mostly a toy example to demonstrate what we need to do when 
implementing computations, but the second one can be useful when you’re writing 
code that’s composed from a number of operations, each of which can fail. When you 
analyze the two examples, you can see how important the monadic type is. Once you 
understand the type, you know what makes the computation nonstandard. 
Licensed to   <kr_wilson@hotmail.com>



347Augmenting computations with logging
type LoggingBuilder() =
   member x.Bind(Log(value, logs1), f) =  
      let (Log(newValue, logs2)) = f(value)  
      Log(newValue, logs1 @ logs2)         
   member x.Return(value) = 
      Log(value, [])                            
   member x.Zero() = 
      Log((), [])                    

let log = new LoggingBuilder()

As with our other examples, the most difficult part is implementing the Bind member. 
Our logging type follows all the normal steps, including a third one that was missing 
for both the option and ValueWrapper types:

1 We need to unwrap the value. Since we’re using a single case discriminated 
union, we can use pattern matching in the argument list of the member B.

2 We need to call the rest of the computation if we have a value to do that. In list-
ing 12.23, we always have the value, so we can run the given function C. We 
don’t immediately return the result; instead we decompose it to get the new 
value and the log messages produced during the execution.

3 We’ve collected two buffers of log messages, so we need to wrap the new value and 
augment it with the new logger state. To create that new state, we concatenate the 
original message list with the new list that was generated when we called the rest 
of the computation D. This is written using a list concatenation operator (@).

The Return and Zero members are simple. Return needs to wrap the actual value into 
the Logging<'T> type, and the Zero represents a computation that doesn’t carry any 
value (meaning that it returns a unit). In both cases, we’re creating a new computa-
tion value, so the primitives return an empty logging buffer. All the log messages will 
be produced in other ways and appended in the Bind member. If you look at the code 
we have so far, there’s no way we could create a nonempty log! This means that we’ll 
need to create one additional primitive to create a computation value containing a log 
message. We can write it as a simple function:

> let logMessage(s) = 
     Log((), [s])
val logMessage : string -> Logging<unit>

The function creates a computation value that contains a unit as the value. More 
importantly, it also contains a message in the logging buffer, so if we combine it with 
another computation using Bind, we get a computation that writes something to the 
log. Now we can finally write code that uses the newly created logging computation.

12.7.2 Creating the logging computation

Listing 12.24 begins by implementing two helper functions for reading from and writ-
ing to the console. Both will also write a message to the log, so they’ll be enclosed in 
the log computation block. We then use these two functions in a third function, to 

Listing 12.23 Computation builder that adds logging support (F#)

B
C

D

Augments value 
with empty log

Returns no value 
with empty log
Licensed to   <kr_wilson@hotmail.com>



348 CHAPTER 12 Sequence expressions and alternative workflows
show how we can compose nonstandard computations. In our previous examples, we 
used the let! primitive, but listing 12.24 introduces do! as well. 

> let write(s) = log {                
     do! logMessage("writing: " + s)
     Console.Write(s) }
val write : string -> Logging<unit>

> let read() = log { 
     do! logMessage("reading")
     return Console.ReadLine() }
val read : unit -> Logging<string>

> let testIt() = log { 
     do! logMessage("starting")  
     do! write("Enter name: ")                                 
     let! name = read()                    
     return "Hello " + name + "!" }
val testIt : unit -> Logging<string>

> let res = testIt();;
Enter name: Tomas

> let (Log(msg, logs)) = res;;
val msg : string = "Hello Tomas!"
val logs : string list = ["starting"; "writing: Enter name:"; "reading"]

If you run the code in the listing, it waits for a console input. This doesn’t always work 
perfectly in the F# Interactive add-in in the Visual Studio, so you may want to run the 
code in the standalone console version of the shell. We use the new do! primitive in sev-
eral places to call functions that return Logging<unit>. In this case, we want to write a 
nonstandard binding that executes the Bind member, because we want to concatenate 
logging messages. We can ignore the actual value, because it’s unit. That’s the exact 
behavior of the do! primitive. In fact, when we write do! f(), it’s shorthand for writing 
let! () = f(), which uses the customized binding and ignores the returned unit value.

 When implementing the computation builder, we added a member called Zero. 
This is used behind the scenes in listing 12.24. When we write a computation that 
doesn’t return anything B, the F# compiler automatically uses the result of Zero as 
the overall result. We’ll see how this member is used when we discuss how the com-
piler translates the code into method calls.

 If you look at the type signatures in the listing, you can see that the result type of 
all the functions is the computation type (Logging<'T>), which is the same as the 
result type of the logMessage function we implemented earlier. This demonstrates 
that we have two ways of writing functions of a nonstandard computation type. We can 
build the computation type directly (as we did in the logMessage function) or use the 
computation expression. The first case is useful mostly for writing primitives; the sec-
ond approach is useful for composing code from these primitives or other functions.

 You can see the composable nature of computation expressions by looking at the 
testIt function. It first uses the do! construct to call a primitive function implemented 

Listing 12.24 Logging using computation expressions (F# Interactive)

B
Writes string to 
console and to log

Calls primitive 
logging function

C
Calls another 
computation expression

D

E
Uses customized 
value binding
Licensed to   <kr_wilson@hotmail.com>



349Augmenting computations with logging
directly C. Writing to the screen (and to the log) is implemented using a computation 
expression, but we call it in exactly the same way D. We’re calling a function that 
returns a value and writes to the log, so we’re using the customized binding with the 
let! keyword E.

 In practice it isn’t necessary to understand how the compiler translates the compu-
tation expression into method calls, but if you’re curious, listing 12.25 shows the trans-
lation of the code from the previous listing, including the use of Zero member and 
the translations of do! primitive.

let write(s) =
   log.Bind(logMessage("writing: " + s), fun () ->
      Console.Write(s)
      log.Zero())        

let read() = 
   log.Bind(logMessage("reading"), fun () ->
      log.Return(Console.ReadLine()))

let testIt() = 
   log.Bind(logMessage("starting"), fun () -> 
      log.Bind(write("Enter name: "), fun () ->  
         log.Bind(read(), fun name ->                
            log.Return("Hello " + name + "!"))))

The Zero primitive is used only in the write function B because this is the only place 
where we aren’t returning any result from the function. In the other two functions, the 
innermost call is to the Return member, which takes a simple value as an argument and 
wraps it into a LoggingValue<'T> type that doesn’t contain any log messages.

 As you can see, when translating the computation expression, each use of do! or 
let! is replaced with a call to the Bind member C. If you recall our earlier discussion 
about sequence expressions, you can see the similarity now. In sequence expressions, 
every for loop was translated into a call to Seq.collect. We could take this analogy 
even further, because the Return primitive corresponds to creating a sequence con-
taining a single element and the Zero primitive for sequence expressions would 
return an empty sequence.

 There’s one other interesting point that we want to highlight. If you look at the 
original code in listing 12.24, you can see that it looks just like ordinary F# code with a 
couple of added ! symbols, which makes it easy to wrap an ordinary F# code into a 
computation expression.

12.7.3 Refactoring using computation expressions

In the previous chapter, we saw ways of refactoring functional programs. The last topic 
was laziness, which changes the way code executes without affecting the outcome of 
the program. In one sense, adding laziness can be also viewed as a refactoring tech-
nique. Computation expressions are similar in that they augment the code with an 
additional aspect without changing its core meaning.

Listing 12.25 Translated version of the logging example (F#)

B
Automatically uses 
zero as result

C Translates multiple 
bindings into nested calls
Licensed to   <kr_wilson@hotmail.com>



350 CHAPTER 12 Sequence expressions and alternative workflows
TIP There’s a close relationship between computation expressions and lazi-
ness. It’s possible to create a computation expression that turns code into 
a lazily evaluated version, with a computation type of Lazy<'T>. You can 
try implementing the computation on your own: the only difficult part is 
writing the Bind member. We won’t talk about this anymore here, but 
you can find additional information on the book’s website.

The interesting thing is how easy it is to turn standard F# code into code that has non-
standard behavior. We have to enclose the code in a computation expression block 
and add calls to the primitives provided for the computation expression, such as the 
logMessage function we just implemented. When the code we’re implementing is 
split between several functions, we have to change the calls to these functions from a 
usual call or usual value bindings into customized value bindings using either let! or 
do! primitives. When writing code that uses computation expressions in F#, the typical 
approach is to start with the standard version of the code, which is easier to write and 
test, then refactor it into an advanced version using computation expressions. 

12.8 Summary
In the first part of the chapter, we talked about .NET sequences, as represented by the 
IEnumerable<T> type, also known as seq<'a> in F#. We started by looking at tech-
niques for generating sequences, including higher-order functions, iterators, and F# 
sequence expressions. We saw that sequences are lazy, which allows us to create infi-
nite sequences. We looked at a real-world example using an infinite sequence of col-
ors to separate the code to draw of a chart from the code that generates the colors 
used in the chart.

 Next we discussed how to process sequences. We wrote the same code using higher-
order functions, the corresponding LINQ extension methods, C# query expressions, 
and F# sequence expressions. This helped us to understand how queries and sequence 
expressions work. One most important operation is the bind operation, which occurs in 
sequences as the collect function in F# and the SelectMany method in LINQ.

 The same conceptual operation is available for many other types, and we saw how 
to create F# computation expressions that look like sequence expressions but work 
with other types. We provided two practical examples, implementing computation 
expressions for working with option types and storing log messages during execution. 
The same idea can be implemented in C# to some extent, with query expressions used 
in the place of computation expressions. The F# language features are more general, 
while C# query expressions are tailored to queries.

 Perhaps the most difficult thing about using computation expressions is to identify 
when it’s beneficial to design and implement them. In the next chapter, we’ll look at 
one of the most important uses of F# computation expressions. It allows us to execute 
I/O operations without blocking the caller thread. This is particularly important when 
performing slow I/O such as reading data from the internet. Later we’ll see how F# 
enables us to interactively process and visualize data, which is becoming an important 
task in the today’s increasingly connected world.
Licensed to   <kr_wilson@hotmail.com>



Part 4

Applied 
 functional programming

Although functional programming is certainly elegant, you’re probably 
more interested in it for practical purposes: it’s useful as a general-purpose style, 
and it positively excels in certain problem domains. We’ve already seen exam-
ples, such as the pie chart drawing application in chapter 4 and the simple 
photo browser in chapter 11, but the main purpose of these examples was to 
demonstrate specific concepts and techniques.

 Part 4 is different. In each chapter we’ll spend most of the time talking about 
one real-world problem, using the most appropriate features of F# and func-
tional programming to solve it. The code will use many of the features we’ve 
seen so far and will be relatively complicated given the space limitations we have 
for a single chapter.

 There are two related areas where functional programming offers obvious 
advantages: asynchronous and concurrent programming. 

 In chapter 13, we’ll talk about asynchronous programming, but in the larger 
context of modern data-driven programming. We’ll obtain data asynchronously, 
explore its structure interactively, and visualize the results using Excel. 

 In chapter 14, we’ll turn our attention to parallel programming, an area 
where functional programming shines: immutability sidesteps the issue of mod-
ifying shared state, so programs written in a functional style are much easier 
to parallelize. 

 In chapter 15, we’ll explore developing functional libraries using the composi-
tion principle. Many of the functional features that we’ve seen so far are built using 
Licensed to   <kr_wilson@hotmail.com>



this principle. The idea is that we can provide a small number of easy-to-understand 
primitives that can be combined in very rich ways. Then we can use the primitives to 
build complex results without specifying any implementation details. To demonstrate 
how you can design libraries that follow this principle, we’ll create a library for describ-
ing animations, but we’ll also briefly sketch another example from the financial world. 

 In chapter 16, we’ll talk about applications that need to react to various events. 
This is a broad topic: the events in question could be generated from a UI, or from 
background tasks that need to collect and present data to the user. 

 In chapters 13 and 16 we’ll use F# features that are quite difficult to write in C#, so 
the examples will use F# exclusively. Chapters 14 and 15 build only on top of the stan-
dard aspects of functional programming, such as immutability, higher-order functions, 
or a focus on writing composable code. This means that we’ll be able to write most of 
the code in both F# and C#. Unlike in earlier parts of the book where we often used C# 
just to demonstrate specific concepts, this time it will be closer to the real code you’d 
write to solve a business problem using functional ideas to inspire the design.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Licensed to   <kr_wilson@hotmail.com>



Asynchronous and 
 data-driven programming
We’ll begin with a quote from an interview with Bill Gates in which he talks about 
the type of programming tasks that he’s interested in and describes the typical sce-
nario when writing the application:

Go grab data from the web, don’t just think of it as text, bring structure into it 
and then […] try out different ways of presenting it, but very interactively. […] 
Write a little bit of code that may have your specific algorithm for processing that 
data. [Gates, 2008]

This describes exactly what we’re going to do in this chapter, and as you’ll see, the 
F# language and its interactive shell are excellent tools for solving this kind of task. 
We’ll call this approach explorative programming, because the goal is to explore a 

This chapter covers
■ Programming asynchronous workflows
■ Exploring data using F# Interactive
■ Defining meaning of types using units of measure
■ Processing and visualizing data
353

Licensed to   <kr_wilson@hotmail.com>



354 CHAPTER 13 Asynchronous and data-driven programming
massive amount of data and find a way to gather useful information from it. We’ll 
spend most of the chapter working with F# Interactive, because it gives us a great way 
to “write a little bit of code” with our “specific algorithm for processing that data” and 
immediately execute it to see the results.

 The F# language and libraries support this type of programming in many ways, and 
we’ll look at all the important technologies involved. To obtain the data, we can use 
asynchronous workflows based on the computation expression syntax that we intro-
duced in the previous chapter. Then we’ll look at “bringing a structure” to the data 
using F# types. We’ll also use units of measure that allow us to specify that a certain 
value isn’t just a floating-point number but that it has a unit such as square kilometers.

TIP In this chapter, we’ll use data provided by the World Bank. The first half 
of the chapter covers, in some detail, how to obtain all the data we need 
in the right format. 

If you’re more interested in processing and visualization, you can go 
directly to section 13.4. Instead of downloading the data step-by-step 
from the World Bank as described in the first part, you can get all the 
data directly from the book’s website. 

Finally, we’ll look at “trying out different ways of presenting the data.” In particular, 
we’ll see how to export the structured data to Excel using its .NET API, and program-
matically visualize the data as a chart. 

13.1 Asynchronous workflows
There are many areas where we can use asynchronous operations. When we’re work-
ing with disks, calling web services, or connecting to the database, asynchronous work-
flows can give us a notable performance benefit. When an application performs an 
asynchronous operation, it’s not easy to predict when the operation will complete. If 
we don’t handle asynchronous operations properly, the application will be inefficient 
and may become unresponsive.

 Writing the code that performs asynchronous operations without blocking the call-
ing thread is essential to avoid problems, but difficult to implement using the current 
techniques. In F#, this is largely simplified thanks to asynchronous workflows. Before 
we’ll look at using them, let’s explain what the problem is.

13.1.1 Why do asynchronous workflows matter?

Assume we want to download the content of a web page so that we can use it in our 
application. We could use the WebClient class from the System.Net namespace, but 
that wouldn’t demonstrate the problems we have when we need to run complicated, 
long-running operations. Instead, we’ll create an HTTP request explicitly as a first 
step, then download the data as the second step:

var req = HttpWebRequest.Create("http://manning.com");
var resp = req.GetResponse();                                
var stream = resp.GetResponseStream();

Initializes 
connection
Licensed to   <kr_wilson@hotmail.com>



355Asynchronous workflows
var reader = new StreamReader(stream);
var html = reader.ReadToEnd();          
Console.WriteLine(html);

This code will work, but it’s far from perfect. It performs HTTP communication in 
two places. In the first, it needs to initialize the HTTP connection with the server; in 
the second, it downloads the web page. Both operations could potentially take a 
long time and each could block the active thread, thus causing our application to 
become unresponsive.

 To solve this, we could run the download on a separate thread, but using threads is 
expensive, so this approach would limit the number of downloads we can run in paral-
lel. Also, most of the time the thread would be waiting for the response, so we’d be 
consuming thread resources for no good reason. To solve the problem properly, we 
should use an asynchronous API that allows us to trigger the request and call a call-
back that we provide when the operation completes:

var req = HttpWebRequest.Create("http://manning.com");
req.BeginGetResponse(asyncRes1 => {                         
   var resp = req.EndGetResponse(asyncRes1);
   var stream = resp.GetResponseStream();
   var reader = new StreamReader(stream);
   reader.BeginReadToEnd(asyncRes2 => {          
      var html = reader.EndReadToEnd(asyncRes2);
      Console.WriteLine(html);
   });
});

This version of code is quite difficult to write. Even if we use lambda functions from 
C# 3.0, the code still looks complicated. We had to change its structure; instead of 
writing sequential code, we’re writing a sequence of nested callbacks.

 The previous snippet has one more problem. The BeginReadToEnd method isn’t 
available in the .NET Framework, so we’d have to implement the asynchronous down-
load ourselves. Unfortunately, this can’t be done using a simple sequential code, 
because we need to download the page in a buffered way. If we want to write this in an 
asynchronous style (using nested callbacks), we can’t use any of the built-in constructs 
such as while loops. 

 As we’ll see, asynchronous workflows solve all the problems we had when writing 
the download. They allow us to write code in the usual sequential way using standard 
control structures such as recursion or even while loops. The code executes asynchro-
nously, which means that the workflow waits for an operation to complete without 
using a dedicated thread. In the next section, we’ll look how to use F# asynchronous 
workflows to implement the example we’ve just discussed.

13.1.2 Downloading web pages asynchronously

Before we can use asynchronous workflows to fetch web content, we’ll need to reference 
the FSharp.PowerPack.dll library that contains asynchronous versions of many .NET
methods. When developing a standalone application, you’d use the Add Reference 

Downloads 
web page

Starts 
operation

Doesn’t 
exist!
Licensed to   <kr_wilson@hotmail.com>



356 CHAPTER 13 Asynchronous and data-driven programming
command. In this chapter we’re using the interactive development style, so we’ll create 
a new F# script file and use the #r directive (listing 13.1).

> #r "FSharp.PowerPack.dll";;

> open System.IO
   open System.Net;;

> let downloadUrl(url:string) = async {     
     let request = HttpWebRequest.Create(url)
     let! response = request.AsyncGetResponse()  
     use response = response                            
     let stream = response.GetResponseStream()
     use reader = new StreamReader(stream)
     return! reader.AsyncReadToEnd() };;   
val downloadUrl : string -> Async<string>

After opening all the required namespaces, we define a function that’s implemented 
using the asynchronous workflow. It uses the async value as a computation builder B. 
You can easily prove that it’s an ordinary value; if you type a dot (.) immediately after 
the value in Visual Studio, IntelliSense shows that it contains all the usual computa-
tion builder members such as Bind and Return, and also a couple of additional prim-
itives that we’ll need later. The printed type signature shows that the type of the 
computation is Async<string>. We’re going to look at this type in more detail later.

 The code in listing 13.1 uses the let! construct once when executing a primitive 
asynchronous operation AsyncGetResponse C provided by the F# library. The return 
type of this method is Async<WebResponse>, so the let! construct composes the two 
asynchronous operations and binds the actual WebResponse value to the response
symbol. This means that we can work with the value once the asynchronous opera-
tion completes.

 The next line D uses the use primitive, which disposes of the given object once it 
is out of scope. We already discussed use in the context of ordinary F# programs, and 
inside asynchronous workflows it behaves similarly. It will dispose of the HTTP
response when the workflow completes. We’re using value hiding to hide the original 
response symbol and declare a new one that will be disposed. This is a common pat-
tern, so F# provides a convenient way to write this using the use! primitive, which is 
simply a combination of let! and use. Now that we know about it, we can replace the 
two lines with the following:

use! response = request.AsyncGetResponse() 

On the last line of listing 13.1, we’re using a primitive that we haven’t seen before: 
return! E. This allows us to run another asynchronous operation (just like using the 
let! primitive) but returns the result of the operation when it completes rather than 
assigning it to some symbol. Like the do! primitive, this is simply syntactic sugar. The 
computation builder doesn’t have to implement any additional members; the compiler 
could also treat the code as if it were written like this (the actual translation is simpler):

Listing 13.1 Writing code using asynchronous workflows (F# Interactive)

B

C
D

E

Licensed to   <kr_wilson@hotmail.com>



357Asynchronous workflows
let! text = reader.AsyncReadToEnd() 
return text

Now that we have the downloadUrl function that creates the asynchronous computa-
tion, we should also determine how we can use it to download the content of a web 
page. As you can see in listing 13.2, we can use functions from the Async module to 
execute the workflow.

> let downloadTask = downloadUrl("http://www.manning.com");;  
val downloadTask : Async<string>

> Async.RunSynchronously(downloadTask);;                             
val it : string = "<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0
   Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-tr
   ansitional.dtd"><html><head> (...)"

> let tasks =
     [ downloadUrl("http://www.tomasp.net");
        downloadUrl("http://www.manning.com") ];;
val tasks : list<Async<string>>

> let all = Async.Parallel(tasks);;  
val all : Async<string[]>

> Async.RunSynchronously(all);;
val it : string[] = [ "..."; "..." ]

Code written using asynchronous workflows is delayed, which means that when we 
execute the downloadUrl function on the first line, it doesn’t start downloading the 
web page yet B. The returned value (of type Async<string>) represents the compu-
tation that we want to run, just as a function value represents code that we can later 
execute. The Async module provides ways of running the workflow, some of which are 
described in table 13.1. 

Listing 13.2 Executing asynchronous computations (F# Interactive)

Table 13.1 Selected primitives for working with asynchronous workflows that are available in the 
                    Async module in the standard F# library 

Primitive Type of primitive and description

RunSynchronously Async<'T> -> 'T

Starts the given workflow on the current thread. When an asynchronous oper-
ation is used in the workflow, the workflow resumes on the thread used for 
invoking the asynchronous callback. This operation blocks the caller thread 
and waits for the result of the workflow.

Start Async<unit> -> unit

Starts the given workflow in the background (using a thread pool thread) and 
returns immediately. The workflow executes in the parallel with the subse-
quent code of the caller. As indicated in the signature, the workflow can’t 
return a value.

C

Runs 
workflow, 
waits for 
result

B
Builds asynchronous 

workflow

D
Combines several 
workflows into one
Licensed to   <kr_wilson@hotmail.com>



358 CHAPTER 13 Asynchronous and data-driven programming
In listing 13.2 we initially use Async.RunSynchronously C, which blocks the calling 
thread. This is useful for testing the workflow interactively. In the next step, we create 
a list of workflow values. Again, nothing starts executing at this point. Once we have 
the collection, we can use the Async.Parallel method D to build a single workflow 
that will execute all workflows in the list in parallel. This still doesn’t execute any of 
the original workflows. To do that, we need to use Async.RunSynchronously again, 
which will start the composed workflow and wait for its result. The composed work-
flow starts all the workflows and will wait until all of them complete.

 The code still blocks to wait for the overall result, but it runs efficiently. It uses the 
.NET thread pool to balance the maximal number of running threads. If we created 
hundreds of tasks, it wouldn’t create hundreds of threads, because that would be inef-
ficient. Instead a smaller number of threads would be used. When the workflow 
reaches a primitive asynchronous operation called using the let! construct, it regis-
ters a callback in the system and releases the thread. Because .NET manages threads 
using a thread pool, a thread that finished its work can be reused for starting another 
asynchronous workflow. When we use asynchronous workflows, the number of tasks 
running in parallel can be significantly larger than when using threads directly.

 In this chapter, we need to obtain the data interactively, so we’re interested in run-
ning workflows in parallel rather than in developing responsive GUI applications. The 
latter class of applications (also called reactive applications) is important, and chapter 16 
will focus solely on this topic. Now we’ve seen what code using asynchronous workflows 
looks like, let’s see how they’re implemented.

13.1.3 Understanding how workflows work

In the previous chapter we saw that F# code written using a computation expression is 
translated into an expression that uses the primitives provided by the appropriate com-
putation builder. For asynchronous workflows, this means that the let! construct is 
translated into a call to async.Bind, and return is translated into async.Return. In 

CreateAsTask Async<'T> -> Task<'T>

The method is available only on .NET 4.0. It wraps the asynchronous workflow 
into a Task<'T> object that can be used for executing it. The task can be 
started using Start or RunSynchronously methods that behave simi-
larly to the Async primitives. To get the result of the workflow, we can use the 
Result property, which blocks if the workflow hasn’t completed yet.

Parallel seq<Async<'a>> -> Async<array<'a>>

Takes a collection of asynchronous workflows and returns a single workflow 
that executes all of the arguments in parallel. The returned workflow waits for 
all the operations to complete and then returns their results in a single array.

Table 13.1 Selected primitives for working with asynchronous workflows that are available in the 
                    Async module in the standard F# library (continued)

Primitive Type of primitive and description
Licensed to   <kr_wilson@hotmail.com>

http://tomasp.net/blog/csharp-async.aspx
http://tomasp.net/blog/csharp-async.aspx


359Asynchronous workflows
addition, asynchronous workflows are delayed. This means that the computation itself 
needs to be wrapped in an additional primitive to make sure that the whole code will 
be enclosed in a function. The function can then be executed later when we start the 
workflow. Listing 13.3 shows the translated version of the workflow from listing 13.2.

async.Delay(fun () ->
   let request = HttpWebRequest.Create(url)
   async.Bind(request.AsyncGetResponse(), fun response ->
      async.Using(response, fun response ->
         let stream = response.GetResponseStream()
         async.Using(new StreamReader(stream), fun reader ->
            reader.AsyncReadToEnd() )
      )
   ) 
)

The Delay member wraps a function into a workflow value that can be executed later. 
The body of the lambda function used as an argument creates an HTTP request and 
assigns a value to the resp symbol using customized asynchronous value binding. The 
compiler translated each use binding into a call to the Using member, which is 
another primitive that can be optionally provided by the computation expression 
builder. It takes care of disposing of objects at the end of the workflow in case of both 
success and an error. 

 The Delay member is one of the computation builder members that we can pro-
vide when implementing a computation expression. In listing 13.3, it takes a function 
that returns the asynchronous workflow (the type is unit -> Async<'a>) and returns a 
workflow value (Async<'a>) that wraps this function. Thanks to this primitive, the 
whole computation is enclosed inside a function, and it isn’t executed when we create 
the Async<'a> value. This is an important difference from the examples in the previ-
ous chapter such as the option<'a> type. An option represents a value, so the compu-
tation expression runs immediately, performing the computation and returning a new 
option value, but a workflow represents a computation. It will become clearer what 
this means when we look at the Async<'a> type in detail.

 The other primitive that occurs in listing 13.3 is the Bind member. As you learned 
in the previous chapter, this is crucial for all computation expressions. In asynchro-
nous workflows, Bind allows us to start an operation without blocking the caller 
thread. The following list summarizes the steps that take place when we execute the 
workflow using a primitive such as Async.RunSynchronously: 

1 The function given as an argument to the Delay primitive starts executing. It syn-
chronously creates the object that represents the HTTP request for the given URL.

2 AsyncGetResponse is called. The result is a primitive asynchronous workflow 
that knows how to start the request and call a specified function when the oper-
ation completes. 

Listing 13.3 Asynchronous workflow constructed explicitly (F#)
Licensed to   <kr_wilson@hotmail.com>

http://developer.worldbank.org
http://developer.worldbank.org
http://developer.worldbank.org
http://blogs.msdn.com/andrewkennedy
http://blogs.msdn.com/andrewkennedy
http://blogs.msdn.com/andrewkennedy


360 CHAPTER 13 Asynchronous and data-driven programming
3 We execute the Bind member and give it the workflow from step 2 as the first 
argument and a function that takes the HTTP response as an argument and 
should be executed when the workflow completes. This function is called a con-
tinuation, which is a term we’ve seen already. (We used it when discussing recur-
sion in chapter 10 as an accumulator parameter to accumulate more code that 
we want to run later.)

4 The Bind member runs the workflow created by AsyncGetResponse, passing it 
the specified continuation. The primitive workflow then calls the .NET Begin-
GetResponse method that instructs the system to start downloading the 
response and call the given continuation when the operation completes. At this 
point, the Bind member returns and the thread that was executing the opera-
tion is freed to continue doing other work, or it’s returned to the thread pool.

5 When the response is ready, the system will call the continuation. The workflow 
gets the response object using the EndGetResponse .NET method and executes 
the continuation given to the Bind member, which represents the rest of the 
workflow. Note that the system again picks a thread from the thread pool, so the 
rest of the workflow may be executed on a different thread each time we use the 
let! primitive.

The key point is that when we execute an asynchronous workflow, we don’t wait for 
the result. Instead, we give it a continuation as an argument; this continuation will be 
executed when the corresponding step in the workflow has completed. The great 
thing about asynchronous workflows is that we don’t have to write the code using con-
tinuations explicitly. The compiler translates let! primitives into the calls to the Bind
member, creating the continuation automatically.

Investigating the asynchronous workflow type
You can use asynchronous workflows without understanding all the details, but you 
may be interested in a bit of information about how they’re implemented. We’ve seen 
that asynchronous workflows are similar to functions in that they represent a compu-
tation that we can execute later. The type is represented as a function in the F# li-
brary. The type is a bit more sophisticated, but the simplest asynchronous 
computation could be represented using the following:

type Async<'T> = (('T -> unit) * (exn -> unit) * (unit -> unit)) -> unit

This is a function that takes three arguments as a tuple and returns a unit value. The 
three arguments are important, because they are continuations—functions that can 
be called when the asynchronous workflow completes. The first one is called success 
continuation. Its type is 'T -> unit, which means that it takes the result of the work-
flow. This continuation will be called when the workflow completes. It can then run 
another workflow or any other code. The second one is exception continuation. It 
takes an exn value as an argument, which is the F# abbreviation for the .NET Excep-
tion type. As you can guess, it’s used when the operation that the workflow executes 
fails. The third function is called cancellation continuation and can be triggered when 
the workflow is being canceled.
Licensed to   <kr_wilson@hotmail.com>



361Asynchronous workflows
Even though the precise implementation details of asynchronous workflows aren’t 
essential, it’s useful to be able to create your own primitive workflows—the equivalent 
of the AsyncGetResponse method used in listing 13.3. You can then use the rest of the 
building blocks to run your code asynchronously with a minimum of fuss.

13.1.4 Creating primitive workflows

The F# PowerPack library contains asynchronous versions for many important I/O
operations, but it can’t include all of them. For that reason, the F# library also provides 
methods for building your own primitive workflows. If the operation you want to run 
inside the workflow uses a standard .NET pattern and provides BeginOperation and 
EndOperation methods, you can use the Async.FromBeginEnd method. If you give it 
these two methods as an argument, it’ll return an asynchronous workflow. 

 Other operations are available that can be executed without blocking the thread. 
For example, we may want to wait for a particular event to occur and continue execut-
ing the workflow when it’s triggered. Listing 13.4 creates a primitive that waits for the 
specified number of milliseconds using a timer and then resumes the workflow. 

> module MyAsync = 
     let Sleep(time) =                                                 
        Async.FromContinuations(fun (cont, econt, ccont) ->
           let tmr = new System.Timers.Timer(time, AutoReset = false)
           tmr.Elapsed.Add(fun _ -> cont())  
           tmr.Start() 
        );;
(...)

> Async.RunSynchronously(async { 
     printfn "Starting..."
     do! MyAsync.Sleep(1000.0)  
     printfn "Finished!"
  });;
Starting...
Finished!
val it : unit = ()

The same functionality is already available in the F# library, so it isn’t only a toy exam-
ple. It’s implemented by Async.Sleep, and we’ll need it later in the chapter. Of 
course, we could block the workflow using the synchronous version, Thread.Sleep, 
but there’s an important difference. This method would block the thread, while our 
function creates a timer and returns the thread to the .NET thread pool. This means 
that when we use our primitive, the .NET runtime can execute workflows in parallel 
without any limitations.

 The Sleep function B takes the number of milliseconds for which we want to delay 
processing and uses the Async.FromContinuations method to construct the workflow. 
This method reflects the internal structure of the workflow quite closely. The argument 
is a lambda function that will be executed when the workflow starts. The lambda takes 

Listing 13.4 Implementing asynchronous waiting (F# Interacitve)

CResumes computation

B

Suspends 
workflow for 

specified time

D
Waits without 
blocking thread
Licensed to   <kr_wilson@hotmail.com>



362 CHAPTER 13 Asynchronous and data-driven programming
a tuple of three continuations as an argument. The first function should be called when 
the operation completes successfully, and the second should be called when the oper-
ation throws an exception. Similarly to the declaration of the Async<'T> type from an 
earlier sidebar, there’s a third continuation that can trigger cancellation of the work-
flow. In the body of the lambda, we create a timer and specify the handler for its 
Elapsed event. The handler simply runs the success continuation C.

 Having created our new primitive, listing 13.4 shows a simple snippet that uses it. 
Because it returns a unit value, we’re using the do! primitive rather than let! D. 
When the code is executed, it constructs the timer with the handler and starts it. 
When the specified time elapses, the system takes an available thread from the thread 
pool and runs the event handler, which in turn executes the rest of the computation 
(in our case, printing to the screen).

It’s time to start using asynchronous workflows for more practical purposes. In the 
next section, we’ll look at the data services provided by the World Bank, and see how 
we can call them using asynchronous workflows. 

13.2 Connecting to the World Bank
It’s no accident that our discussion on asynchronous workflows is located in a chapter 
about explorative programming. Many of the interesting data sources you’ll work 
with today are available online in the form of a web service or other web-based appli-
cation. As we’ve seen, asynchronous workflows are the essential F# feature for obtain-
ing the data.

Asynchronous workflows in C#
There have been numerous attempts to simplify asynchronous programming in C#, 
but none of the available libraries works quite as neatly as the asynchronous work-
flow syntax. The F# syntax is extremely simple from the end-user point of view (just 
wrap the code in an async block), which is quite difficult to achieve in C#.

We’ve seen that LINQ queries roughly correspond to F# computation expressions, so 
you might be tempted to implement Select and SelectMany operations. In principle, 
it would be possible to write asynchronous operations using query expressions, but 
the syntax we can use inside queries is limited. Interestingly, C# iterators can be also 
used for this purpose. This approach is described in the article “Asynchronous Pro-
gramming in C# Using Iterators” (available at http://tomasp.net/blog/csharp-
async.aspx). The most real-world library that uses this technique is Jeffrey Richter’s 
PowerThreading library [Richter, 2009]. 

One of the most complex libraries based on C# iterators is the Concurrency and Co-
ordination Runtime (CCR) [Chrysanthakopoulos and Singh, 2005]. This library was de-
veloped as part of Microsoft Robotics studio, where responsiveness and asynchronous 
processing is essential for any application. You can find more information about this 
library in Jeffery Richter’s “Concurrency Affairs” article [Richter, 2006].
Licensed to   <kr_wilson@hotmail.com>

http://tomasp.net/blog/csharp-async.aspx
http://tomasp.net/blog/csharp-async.aspx


363Connecting to the World Bank
 Downloading the data efficiently isn’t our only problem. The data sources usually 
return the data in an untyped format (such as a plain text or XML without a formally 
defined schema), so we first need to understand the structure. Also, remote data 
sources can be unreliable, so we have to be able to recover from failure. This means 
that even before we write the code to obtain the data, we need to explore the data 
source. As we’ll see, the F# Interactive tools give us a great way for doing that.

13.2.1 Accessing the World Bank data

The data source we’ll use in this chapter is the service provided by the World Bank, an 
international organization that provides funding and knowledge to developing coun-
tries. As part of its job, the organization needs to identify what type of support is the 
most efficient, determine where it’s needed, and evaluate whether it had an impact on 
the economy, quality of life or the environment of the developing country. The World 
Bank has a data set called World Development Indicators that contains information about 
many countries, and it makes the data available online. In this chapter, we’ll work with 
information about the environment and more specifically about the area covered by 
forests. The data provided by the World Bank is available for free, but you need to reg-
ister on the bank’s website first.

TIP To register, first go to http://developer.worldbank.org. Once you fill in 
the form and get the confirmation email, you can return to the website 
and obtain an API key, which is used when sending requests to the World 
Bank services. The website also provides documentation and a brief tuto-
rial about the service. You can look at it there, but we’ll explain everything 
we use in this chapter. One interesting feature on the web page is Query 
Generator, which allows you to run and configure queries interactively 
and shows the URL that we can use to request the data programmatically. 

The World Bank exposes the data using a simple HTTP-based service, so we can use the 
downloadUrl function we created earlier. If you look at the documentation or experi-
ment with the Query Generator for some time, you’ll quickly learn the structure of the 
request URLs. The address always refers to the same page on the server, and all the addi-
tional properties are specified in the URL as key-value pairs. In listing 13.5, we’ll start by 
creating a function that constructs the request URL from an F# list containing the key-
value pairs so that we can access the data more easily.

open System.Web 

let worldBankKey = "xxxxxxxxxx"  
let worldBankUrl(functions, props) =
   seq { yield "http://open.worldbank.org"
         for item in functions do
            yield "/" + HttpUtility.UrlEncode(item:string)  
         yield "?per_page=100"
         yield "&api_key=" + worldBankKey

Listing 13.5 Building the request URL (F#)

Specify your World 
Bank key here!

B

Licensed to   <kr_wilson@hotmail.com>

http://developer.worldbank.org


364 CHAPTER 13 Asynchronous and data-driven programming
         for key, value in props do
            yield "&" + key + "=" + HttpUtility.UrlEncode(value:string) }  
   |> String.concat "&"

The function worldBankUrl contains a sequence expression that generates a collec-
tion of strings and then concatenates them into a single URL.

 In the sequence expression, we first return the base part of the URL. Next, we add 
a path to the required function provided by the server. The function can be for exam-
ple “/keywords/Wood”, so we take a list that specifies parts of the function name and 
concatenate all of them using “/” as the separator B. Once we specify the function, 
we add the API key and page length, which are another parts shared by all the 
requests we’ll need in this chapter. Finally, we process additional properties specified 
by the user. We iterate over all the key-value pairs specified as the props argument and 
return a "&key=value" string C. 

 To make sure that the URL is well formed, we’re using the HttpUtility class from 
the System.Web namespace. If you’re compiling the file as part of a project, you’ll 
need to add reference to the System.Web assembly, which isn’t referenced by default.
The utility encodes an arbitrary string into a string that can be contained in a URL. As 
there are various overloads of the UrlEncode method, we’re using a type annotation to 
specify that the type of the value argument is a string.

 In this chapter, we’re creating an F# script file rather than a traditional applica-
tion, so the next step is to write a couple of F# Interactive commands that we can exe-
cute immediately to see whether the function we just wrote works correctly. This “test 
request” is also useful to see the data format used by the bank, so we know what we 
need to do later to parse the data.

 The statistics provided by the World Bank are available for individual countries, 
but they can also be grouped based on region or income. These aggregated statistics
make it easier to see overall trends. The first thing we need to do is get the informa-
tion about all the available groups. You can try this on the website using the Query 
Generator. First select the Countries option on the Country Calls tab and enter your 
API key. To get a list of aggregated country groups, you can choose Aggregates from 
the Region list and then run the request. Listing 13.6 shows how to run the same 
request using F# Interactive. 

> let url = 
     worldBankUrl(["countries"],
                        ["region", "NA" ];;  
val url : string = 
   http://open.worldbank.org/countries?per_page=100& 
   api_key=hq8byg8k7t2fxc6hp7jmbx26&region=NA"

> Async.RunSynchronously(downloadUrl(url));;                           
val it : string = "<?xml version=\"1.0\" encoding=\"utf-8\" (...)"

We start by creating the URL using the function we just implemented B. We give it 
countries as the name of the function we want to invoke. The additional region

Listing 13.6 Testing the World Bank data service (F# Interactive)

C

B Builds URL with 
specified properties

Downloads 
page as 
string

C

Licensed to   <kr_wilson@hotmail.com>



365Connecting to the World Bank
parameter specifies what types of countries we want to list. The NA value means that 
we’re interested in the aggregated country information. As we’re using F# Interactive, 
we immediately see the composed URL. It contains all the specified parameters, the 
World Bank key, and a flag specifying that we want to return up to 100 records per 
page. We’ll talk about paging of the output later when we need to obtain a larger 
number of indicators.

 Once we have the URL, we can copy it into a web browser to see what data the 
World Bank returns. To download the page programmatically, we can use our down-
loadUrl function C (from listing 13.1). As with any network operation, the download 
may fail. This doesn’t matter if we’re running the request manually, but when we’re 
executing a bulk operation to download data from URLs in parallel, we need to write 
the code in a way it can recover from nonfatal failures. 

13.2.2 Recovering from failures

The World Bank service allows us to make only a limited number of requests each day 
for a single user key, and it also limits the frequency of requests. This means that if we 
run a large number of requests at once, some of them may return an error. The work-
around is to catch the exception and retry the request later. 

 Listing 13.7 implements a loop that executes a request repeatedly until either it 
succeeds or we’ve tried 20 times. The failure is reported using exceptions, and we’re 
using the F# try … with construct to catch the exception. 

> let worldBankDownload(properties) =  
     let url = worldBankUrl(properties)
     let rec loop(attempts) = async {  
        try
           return! downloadUrl(url)  
        with _ when attempts > 0 ->                                        
           printfn "Failed, retrying (%d): %A" attempts properties
           do! Async.Sleep(500.0)
           return! loop(attempts - 1) }  
     loop(20);;
val worldBankDownload : seq<string * string> -> Async<string>

> let props = ["countries"], ["region", "NA"];
val props : string list * (string * string) list

> Async.RunSynchronously(worldBankDownload(props))
Failed, retrying (20): [("countries"); ("region", "NA")]
val it : string = "<?xml version=\"1.0\" encoding=\"utf-8\" (...)"

This code implements a recursive and asynchronous loop function B, which attempts 
to run the actual download C. If the download fails, an exception can be thrown. 
When an exception occurs and the remaining number of attempts isn’t zero D, we 
suspend the workflow for some time and then retry the download E.

 The normal functional way to create a loop is to write a recursive function that 
takes the number of remaining attempts as an argument and decrements this number 

Listing 13.7 Running the web request repeatedly (F# Interactive)

B

C
D

E

Licensed to   <kr_wilson@hotmail.com>



366 CHAPTER 13 Asynchronous and data-driven programming
on each iteration. Listing 13.7 uses this pattern with a twist. The loop function B is 
implemented using an asynchronous workflow, so we’re creating a recursive asynchro-
nous workflow. The recursive call is in the exception handler E, and it uses the 
return! primitive to run the next iteration of the asynchronous loop. The body of the 
workflow attempts to download the page, but it does this in a try … with block that 
catches possible exceptions. 

 The try … with block in F# is similar to the try … catch in C#, but it has some 
additional features. It allows us to distinguish between exceptions using pattern 
matching, which makes the with construct D very similar to the match expression 
that we’re already familiar with. In listing 13.7, we’re simply catching all exceptions, 
but we’ve added a when clause C. This means the exception will be caught only 
when the number of attempts is less than 20. It’s worth noting that we’re handling 
exceptions inside the asynchronous workflow in the same way you can handle excep-
tions in normal F# code. This is possible thanks to additional primitives called 
TryWith and TryFinally that the asynchronous workflow provides under the 
hood; these primitives tell F# how to deal with exceptions that occur during asyn-
chronous operations.

 On the last few lines of listing 13.7, you can see how to use the function to get data 
from the World Bank. Note that the parameter properties of the function is a tuple 
containing both function and additional properties. We didn’t write that explicitly as a 
tuple in the implementation, but the compiler knows that theworldBankUrl function 
expects a tuple value. You can simulate a failure in the connection by disconnecting 
your computer from the network for a short time, and you’ll see that the code is able 
to recover from the failure. Now that we have a reliable function for downloading 
data, we can move forward and download all data we want to work with.

13.3 Exploring and obtaining the data
As we’ve seen in the last couple of examples, the World Bank data service returns the 
data as XML documents, so before we can write any code to process the data in a mean-
ingful way, we’ll need to convert it to an F# type. In chapter 7, we converted between 
XML and our own custom discriminated union type, but in this case we’re going to use 
tuples and sequences. This is because the data structure will be quite simple, and when 
we work with data interactively we need to modify the code frequently, either to tweak 
how we’re using the existing values or to download different information. Tuples are 
more flexible for this task—we won’t end up constantly renaming values.

 We’ll use LINQ to XML again, just as we did in chapter 7, but this time, we won’t 
use the whole file. Instead, we’ll just pick out the nodes that are relevant. First, we 
need a few helper functions.

13.3.1 Implementing XML helper functions 

LINQ to XML is primarily designed for C# and VB, and working with it from F# can be 
cumbersome. For example, F# doesn’t support implicit type conversions (because it 
would complicate type inference), so every time we specify an element name, we have 
Licensed to   <kr_wilson@hotmail.com>



367Exploring and obtaining the data
to use XName.Get instead of simply using a string. Alternatively, we could write a sim-
ple utility function or a custom operator to do this for us.

 We can easily implement a couple of F# functions to wrap the most commonly 
used parts of LINQ to XML and give us a very “F#-friendly” way to work with the data. 
As you can see in listing 13.8, most of the functions are straightforward. The listing is 
created using F# Interactive, so you can use the inferred type signatures to understand 
what a function does. One notable aspect is that each function takes the input ele-
ment as its last argument, which means that we’ll be able to compose the functions 
using the pipelining operator.

> #r "System.Xml.dll"
  #r "System.Xml.Linq.dll"
  open System.Xml.Linq;;

> let wb = "http://www.worldbank.org";;
val wb : string = "http://www.worldbank.org"
> let xattr s (el:XElement) =          
     el.Attribute(XName.Get(s)).Value
   let xelem s (el:XContainer) =       
     el.Element(XName.Get(s, wb))
   let xvalue (el:XElement) =  
     el.Value
   let xelems s (el:XContainer) =  
     el.Elements(XName.Get(s, wb));;
val xattr : string -> XElement -> string
val xelem : string -> XContainer -> XElement
val xvalue : XElement -> string
val xelems : string -> XContainer -> seq<XElement>

> let xnested path (el:XContainer) =       
     let res = path |> Seq.fold (fun xn s -> 
        let child = xelem s xn
        child :> XContainer) el                        
     res :?> XElement                                          
  ;;
val xnested : seq<string> -> XContainer -> XElement

Most of the helper functions are quite simple. xattr B returns value of the specified 
attribute; xelem C returns child element with the specified name; xvalue D reads text 
inside the element; and xelems E returns all child elements with the specified name. 
xnested F is more interesting and returns a child node specified by a path given as a 
sequence of element names. When accessing elements, we specify the XML namespace 
used in the documents returned from the World Bank. When we’ll use our helper func-
tions later in the chapter, we’ll only need to provide the local name of the element.

 Listing 13.8 first references the necessary assemblies for LINQ to XML and opens 
the namespace containing classes such as XElement. The first group of functions is 
used to access child nodes, attributes, or the value of any given element. Note that the 
xelem function takes XContainer as an argument, which means that we can use it for 
both ordinary elements, but also with an object that represents the whole document. 

Listing 13.8 Helper functions for reading XML (F# Interactive)

B

C

D

E

F

Upcasts element 
to container

Downcasts result 
back to element
Licensed to   <kr_wilson@hotmail.com>



368 CHAPTER 13 Asynchronous and data-driven programming
This is possible because F# allows implicit conversion to a base class or an imple-
mented interface when passing instance as an input argument to a function or 
method. No implicit conversions are done in other locations, such as when returning 
a result from a lambda function. This makes the xnested function slightly more com-
plicated, and we need to add a couple of explicit casts. 

 The xnested function takes a sequence of names as an argument and follows this 
path to find a deeply nested element. It’s implemented with Seq.fold and uses the 
input element as the initial state. The lambda function is executed for each name in 
the path. It finds a child of the current element with the specified name and returns it 
as a new child element. We want the type of the input to be XContainer, so the folding 
operation uses this type to represent the current state. As a result, we need to upcast
the returned element to XContainer inside the lambda function and downcast the 
final result to XElement.

 Equipped with these helper functions, we can easily extract all the information we 
want from the downloaded XML documents. If you’re unsure about what any of the 
new functions do, don’t worry: everything will become clearer once we start using 
them with real data.

13.3.2 Extracting region codes

The result of our download function is a string, so we need to parse this string as an 
XML document. We’ll need this operation frequently, so we’ll write a simple wrapper 
function that downloads the data using worldBankDownload and returns the result as 
an XDocument object. The download executes asynchronously, so we’ll implement the 
function using asynchronous workflows:

let worldBankRequest(props) = async {
   let! text = worldBankDownload(props)
   return XDocument.Parse(text) }

The code first invokes the asynchronous download using let!. When it completes, it 
parses the XML data and returns the XDocument object. Once we execute the down-
load using Async.RunSynchronously, we can query the returned XML document 
using the helper functions from the previous section. Listing 13.9 shows an example 
of this; it downloads the aggregated information about countries and then accesses 
some values we’ll need later.

> let doc = 
    worldBankRequest(["countries"], ["region", "NA"])
    |> Async.RunSynchronously;;
val doc : XDocument = (...)

> let c = doc |> xnested ["countries"; "country" ];;  
val c : XElement

> c |> xattr "id";;   
val it : string = "EAP"

> c |> xelem "name" |> xvalue;;  
val it : string = "East Asia & Pacific"

Listing 13.9 Exploring the region information (F# Interactive)

B

C

D

Licensed to   <kr_wilson@hotmail.com>



369Exploring and obtaining the data
We start by accessing the first country element in the returned document. This is a 
child element of the root element named countries. To walk down the XML tree, we 
use the xnested function B and specify the path to the element we want to select.

 Now we can look at the content of the element to see what information we want to 
extract. First, we demonstrate how to get the ID of the region. This is stored in the id
attribute, so we can read it using the xattr function C. We’ll also need the name of 
the region so we can display the data in a user-friendly format. This is the value of the 
name element D.

 Now that we’ve explored the structure and made sure we know how to access all 
the region information we need for a single region, we can loop over all the regions. 
Listing 13.10 uses the same functions, but in a sequence computation.

> let regions = 
     seq { let countries = doc |> xnested [ "rsp"; "countries" ]
             for country in countries |> xelems "country" do    
               yield country |> xelem "name" |> xvalue };;  
val regions : seq<string * string> = seq 
   [ ("East Asia & Pacific"; 
     ("Europe & Central Asia";
     ("European Monetary Union";
     ("Heavily indebted poor countries (HIPC)"; ...]

The only important change from the previous listing is that we’re now processing all 
the country nodes in the data. We access these elements as a sequence using the 
xelems function B, and iterate over them using a for loop. As we’re using a sequence 
expression, we can generate result elements using the yield keyword. We use parts of 
the code that we tried in listing 13.9 to get the user-friendly name of the country, and 
return it as the element of the sequence C.

 In this section, we’ve seen how to get a list of regions that we want to further study. 
The important aspect isn’t the exact code we’ve used but the general process. We cre-
ated helper functions to make data access easy, checked that we understood the docu-
ment structure by fetching information interactively, and we wrapped the code inside 
a function. As a next step, we’ll download the indicators that we want to show, such as 
the area occupied by forests.  

13.3.3 Obtaining the indicators

To obtain the data about countries or regions, we’ll use a different function of the 
World Bank service. The path to the function is /countries/indicators and you can 
find it in the Query Generator on the Data Calls tab. This allows us to request indica-
tor data about a specific country for a given time period. Instead of downloading the 
data individually for each region that we’re interested in, we’ll fetch the information 
for all countries at once and process them in memory. Even though we’ll download 
more data in this way, we’ll use a smaller number of requests, because we won’t have 
to create requests for every region.

Listing 13.10 Creating sequence with region information (F# Interactive)

B
C

Licensed to   <kr_wilson@hotmail.com>



370 CHAPTER 13 Asynchronous and data-driven programming
 We’ll follow the same pattern as before; we’ll start by downloading a sample portion 
of the data, then examine it using our XML querying functions. Listing 13.11 shows how 
to download indicators specifying the proportion of a country covered by forests as a 
percentage. The key for this indicator is AG.LND.FRST.ZS, which is best discovered by 
simulating the query in the Query Generator. We’ll download the data for 1990 and 
request the first page of the data set.

> let ind = "AG.LND.FRST.ZS"
   let date = "1990:1990"         
   let page = 1
   let props =
    [ "countries", "indicators"; ind ]
    [ "date", date; "page", string(page) ];;
(...)

> let doc = Async.RunSynchronously(worldBankRequest(props))
  printfn "%s..." (doc.ToString().Substring(0, 301));;         
val doc : XDocument
<wb:data xmlns:wb="http://www.worldbank.org"
    page="1" pages="3" per_page="100" total="231">
  <wb:data>
    <wb:indicator id="AG.LND.FRST.ZS">Forest area (% ...</wb:indicator>
    <wb:country id="AW">Aruba</wb:country>
    <wb:value></wb:value>
    <wb:date>1990</wb:date>
  </wb:data>...

> doc |> xnested [ "data" ]    
      |> xattr "pages" |> int;;  
val it : int = 3

> doc |> xnested [ "data"; "data"; "country" ]
      |> xvalue;;                                           
val it : string = "Aruba"

Listing 13.11 first defines a couple of properties that we need to specify in order to 
create the request. It then creates a list with the properties that we need for the 
worldBankRequest function. After downloading the document, we want to explore its 
structure, so we convert it back into string and print the first few lines B. The output 
shows us that the total data set has three pages. Information for each country is nested 
in data elements, which contain the country name and ID, information about the 
data, and the actual value. The value is missing for the first country, so we’ll have to be 
careful and handle this case when parsing the data.

 Next we’ll write two simple expressions that we’ll need very soon. First we need to 
read the number of pages C so that we can download all the data. The next expres-
sion D reads the name of the first country. This will be needed later, because we’ll 
want to match it with the name of the region that we collected in the previous section.

 Now that we have a pretty good idea about the structure of the data, we can write a 
function to download everything we need. Listing 13.12 shows an asynchronous work-

Listing 13.11 Obtaining area covered by forests (F# Interactive)

Specifies first page 
of forest area data 
from 1990

B Gets data, 
prints preview

C Reads number 
of pages

D Reads ID of 
first country
Licensed to   <kr_wilson@hotmail.com>



371Exploring and obtaining the data
flow which runs in a loop until it gets all the pages. We’re not downloading pages in 
parallel, because that would be slightly harder to write, but we’re going to run the 
same function in parallel for different indicators and years, so there will be enough 
parallelism in the end.

let rec getIndicatorData(date, indicator, page) = async {
   let args = [ "countries"; "indicators"; ind ],
                  [ "date", date; "page", string(page)]
   let! doc = worldBankRequest args

   let pages = 
      doc |> xnested [ "data" ]
            |> xattr "pages" |> int  
   if (pages = page) then 
      return [doc]            
   else 
      let page = page + 1
      let! rest = getIndicatorData(date, indicator, page)  
      return doc::rest }

The function takes the date, indicator, and the required page number as parameters. 
We use them to build the list of arguments for the worldBankRequest function. When 
we receive the XML, we read the attribute that specifies the total number of pages of the 
data set B. If the page we’re currently processing is the last one, we return a list con-
taining only the current page C as a single-element list. Otherwise, we need to down-
load the remaining pages. Note that the function is declared with let rec, so we can 
invoke it recursively to get the remaining pages D. This is done using let! because 
we’re inside an asynchronous workflow. Once we get the list of remaining pages, we 
append the page we just downloaded and return all the pages as the result.

 Before moving on, you can verify that this function works correctly using F# Inter-
active. Make a request for the indicator AG.LND.FRST.ZS, year range 1990:1990, and 
page number 1. When you run the workflow using Async.RunSynchronously, you 
should get three pages containing data about all the countries and regions. 

 Now let’s introduce some parallelism, downloading all the indicators for all the 
years that we’re interested in. We’ll be using the Async.Parallel primitive, so we 
need to create a sequence of asynchronous workflows. The code in listing 13.13 does 
this using a simple sequence expression that calls the getIndicatorData function for 
all the combinations of parameters. Don’t forget that calling getIndicatorData
doesn’t perform the fetch—it returns a workflow that can perform the fetch.

let downloadAll = seq {
   for ind in [ "AG.SRF.TOTL.K2"; "AG.LND.FRST.ZS" ] do          
      for year in [ "1990:1990"; "2000:2000"; "2005:2005" ] do   
         yield getIndicatorData(year, ind, 1) }                       

let data = Async.RunSynchronously(Async.Parallel(downloadAll))  

Listing 13.12 Downloading all indicator data asynchronously (F#)

Listing 13.13 Downloading multiple indicators for multiple years in parallel (F#)

B Gets number 
of pages

C
Returns 
last page Downloads 

remaining 
pages

D

B

C

Licensed to   <kr_wilson@hotmail.com>



372 CHAPTER 13 Asynchronous and data-driven programming
The script first generates a workflow for each combination of indicator and a year 
we’re interested in B. Then it combines all workflows into a single one running in 
parallel and runs it synchronously to download all the data C.

 The sequence expression first iterates over two indicators. The first represents the 
total surface of the country or region in square kilometers, and the second is the 
percentage of forest area, as we’ve already seen. If you look at the data on the World 
Bank website, you can see that the forest area indicator is only available for three dif-
ferent years, so the nested loop iterates over these. For each combination of these 
parameters, we create (and yield) a workflow that runs the download starting from the 
first page.

 This means that we’ll get in total six tasks, each of which may download multiple 
pages. We combine the tasks into a workflow that returns an array of these six results 
and run the combined workflow using Async.RunSynchronously. The download can 
take some time, and you may see that some of the requests failed and were restarted, 
as we discussed earlier. The type of the data value that we get as a result is 
array<list<XDocument>>. The array contains a list of pages that were returned for 
each indicator-year combination. 

 Since we’re writing an F# script, we don’t have to worry about putting the settings 
such as years and indicators into a configuration file. We’re writing the code only for a 
single purpose at the moment. We can modify it later to be generally useful, but that 
would happen later in development. Now that we’ve retrieved the data, we need to do 
something useful with it. 

13.4 Gathering information from the data
The amount of data that we can download from the internet is enormous, but the dif-
ficult part is gathering useful information from it. So far in this chapter, we’ve down-
loaded a list of regions and converted it into a sequence containing the name of each 
region. Then we downloaded a bunch of XML documents that contain information 
about all regions and countries. In this section, we’ll take this untyped XML data and 
convert it into a typed data structure that contains information we can easily display to 
the user.

13.4.1 Reading values

The first thing we need to do is to extract the data in which we’re interested from 
the XML. We’re going to write a function that takes a list of XDocument objects 
(one for each page of the data set) and returns a sequence where each element con-
tains the value of the indicator, the name of the region, and the year in which the 
value was measured.

 Listing 13.14 shows this in the form of the readValues function, as well as a helper 
function that reads data from an XML node representing a single record. Each func-
tion has a parameter named parse, which is a function used to parse the actual string 
value. We’ll soon see the reason behind this parameter.
Licensed to   <kr_wilson@hotmail.com>



373Gathering information from the data
let readSingleValue parse node =
   let value = node |> xelem "value" |> xvalue
   let country = node |> xelem "country" |> xvlue
   let year = node |> xelem "date" |> xvalue |> int
   if (value = "") then []                                 
   else [ (year, country), parse(value) ]            

let readValues parse data = seq { 
   for page in data do
      let root = page |> xnested [ "data" ]
      for node in root |> xelems "data" do   
         yield! node |> readSingleValue parse } 

We start by writing the utility function that takes the formatting function and an XML
node that contains a single data element. It reads values from child nodes and attri-
butes, converting the year to an integer. If you look at the data we downloaded, you 
can see that the value element is sometimes empty. We handle this by returning an 
empty list if the value is missing and a list containing a single element otherwise. Note 
that we could have used an option type instead, but a list makes the second function 
more elegant: we don’t have to distinguish between the two cases; we simply return all 
the elements (either none or one) using the yield! primitive.

 The second function takes the entire input data as a sequence of XDocument
objects. It finds all the XML elements containing data entries, formats them, and 
returns a sequence. The type of the element in the returned sequence is (int *
string) * 'a. The first tuple contains the year and the name of the country. We’ll use 
this as a key later on when searching for the data, which is why we’re using a nested 
tuple. The second element is the value formatted using the parse function, so the 
type will be the same as whatever the function returns.

 As usual, we can try the function immediately. The key input for the function is the 
data source, which is written as the last argument so we can use the pipelining opera-
tor. The simplest parser we can use (for test purposes) is one that returns whatever 
string it’s given, without processing it. The following snippet shows how to process the 
first data set, which contains the total surface area of all the countries in the year 1990. 
We’re parsing the input using identity function id, so the values will be formatted sim-
ply as strings:

> data.[0] |> readValues id;;
val it : seq<(int * string) * string> = 
   seq [ ((1990, "ABW"), "180"); ((1990, "ADO"), "470"); 
           ((1990, "AFG"), "652090"); ((1990, "AGO"), "1246700"); 
           ...]

You can see we’re getting closer to what we need: we can now read the data directly 
from the sequence. The only remaining irritation is that the values are clearly num-
bers, but we’re treating them just as strings. Fortunately this is easy to fix.

Listing 13.14 Reading values from the XML data (F#)

B Returns list with 
zero or one elements

Finds all dataPoint 
elements for all pages
Licensed to   <kr_wilson@hotmail.com>



374 CHAPTER 13 Asynchronous and data-driven programming
13.4.2 Formatting data using units of measure

When reading the values of many of the indicators from the XML data, we could just 
convert them to float values. That would work, because both the surface area and 
forestation percentages are numbers, but it wouldn’t tell us much about the data. The 
purpose of converting the data from untyped XML into a typed F# data structure is to 
annotate it with types that help us understand the meaning of the values. To make the 
type more specific, we can use units of measure, which we mentioned in chapter 2. 
Using this feature, we can specify that surface is measured in square kilometers and 
the area covered by forests in percentage of the total area. Let’s start by looking at a 
couple of examples that introduce units of measure.
USING UNITS OF MEASURE

Working with units of measure in F# is very easy, which is why we’ve introduced them 
as a brief digression in this chapter. We can declare a measure using the type keyword
with a special attribute. Strictly speaking, a measure isn’t a type, but we can use it as 
part of another type. Let’s start by defining two simple measures to represent hours 
and kilometers:

[<Measure>] type km
[<Measure>] type h

As you can see, we’re using the Measure attribute to specify that the type is a measure. 
This is a special attribute that the F# compiler understands. Instead of defining units 
ourselves, we could also use the standard set in the FSharp.PowerPack.dll library, but 
for now we’ll use our own declarations. Now that we have units km and h, we can create 
values that represent kilometers or hours. Listing 13.15 shows how to create values 
with units and how to write a function that calculates with them.

> let length = 9.0<km>;;   
val length : float<km> = 9.0

> length * length;;         
val it : float<km^2> = 81.0

> let distanceInTwoHours(speed:float<km/h>) =  
     speed * 2.0<h>;;
val distanceInTwoHours : float<km/h> -> float<km>  

> distanceInTwoHours(30.0<km/h>);;
val it : float<km> = 60.0

When we want to specify units of a numeric constant, we append the unit in angle 
brackets to the value B. We started by defining a value that represents a length in 
kilometers. If we write a calculation using value with units, F# automatically infers the 
units of the result, so we can see that multiplying two distances gives us an area in 
square kilometers C. When specifying units, we can use the conventional notation, so 
^ represents a power, / is used for division, and multiplication is written by juxtapos-
ing the units.

Listing 13.15 Writing calculations using units of measure (F#)

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



375Gathering information from the data
 The next example shows that we can write functions with parameters that include 
information about the units. Our sample function takes a speed and returns the dis-
tance traveled in two hours D. We want the parameter to be specified in kilometers 
per hour, so we add a type annotation that contains the unit. This is written by placing 
the unit in angle braces in the same way we do when specifying type arguments of a 
type such as list<int>. The F# compiler infers the return type for us E just as it does 
when working with ordinary types. As usual, this provides a useful clue to understand-
ing what a function does when you’re reading it. It’s also a valuable check to avoid 
making simple mistakes when writing the function—if we were trying to calculate a 
distance but ended up with a return type using a unit of time, we’d know something 
was wrong.

 In our World Bank data, we’ll use the unit km^2 to represent the total area of a 
country. So far, so good—but the second indicator that we obtained is provided as a 
percentage. How can we specify the unit of a percentage? Even though units of mea-
sure are primarily used to represent physical units, we can use them to represent per-
centages as well:

[<Measure>] type percent
let coef = 33.0<percent>

This code creates a unit for specifying that a number represents a percentage 
and then defines a constant coef, which has a value of 33 percent. Strictly speaking, 
the value in percents doesn’t have a unit, because it’s a coefficient, but defining it 
as a unit is quite useful. To demonstrate, let’s try to calculate 33 percent of a 50 
kilometer distance. Since coef represents a coefficient, we can simply multiply the 
two values:

> 50.0<km> * coef;;
val it : float<km percent> = 1650.0

This is obviously wrong. We want the result to be in kilometers, but if you look at the 
inferred type, you can see that the result is in kilometers multiplied by our new per-
cent unit. Since we’re running the code interactively, we can also see that the number 
is too high, but the great thing about units of measure is that we can spot the error 
during the type checking without actually running the program. So what went wrong? 
The problem is that a percentage value represents a coefficient multiplied by 100. To 
write the calculation correctly, we need to divide the value by 100 percent:

> 50.0<km> * coef / 100.0<percent>;;
val it : float<km> = 16.5

As you can see, this is much better. We divided the result by 100 percent, which means 
that we don’t have the percent unit in the result. F# automatically simplifies the units,
and it knows that km percent/percent is the same thing as km. This example demon-
strates a significant reason for using units of measure: just like other types, they help 
us catch a large number of errors as early as possible. 
Licensed to   <kr_wilson@hotmail.com>



376 CHAPTER 13 Asynchronous and data-driven programming
NOTE There are many other interesting aspects of units of measure that we 
haven’t covered in this introduction. For example, you can define 
derived units such as N (representing a force in newtons), which is in fact 
just kg m/s^2. It’s also possible to use units as generic type parameters in 
functions or types. For more information about units of measure, consult 
the F# online documentation and the blog of the feature’s architect, 
Andrew Kennedy (http://blogs.msdn.com/andrewkennedy).

Let’s get back to our main example and convert the data that we downloaded into a 
typed form that includes information about units. We’ll use the percent atomic unit 
for representing the portion of the area covered by forests and the km^2 unit for rep-
resenting the area.
FORMATTING THE WORLD BANK DATA

When we declared the readValues function to read the values from XML documents, 
we included a parsing function as the final parameter. This is used to convert each 
data point into a value of the appropriate type. The array we downloaded contains 
three data sets of surface areas in square kilometers and three data sets of the forest 
area percentages. Listing 13.16 shows how we can turn the raw documents into a data 
structure from which we can easily extract the important information.

let areas = 
   Seq.concat(data.[0..2])                            
      |> readValues (fun a -> float(a) * 1.0<km^2>)  
      |> Map.ofSeq                                        
let forests = 
   Seq.concat(data.[3..5])
      |> readValues (fun a -> float(a) * 1.0<percent>)
      |> Map.ofSeq

The processing pipeline first concatenates data from all pages for the first indicator B, 
converts each value from string to a number in square kilometers C, then builds a map 
from the data D. The second command processing area covered by forests is similar.

 The main part of the data processing is written using pipelining. It uses a new fea-
ture that we haven’t yet introduced to get the first three elements from the data set. 
This is called slicing, and the syntax data.[0..2] gives us a sequence containing the 
array items with indices 0 to 2 B. We concatenate the returned sequence using 
Seq.concat, so we’ll get a single sequence containing data for all the years. The next 
step in the pipeline is to read the values and convert them to the appropriate type 
using units of measure C. This turns out to be the easiest part—just a simple lambda 
expression! Note that the World Bank uses dot as a delimiter, so the number is, for 
example, 1.0. The built-in float function always uses the invariant culture, so it will 
parse the string correctly on any system.

 We use the Map.ofSeq function to build an F# map type from the data D. This 
function takes a sequence containing tuples and uses the first element as a key and 
the second element as the value. In listing 13.16, the key has a type int * string and 

Listing 13.16 Converting raw data into a typed data structure (F#)

B
C

D

Licensed to   <kr_wilson@hotmail.com>

http://blogs.msdn.com/andrewkennedy


377Gathering information from the data
contains the year and the region name. The value in the first case has a type 
float<km^2> and in the second case float<percent>. We’ve converted the data into a 
map so that we can easily look up the indicators for different years and regions.

13.4.3 Gathering statistics about regions

Our goal is to show how the forested area has changed in different regions since 1990. 
We’ll need to iterate over all the regions that we have, test whether the data is avail-
able, and find the value of the indicators we downloaded. This can be done quite eas-
ily using the maps we created, because they have the year and the region ID as the key.

 We have to be careful because some data may be missing, so we’ll filter out any 
region for which we don’t have data for all the years we’re interested in. Also, we want 
to display the total area of forests rather than the percentage, so we need a simple cal-
culation before returning the data. Even though it may sound difficult, the code isn’t 
very complicated. Listing 13.17 shows the final few commands that we need to enter to 
the F# Interactive to get the data we wanted to gather.

> let calculateForests(area:float<km^2>, forest:float<percent>) =     
     let forestArea = forest * area
     forestArea / 100.0<percent>
  ;;
val calculateForests : float<km ̂  2> * float<percent> -> float<km ̂  2>

> let years = [ 1990; 2000; 2005 ]
  let dataAvailable(key) =                    
     years |> Seq.forall (fun y ->
        (Map.contains (y, key) areas) && 
        (Map.contains (y, key) forests));;
val years : int list
val dataAvailable : string -> bool

> let getForestData(key) =            
     [| for y in years do
           yield calculateForests(areas.[y, key], forests.[y, key]) |];;
val getForestData : string -> float<km ̂  2> array

> let stats = seq {                          
     for name in regions do
            if dataAvailable(name) then
                yield name, getForestData(name) };;
val stats : seq<string * float<km ̂  2> array>

Listing 13.17 defines a couple of helper functions that work with the data we down-
loaded and defines a single value named stats that contains the final results. Thanks 
to units of measure, you can easily see what the first function B does. It calculates the 
total area of forests in square kilometers from the total area of the region and the for-
ested area in percentage.

 The second function C tests whether the data we need is available for the speci-
fied region ID for all the three years that we’re interested in. It uses the function 
Map.contains, which tests whether an F# map (specified as the second argument) 

Listing 13.17 Calculating information about forested area (F# Interactive)

B
Calculates total 

forest area

C
Is the value available 
for the specified key?

Gets value 
for each year

D

E
Finds available 
data for all regions
Licensed to   <kr_wilson@hotmail.com>



378 CHAPTER 13 Asynchronous and data-driven programming
contains the key given as the first argument. The last utility function D looks similar 
to the second one. It assumes that the data is available and extracts that data from the 
maps using the year and the region name as the key for all the monitored years. It 
then calculates the forest area from the raw data using the first function.

 Equipped with the last two functions, we can collect statistics for all the regions E. 
The returned value is a sequence of tuples containing the title of the region as the 
first element and an array as the second element. The array will always have three ele-
ments with the values for the three years that we’re monitoring.

 Once we get the data into F# Interactive, we can make observations about it, but 
it’s difficult to see any patterns by printing the data in the interactive window. To get 
the most from the data we gathered, we have to visualize them in a more user-friendly 
way, such as using Microsoft Excel. 

13.5 Visualizing data using Excel
F# gives us an almost unlimited number of ways to visualize the data. We can use the 
standard .NET libraries such as Windows Forms or WPF to create the visualization our-
selves, we can implement a sophisticated visualization using DirectX, or we can use 
one of the many existing libraries available for .NET. In this chapter, we’ll use a slightly 
different approach, presenting the data using Excel. As you’ll see, this is relatively easy 
to do, because Excel can be accessed using a .NET API. There are also many benefits to 
using Excel. Some operations are easier to do using a GUI, so once we obtain the data, 
we can perform the final processing in Excel. Also, Excel is used throughout the 
world, which makes it a useful distribution format. 

NOTE The .NET Framework 4.0 (a version that matches Visual Studio 2010) 
includes a new library for drawing charts that can be used in Windows 
Forms, server-side Web applications and also Silverlight. The library is fully 
managed, so it can be used directly from F# as any other .NET library. If you 
need to display charts in your standalone F# applications, this library is def-
initely worth a look; you’ll find examples of its uses on this book’s website. 
In this chapter we’re focusing on the interactive and explorative approach, 
so we’ll use Excel, which is a great tool for interactive programming.

The Excel API for .NET is exposed via the Primary Interop Assemblies (PIA) installed with 
Visual Studio 2008. They can be also obtained as a separate download, so if you run 
into any issues with them, you can find a link on the book’s website. Let’s take our first 
steps into the world of the Office API.

13.5.1 Writing data to Excel

The Excel interop assemblies are standard .NET assemblies that we can reference 
from F# Interactive using the #r directive. Once we do this, we can use the classes to 
run Excel as a standalone (visible or invisible) application and script it. Listing 13.18 
shows how to start Excel, create a new workbook with a single worksheet, and write 
data to the worksheet.
Licensed to   <kr_wilson@hotmail.com>



379Visualizing data using Excel
#r "office.dll"
#r "Microsoft.Office.Interop.Excel.dll"
open System 
open Microsoft.Office.Interop.Excel

let app = new ApplicationClass(Visible = true)                      
let workbook = app.Workbooks.Add(XlWBATemplate.xlWBATWorksheet)  
let worksheet = (workbook.Worksheets.[1] :?> _Worksheet)        

worksheet.Range("C2").Value2 <- "1990"                                      
worksheet.Range("C2", "E2").Value2 <- [| "1990"; "2000"; "2005" |]  

In listing 13.18, we create a new instance of the ApplicationClass B. This type comes 
from the Excel namespace and represents the application. After you run this line, a new 
Excel window should appear. The next line C creates a workbook, so after running it, 
you should see the usual Excel grid. Next we fetch an object that represents the first 
sheet from the workbook (sheets are displayed at the bottom left of the application). As 
you can see, we need to cast the object to a Worksheet class D, because the Excel API
is weakly typed in many places. Once we get the worksheet, we can start writing data to 
the grid. This can be done using the Range indexer and the Value2 property E. The type 
of this property is object, so we can use 
it in various ways. The first example 
writes a single string value to a single col-
umn, and the second one fills a range (a 
single row containing three columns) 
with values from a .NET array. You can 
see the Excel worksheet created by run-
ning the code in figure 13.1.

 So far we’ve created headers for the 
table we want to display, so the next step 
is to fill in all the remaining informa-
tion and, most importantly, the matrix containing the forested area in different years. 
Listing 13.19 converts the data into a two-dimensional array, which is also a valid data 
source for the Value2 property.

let statsArray = stats |> Array.ofSeq
let names = Array2D.init statsArray.Length 1 (fun index _ ->   
   let name, _ = statsArray.[index]
   name )                                      

let dataArray = Array2D.init statsArray.Length 3 (fun index year ->
   let _, values = statsArray.[index]
   let yearValue = values.[year]
   yearValue / 1000000.0 )                            

let endColumn = string(statsArray.Length + 2)

Listing 13.18 Starting Excel and creating worksheet (F#)

Listing 13.19 Exporting data to Excel worksheet (F#)

B
C

D

E

B
Gets names of 
regions as 2D array

Displays millions of 
square kilometers

Figure 13.1 An Excel application started from an 
F# Interactive with programmatically entered data.
Licensed to   <kr_wilson@hotmail.com>



380 CHAPTER 13 Asynchronous and data-driven programming
worksheet.Range("B3", "B" + endColumn).Value2 <- namesVert
worksheet.Range("C3", "E" + endColumn).Value2 <- tableArr  

When writing data to Excel worksheets, we can use a primitive value, an array, or a two-
dimensional array. One-dimensional arrays can be used for writing rows of data, as we 
saw in the first example, but if we want to fill a matrix or a column with data, we have 
to use a 2D array. In listing 13.19, we start by creating a 2D array that stores the names 
of the regions vertically. To do this, we create a simple array containing the names and 
then use the Array2D.init function to convert it to a 2D array B. The init function 
takes width and height of the array as the first two arguments, followed by a function 
that’s run to generate a value for every coordinate. The resulting array contains only a 
single column, so we can ignore the second coordinate in the initialization.

 The next step is to generate a 2D array with the data about the regions. We convert 
the input sequence into an array, so that we can index it when generating the 2D array 
using the Array2D.init function again. In the lambda function, which is executed for 
every array cell, we first get the information about the region, then find the value for the 
specified year and divide it by 1 million to display the output in a more readable form. 
Finally, we calculate the right ranges in the Excel worksheet (depending on the number 
of regions) and set the data using the same approach as in the previous example. 

 After running the code, the data should appear in Excel. We can work with it at the 
same time as we execute our F# script, so if you tweak the design of the table we just 
generated, you’ll see something similar to figure 13.2.

 Understanding the data is much easier now that we have it in Excel. We can take 
one additional step and create a chart with the data. You could do this by hand, but 
generating a complete Excel file that includes a chart is quite easy in F#.

Writes data 
to worksheet

Figure 13.2 An Excel table 
generated by our F# script 
showing the changes in the 
area covered by forests in 
regions all over the world 
during the last 20 years.
Licensed to   <kr_wilson@hotmail.com>



381Visualizing data using Excel
13.5.2 Displaying data in an Excel chart

To create a chart, we need to specify quite a few properties. Fortunately the Excel API
provides the ChartWizard method to make it easier. This method takes all the impor-
tant attributes of the chart as optional parameters, so we can specify only those we 
need. The F# language supports optional parameters, so the code in listing 13.20 that 
creates the chart is very straightforward.

let chartobjects = (worksheet.ChartObjects() :?> ChartObjects) 
let chartobject = chartobjects.Add(400.0, 20.0, 550.0, 350.0) 

chartobject.Chart.ChartWizard                             
   (Title = "Area covered by forests",                             
    Source = worksheet.Range("B2", "E" + endColumn),
    Gallery = XlChartType.xl3DColumn,                   
    PlotBy = XlRowCol.xlColumns,                           
    SeriesLabels = 1, CategoryLabels = 1,                        
    CategoryTitle = "", ValueTitle = "Forests (mil km^2)")

chartobject.Chart.ChartStyle <- 5                                

First we need to create a new chart in the worksheet. We do this by adding a new ele-
ment to the collection of charts. Again the weakly typed API means we have to cast it to 
the appropriate type (ChartObjects) before we can call the Add method. This method 
gives us a new chart that we can configure using the ChartWizard method B. We 
mentioned that the method takes optional parameters, so the code uses the F# syntax 
to specify them. For each parameter that we want to set, we include the name of the 
parameter and the value. Most of the parameter names are self-explanatory, but it’s 
worth noting that we specify the range including the text labels and then set Series-
Labels and CategoryLabels to 1, which tells Excel that the first row and column con-
tain data labels.

 The last line sets a ChartStyle property to specify the predefined green color 
scheme of the chart C. Note that this property is available only in Office 2007, so if 
you’re using an older version of Excel, you’ll have to remove this line and Excel will 
use the default colors. After you run the code, you should see a chart like the one in 
figure 13.3.

 The chart in Excel gives us a perfect way to understand and examine the data that 
we obtained from the World Bank. If you look at the chart carefully, you can see that 
the area covered by forests is very slightly increasing in Europe and Central Asia and 
high-income countries, but decreasing more significantly almost everywhere else in 
the world.

Listing 13.20 Generating Excel chart (F#)

B Configures 
chart using 
wizard

Uses predefined 
graphical style

C

Licensed to   <kr_wilson@hotmail.com>



382 CHAPTER 13 Asynchronous and data-driven programming
13.6 Summary
The “big picture” of this chapter was to demonstrate a typical lifecycle of explorative 
programming in F#. We also introduced some F# language and library features that are 
very important in other development processes.

 We started by obtaining data from the web. To do this, we used asynchronous work-
flows, an F# computation expression implemented in the standard F# library. Asyn-
chronous workflows can be used for efficiently implementing I/O and other time-
consuming operations without blocking the caller thread and wasting resources. Once 
we downloaded the data, we used the LINQ to XML library to explore its structure 
before parsing it and converting it into a typed F# representation. All of this was done 
in an interactive fashion, often alternating between writing a couple of lines of code to 
try something with one piece of data, and then writing a function to apply the same 
logic to all the information we’d downloaded.

 We used many advanced features such as sequence expressions when processing 
collections, and we also used units of measure to specify the precise nature of the 
data. Finally, we looked at how to control Excel from the F# Interactive shell. This 
shows a general principle that can be used when working with any Office application 
or with other applications that expose COM interfaces.

 We’ll return to F# asynchronous workflows when we talk about reactive program-
ming in chapter 16. The next chapter is on closely related topic, and for many people 
it’s the most convincing reason for considering functional programming. We’re going 
to look at parallelizing functional programs to get the most out of multicore processors. 

Figure 13.3 A chart generated from F# showing the changes in the forested area
Licensed to   <kr_wilson@hotmail.com>



Writing parallel 
 functional programs
We’ve already seen many arguments in favor of functional programming. One rea-
son it’s becoming increasingly important these days is parallelism. Writing code
that scales to a large number of cores is much easier in the functional style com-
pared to using the typical imperative approach. 

 The two concepts from the functional world that are essential for parallel com-
puting are the declarative programming style and working with immutable data 
structures. These two are closely related. The code becomes more declarative when 
using immutable data, because the code is more concerned with the expected 
result of the computation than with the details of copying and changing data. Both 
concepts are important in different ways when it comes to parallelization. 

This chapter covers
■ Using immutable data to simplify parallelization
■ Working with the Task Parallel library
■ Expressing parallelism declaratively using LINQ
■ Implementing overloaded operators
383

Licensed to   <kr_wilson@hotmail.com>



384 CHAPTER 14 Writing parallel functional programs
 The declarative style allows most code that works with collections to be parallelized 
very simply, because the declarative style doesn’t specify how the code runs. This means 
that we can replace the sequential implementation by a parallel implementation with 
minimal effort. Immutable data structures and side effect-free functions are important, 
because when code doesn’t contain side effects, we can easily identify which pieces of 
code don’t depend on each other. Once we do that, we can use task-based parallelism 
to run the pieces in parallel. Both C# and F# allow us to use mutable data types as well. 
In chapter 10, you learned that we can hide this mutable state and make the overall pro-
gram functional. In some cases, such as when processing an array in some way, these hid-
den imperative islands of code can be easily parallelized too. 

 As you can see, there’s a lot to explore. We’ll begin with a brief overview to demon-
strate all these techniques and explain when each is useful. After this introduction, 
we’ll look at two more complex sample applications that show how parallel functional 
programming works on a larger scale. There isn’t room to show all the code for two 
complete real-world examples in a single chapter, so we’ll omit some of the less inter-
esting details in the book. We’ll focus particularly on the architectural aspects and 
areas directly related to parallelism. You can obtain the complete source code, which 
fills in the missing pieces, from the book’s website.

14.1 Understanding different parallelization techniques
In this section, we’ll look at three techniques and use a simple example to demon-
strate each. We’re going to use Parallel Extensions to .NET, which is a library for paral-
lel programming. It’s part of the standard .NET Framework 4.0, but unfortunately isn’t 
available for earlier versions of .NET. If you want to experiment with Parallel Exten-
sions using Visual Studio 2008, you can still download a CTP version, but there are a 
few naming changes.

Parallel Extensions to .NET
The library consists of two key parts that we’re going to use in this chapter. 

■ Task Parallel Library (TPL) includes underlying constructs that can execute tasks
(primitive units of work) in parallel. Another component of TPL allows creating of 
tasks for common computations such as for loops. 

■ Parallel LINQ (PLINQ), which can be used for writing data parallel code. This is 
code that processes a large amount of data using the same algorithm.

The underlying technology used to execute tasks in parallel is implemented in fully 
managed code and uses advanced techniques originating from Microsoft Research
(MSR). It uses dynamic work distribution, which means that tasks are divided between 
worker threads depending on the availability of the threads. Once a thread completes 
all its own assigned tasks, it can start “stealing” tasks from other threads, so the 
work will be evenly distributed among all the available processors or cores. The tasks 
are stored in queues for each worker thread, which also minimizes the needed syn-
chronization and locking in the implementation.
Licensed to   <kr_wilson@hotmail.com>



385Understanding different parallelization techniques
Let’s start with a specific technique we mentioned in the introduction: parallelizing 
imperative code that works with arrays. This isn’t relevant for pure functional lan-
guages that don’t allow any side effects, but as we saw in chapter 10, working with 
arrays in a functional style is a useful technique in C# and F#.

14.1.1 Parallelizing islands of imperative code

The most common construct in imperative programming that can easily be parallel-
ized is the for loop. When the iterations of the loop are independent, we can execute 
them on separate threads. By independent, we mean that no iteration can rely on a 
value computed by any earlier iterations.

 For example, when summing the elements in an array, we need the sum of all the 
previous elements to calculate the next one. (This can be still parallelized, but not 
quite so simply.) Recall the function for “blurring” an array, which we implemented in 
chapter 10. This is a good candidate for parallelization: even though each iteration 
uses multiple elements from the input array, it doesn’t rely on anything in the output
array. Listing 14.1 shows a simple for loop based on the earlier example, in both C# 
and F#.  

Even though it is imperative code, it can still be part of a pure functional program. 
The inp array is an input that isn’t modified anywhere in our code and res is the out-
put array, which shouldn’t be modified after it’s calculated by the loop.

 To parallelize the loop, we can use the Parallel.For method. The class is available 
only on .NET 4.0 and lives in the System.Threading.Tasks namespace. The Parallel. 
For method takes an Action<int> delegate argument, which we can supply using a 
lambda function. Using the method directly in F# feels a bit heavyweight, so we’ll 
define a simple function that makes the code more succinct:

let pfor nfrom nto f = 
   Parallel.For(nfrom, nto + 1, Action<_>(f)) |> ignore

This code wraps the function f (which has a type int -> unit) in a delegate type and 
runs the parallel for loop. The method returns information on whether the loop 
completed successfully, which we don’t need, so we ignore it. Note that we also add 1 
to the upper bound, because the upper bound is inclusive in the F# for loop but 
exclusive in C# for loops and the Parallel.For method. Listing 14.2 shows the paral-
lelized versions of the previous example.  

Listing 14.1 for loop for calculating blurred array (C# and F#)

C# F#

for(int i=1; i<inp.Length-1; i++){ for i in 1 .. inp.Length - 2 do
   var sum = inp[i-1] +    let sum = inp.[i-1] +
       inp[i] + inp[i+1];              inp.[i] + inp.[i+1]
   res[i] = sum / 3;    res.[i] <- sum / 3 
}

Licensed to   <kr_wilson@hotmail.com>



386 CHAPTER 14 Writing parallel functional programs
As you can see, this is nearly as simple as the original sequential version. Again, this 
shows the power of functional constructs: thanks to lambda functions, the only thing 
you have to do when you want to convert a sequential for loop into a parallel one is to 
use the Parallel.For method (or pfor function in F#) instead of the built-in lan-
guage construct.

NOTE Aside from the For method, the Parallel class also contains ForEach, 
which can be used to parallelize the foreach construct in C# or the for … 
in … do construct in F#. Both methods have overloads available to let you 
customize the iteration. There are overloads allowing you to change the 
step used to increment the index in the For method, or stop the parallel 
execution (similar to break in a C# loop). If you ever feel you need a lit-
tle more control, consult the documentation to see if one of these over-
loads can help you.

The Parallel.For method is particularly useful when working with arrays and other 
imperative data structures. We’ll use it in one of the larger sample applications later 
in this chapter (section 14.2.5), where we’ll once again work with arrays in a func-
tional way. First, let’s finish our overview. The other two techniques we’ll look at are 
purely functional.

14.1.2 Declarative data parallelism

The key idea behind the declarative style of programming is that the code doesn’t 
specify how it should be executed. Execution is provided by a minimal number of 
primitives such as select and where in LINQ or map and filter in F#, and these prim-
itives can behave in a sophisticated way.

 In chapter 1, we demonstrated how you can change an ordinary LINQ query into 
a query that runs in parallel using PLINQ. We showed this using C# query expres-
sions, but to understand how it works, it’s better to examine the translated version 
using method calls and lambda functions. We’ll use a trivial example here, but we’ll 
look at something more complicated later. Listing 14.3 counts the number of primes
between 1 million and 2 million. It shows the C# code using method calls, and also 
an F# version.

 
 
   

Listing 14.2 Parallelized for loop (C# and F#)

C# F#

Parallel.For(1,inp.Length-1,i => { pfor 1 (inp.Length-2) (fun i ->
   var sum = inp[i-1] +    let sum = inp.[i-1] +
      inp[i] + inp[i+1];              inp.[i] + inp.[i+1]
   res[i] = sum / 3;    res.[i] <- sum / 3

}); )
Licensed to   <kr_wilson@hotmail.com>



387Understanding different parallelization techniques
// Count the primes (C# version)
var nums = Enumerable.Range(1000000, 2000000);
var primeCount = nums.Where(IsPrime).Count();  

// Count the primes (F# version)
let nums = [1000000 .. 3000000]
let primeCount = nums |> List.filter isPrime |> List.length  

The listing starts with typical imperative and functional solutions for testing whether a 
number is a prime. We implemented them differently in order to use the most idiom-
atic code for each language. As you surely know already, a number is prime if it can be 
divided without a remainder only by 1 and itself. We test divisibility only by numbers 
from 2 to square root of the given number, because this is sufficient.

 In C#, the code is implemented using an imperative for loop. In F#, we use a 
recursive function; thanks to tail recursion, this is an efficient implementation. Also 
note that the F# version is using a keyword that we haven’t seen so far: the elif key-
word, which is simply a shortcut for else followed by another if expression.

 The second part of the listing is more interesting. To count the number of primes 
in the given range, we select only numbers that are primes and then count them. In 
C# B, we generate a range of integers (nums) of type IEnumerable<int>. LINQ pro-
vides extension methods Where and Count for this type, so we use these to calculate 
the result. In F# C, we specify the functions explicitly. We’re working with a list, so we 
implemented the code using functions from the List module.

 Now let’s modify the code to run in parallel. In C# this means adding a call to the 
AsParallel extension method. In F#, we could access LINQ methods directly, but a 
more idiomatic way is to use the pipelining operator. To do this, we’ll use a few func-
tions that wrap calls to the .NET PLINQ classes similarly to the pfor function from the 
previous section. These functions are available in a module called PSeq.  

Listing 14.3 Counting the number of primes (C# and F#)

C# F#

bool IsPrime(int n) { let isPrime(n) =
   if (n <= 1) return false;    let top = int(sqrt(float(n)))
   int top = (int)Math.Sqrt(n);    let rec isPrimeUtil(i) =
   for (int i = 2; i <= top; i++)       if i > top then true

      if (n%i == 0) return false;       elif n % i = 0 then false
   return true;       else isPrimeUtil(i + 1)
}    (n > 1) && isPrimeUtil(2)

B

C

Getting parallel extensions for F#
Before we’ll continue, you’ll need to obtain a file with a couple of extensions that make 
parallel programming in F# easy. The file contains PSeq module with a collection of 
simple wrappers and also pseq computation builder that we’ll use shortly. A file like 
this may eventually become part of the F# library or F# PowerPack, so we won’t show 
how to implement it. 
Licensed to   <kr_wilson@hotmail.com>



388 CHAPTER 14 Writing parallel functional programs
Listing 14.4 shows the parallelized queries in both C# and F#. The “prime testing” 
function hasn’t been repeated, as it doesn’t need to change.   

The F# sample is consistent with all other collection processing examples we’ve seen 
already. Functions for parallel data processing follow the same pattern as functions for 
working with lists and arrays. This means that we first have to convert the data to a parallel 
data structure using PSeq.ofSeq (which is just like Array.ofSeq), and then we can use 
various processing functions. The parallel data structure is another type of sequence, so 
if we needed to, we could convert it to a functional list using the List.ofSeq function.

 The C# version requires more careful examination—ironically, because it’s changed 
less than the F# version. In chapter 12 we saw how to implement custom LINQ query 
operators, and PLINQ uses a similar technique. The return type of the AsParallel
method is ParallelQuery<T>. When the C# compiler searches for an appropriate Where
method to call, it finds an extension method called Where that takes ParallelQuery<T>
as its first argument, and it prefers this one to the more general method that takes IEnu-
merable<T>. The parallel Where method returns ParallelQuery<T> again, so the whole 
chain uses the methods provided by PLINQ.   

Listing 14.4 Counting primes in parallel (C# and F#)

C# F#

var primeCount = let primeCount =
  nums.AsParallel()   nums |> PSeq.ofSeq
      .Where(IsPrime)        |> PSeq.filter isPrime
       .Count();         |> PSeq.length

(continued)
For now, you can download functions that we’ll need from the book’s website. To ref-
erence the file from the F# script, you can use the #load directive and specify the 
path of the fs file.

Measuring the speedup in F# Interactive
In chapter 10 we measured performance when discussing functions for working with 
lists. To quickly compare the parallel and sequential version of our samples, we can 
use F# Interactive and the #time directive. Once we turn timing on, we can select one 
of the versions and run it by pressing Alt+Enter:

> #time;;
> nums |> List.filter isPrime |> List.length;;  
Real: 00:00:01.606, CPU: 00:00:01.606
val it : int = 70501

> nums |> PSeq.ofSeq |> PSeq.filter isPrime
         |> PSeq.length;;                              
val it : int = 70501
Real: 00:00:00.875, CPU: 00:00:01.700

Uses List module 
functions

Uses PSeq 
module functions
Licensed to   <kr_wilson@hotmail.com>



389Understanding different parallelization techniques
The last topic we’ll look at in this introduction to declarative data parallelism is how to 
simplify the F# syntax. In chapter 12, we learned how to write sequence expressions to 
perform computations with numeric collections. Creating a computation expression
to work with sequences in parallel is the natural next step.
PARALLEL SEQUENCE EXPRESSIONS IN F#

The nice thing about the C# version of the code was that switching between the 
sequential and parallel versions was a matter of adding or removing the AsParallel
call. In the F# example, we explicitly used functions like List.xyz or PSeq.xyz, so the 
transition was less smooth. 

 If we rewrite the code using sequence expressions, we can parallelize a large part 
of the code by touching the keyboard only once. You can see both of the versions in 
listing 14.5.  

The parallel sequence expression is denoted by the pseq value, which is available in 
the F# parallel extensions file. It changes the meaning of the for operation inside the 
expression from a sequential version to a parallel one. The syntax is more flexible 
than C# query expressions, because you can return multiple values using the yield
and yield! keywords, but the performance may be slightly lower. The reason is that 
the F# compiler treats the expression differently than the C# compiler. Parallel 
sequence expressions are implemented using computation expressions, and as you 
learned in chapter 12, the translation of sequence processing code relies on a single 
primitive that corresponds to a for loop in general. This tells the framework less infor-
mation about the algorithm than when we explicitly use PSeq.filter and PSeq.map, 
so it can’t be as clever when parallelizing the code. Interestingly, implementing the 
pseq construct for F# is easier than you might think.

Listing 14.5 Parallelizing sequence expressions (F#)

// Sequence expression // Parallel sequence expression
seq { pseq {
   for n in nums do    for n in nums do
      if (isPrime n) then       if (isPrime n) then
         yield n }          yield n }
   |> Seq.length    |> PSeq.length

(continued)
The Real time is the elapsed time of the operation, and as you can see, running the 
operation in parallel gives us a speedup of about 180 to 185 percent on a dual-core 
machine. This is impressive when you bear in mind that the maximum theoretical 
speedup is 200 percent (on a dual-core machine we've used for testing), but of 
course, we’ve been testing it using only a toy example. The CPU time shows the total 
time spent executing the operation on all cores, which is why it’s higher than the ac-
tual time in the second case.

Unfortunately, measuring the performance in C# isn’t as easy, because we can’t use 
any interactive tools. We’ll write some utility functions to measure performance of the 
compiled code later in this chapter. 
Licensed to   <kr_wilson@hotmail.com>



390 CHAPTER 14 Writing parallel functional programs
PARALLELISM USING LINQ AND COMPUTATION EXPRESSIONS

In chapter 12 we implemented our own set of LINQ operators and learned how to 
write computation expressions in F#. These two concepts are based on the same prin-
ciples: we implemented a set of basic operators and the LINQ query or F# computa-
tion expression is then executed using these operators.

 The PLINQ library implements virtually all operators supported by the C# query 
syntax, including Select, SelectMany, Where, OrderBy, and many others. So, what 
members have to be implemented in the pseq expression?

 In chapter 12, we saw a couple of primitives that we can provide when implement-
ing computation expression, most importantly the Bind member, which corresponds 
to let! and the Return member that’s used when we write return. We also talked 
about sequence expressions and the for construct. We’ve seen that a sequence expres-
sion that includes for can be translated into a call to the flattening projection opera-
tion. If we want to support for inside computation expressions, we can implement a 
member named For. The implementation for parallel sequence expression can use 
the SelectMany operator from the Parallel LINQ library, because this operator imple-
ments a flattening projection in LINQ. 

 There are other primitives that we haven’t seen and that we’ll need to use when 
implementing parallel sequence expressions, but they are quite simple. First of all, 
we’ll need to support yield, which generates a value. This can be done by adding 
Yield, which will return a sequence containing the single element that it gets as an 
argument. Since you can have multiple yields in the expression, we’ll also need the 
Combine member, which will take two sequences and concatenate them into one. 
Finally, the Zero member (which allows us to write an if condition without an else
branch) will return an empty sequence. For detailed information about the F# imple-
mentation of the pseq computation expression, read more on the book’s website.

 Parallelizing declarative code that works with large amounts of data is perhaps the 
most appealing aspect of functional programming, because it’s very easy and gives 
great results for large data sets. However, often we need to parallelize more compli-
cated computations. In functional programming, these would be often written using 
immutable data structures and recursion, so we’ll look at a more general technique in 
the next section.

14.1.3 Task-based parallelism

In chapter 11 we saw that you can easily track dependencies between function calls in 
a functional program. The only thing that a function or a block of code can do is take 
values as arguments and produce a result. If we want to find out whether one call 
depends on some other call, we can check whether it uses the output of the first call as 
part of its input. This is possible thanks to the use of immutable data structures. If the 
first call could modify shared state and the second call relied on this change, we 
couldn’t change the order of these calls, even though this wouldn’t be obvious in the 
calling code. The fact that we can see dependencies between blocks of code is vital for 
Licensed to   <kr_wilson@hotmail.com>



391Understanding different parallelization techniques
task-based parallelism. We’ve seen data-based parallelism, which performs the same task 
on different inputs in parallel; task-based parallelism performs (possibly different) 
tasks concurrently.

 Listing 14.6 shows an F# script that recursively processes an immutable data struc-
ture. We’ll look at a simple example here but show a more complicated scenario in 
section 14.3.5. The code uses the binary tree type we designed in chapter 10 and 
implements a function to count the prime numbers in the tree. This isn’t the most 
typical example for task-based parallelism, because we’ll be creating two similar tasks, 
but it nicely introduces the technique that we can use.

> type IntTree =                        
      | Leaf of int
      | Node of IntTree * IntTree;;
type IntTree = (...)

> let rnd = new Random()
   let rec tree(depth) =                   
     if depth = 0 then Leaf(rnd.Next())
     else Node(tree(depth - 1), tree(depth - 1));;
val rnd : Random
val tree : int -> IntTree

> let rec count(tree) =  
    match tree with
    | Leaf(n) when isPrime(n) -> 1
    | Leaf(_) -> 0
    | Node(left, right) -> count(left) + count(right);;
val count : IntTree -> int

Listing 14.6 starts by declaring a binary tree data structure that can store values of type 
int. Then we implement a function B that generates a tree containing randomly 
generated numbers. The function is recursive and takes the required depth of the 
tree as an argument. When we generate a node that’s composed of two subtrees, the 
function recursively generates subtrees with a depth decremented by 1.

 We implement a count function C which uses pattern matching to handle three 
cases: 

■ For a leaf node with a prime value, it returns 1. 
■ For a leaf node with a nonprime value, it returns 0. 
■ For a node with two subtrees, it recursively counts the primes in these subtrees. 

Note that the tasks of counting primes in the left and the right subtree are indepen-
dent. In the next section, we’ll see how to run these calls in parallel.
TASK-BASED PARALLELISM IN F#

In the previous section, we were using the PLINQ component from the Parallel 
Extensions to .NET. To implement task-based parallelism, we’ll use classes from 
the TPL. This is a lower-level library that allows us to create tasks that will be 

Listing 14.6 Counting primes in a binary tree (F# Interactive)

Represents 
binary tree

B

C

Licensed to   <kr_wilson@hotmail.com>



392 CHAPTER 14 Writing parallel functional programs
executed in parallel by the .NET runtime. In this section, we’ll work with a generic 
class, Task<T>. 

 As you’ll see, working with this class in F# is quite easy. When creating tasks, we use 
the TaskFactory<T> class, which has a method called StartNew; to get the instance 
of the factory, we can use the static property Task.Factory. Now, let’s look how we 
can use tasks to parallelize the count function from listing 14.6. The most interesting 
part of listing 14.7 is the case when a tree is a node with two subtrees that can be pro-
cessed recursively.

let pcount(tree) =
    let rec pcountDepth(tree, depth) =  
       match tree with
       | _ when depth >= 5 -> count(tree)  
       | Leaf(n) when isPrime(n) -> 1
       | Leaf(_) -> 0
       | Node(left, right) ->
          let countLeft = Task.Factory.StartNew(fun() ->
             pcountDepth(left, depth + 1))                       
          let countRight = pcountDepth(right, depth + 1)  
          countLeft.Result + countRight                   
    pcountDepth(tree, 0)

We need to store an additional argument during the recursion, so we’ve created a 
local function called pcountDepth B. The additional argument (named depth) speci-
fies the depth within the tree that we’re currently processing. This allows us to use the 
nonparallel version of the function (count) after we’ve created a number of tasks that 
run in parallel. If we created a separate task for every tree node, the overhead of creat-
ing new tasks would exceed the benefit we get from running the computations in par-
allel. Creating thousands of tasks on a dual-core machine isn’t a good idea. The 
overhead isn’t as bad as creating an extra thread for each task, but it’s still nonzero.

 The depth argument is increased in every recursive call. Once it exceeds a thresh-
old, we process the rest of the tree using the sequential algorithm. In listing 14.7, we 
test this with pattern matching C and the threshold is set to 5 (which means that we’ll 
create roughly 31 tasks).

 When we process a nonleaf tree node, we create a value of type Task<int> and give 
it a function that processes the left subtree D. The Task type represents a computa-
tion that will start executing in parallel when it’s created and will give us a result when 
we need it at some point in the future. It’s worth noting that we don’t create a task for 
the other subtree E. If we did that, the caller thread would have to wait to collect 
both results and wouldn’t do any useful work. Instead we immediately start recursively 
processing the second subtree. Once we finish the recursive call, we need to sum the 
values from both subtrees. To get the value computed by the task, we can use the 
Result property F. If the task hasn’t completed, the call will block until the value is 
available. The execution pattern can be tricky to understand, but figure 14.1 shows it 
in a graphical way.

Listing 14.7 Parallel processing of a binary tree (F#)

B

C

D

E
F

Licensed to   <kr_wilson@hotmail.com>



393Understanding different parallelization techniques
9 2 4 7 3 8 5 7

Task 3

Task 1

Task 2

Figure 14.1 In the root node, we create 
Task 1 to process the left subtree and 
immediately start processing the right 
subtree. This is repeated for both subtrees, 
and two more tasks are created.

 Just like with the data parallelization example 
in section 14.1.2, we’re interested in the perfor-
mance gains we get from the parallelization of 
tasks. Again we can measure the speedup easily 
using #time in F# Interactive:

> let t = tree(16);;
> count(t);;
Real: 00:00:00.591, CPU: 00:00:00.561

> pcount(t);;
Real: 00:00:00.386, CPU: 00:00:00.592

As you can see, the statistics look good. Like our previous example, the speedup is 
between 180 and 185 percent. One of the reasons we get such good results is that the 
tree was balanced; it had the same depth for all leaf nodes. If we didn’t know in 
advance whether that was the case, it would have been wise to generate more tasks to 
make sure that the work would be evenly distributed among processors. In our exam-
ple, we’d do that by increasing the threshold.

 So far we’ve only shown code for task-based parallelism in F#, because implement-
ing the binary tree is easier in F#, but of course it’s feasible in C# too. Rather than 
showing all of the code here, we’ll look at the key parts of the C# version. The full 
code is available on the book’s website.
TASK-BASED PARALLELISM IN C#

In C#, we’ll first need to implement classes that represent the binary tree. We’ve 
implemented an IntTree class with two methods that allow us to test whether the tree 
is a leaf or a node:

bool TryLeaf(out int value);
bool TryNode(out IntTree left, out IntTree right);

These methods return true if the tree is a leaf or a node, respectively. In that case, 
the method also returns details about the leaf or the node using out parameters. 
Listing 14.8 shows how to implement sequential and parallel versions of the tree-
processing code in C#.

static int Count(IntTree tree) {  
   int value;
   IntTree left, right;

   if (tree.TryLeaf(out value)) return IsPrime(value) ? 1 : 0;  
   else if (tree.TryNode(out left, out right) 
      return Count(left) + Count(right);   
   throw new Exception();
}

static int CountParallel(IntTree tree, int depth) {  
   int value;
   IntTree left, right;

Listing 14.8 Sequential and parallel tree processing using tasks (C#)

Sequential version

B

C

Parallel 
version

D

Licensed to   <kr_wilson@hotmail.com>



394 CHAPTER 14 Writing parallel functional programs
   if (depth >=5) return Count(tree);                                
   if (tree.TryLeaf(out value)) return IsPrime(value) ? 1 : 0;
   else if (tree.TryNode(out left, out right)) {
      var countLeft = Task.Factory.StartNew(() =>
         CountParallel(left, depth + 1));              
      var countRight = CountParallel(right, depth + 1);  
      return countLeft.Result + countRight;           
   } 
   throw new Exception();
}

For a node, the sequential version recursively processes the left and the right subtree C. 
When processing a leaf, it tests whether the number is prime and returns 1 or 0 B. The 
tree is always a node or a leaf, so the last line of the method should never be reached.

 In the parallel version, we have an additional argument that represents the depth D. 
When the depth exceeds the threshold, we calculate the result using the sequential 
Count method E.

 When processing the node in parallel, we create a task to process the left subtree F
and process the right subtree immediately G. The program waits for both operations 
to finish and adds the results H. 

 This is almost a literal translation of the F# code. The Task<T> type from the System. 
Threading.Tasks namespace can be used from both F# and C# in a similar fashion. The 
only important thing is that the computation that’s performed by the task shouldn’t 
have (or rely on) any side effects. The Task<T> type is surprisingly similar to the Lazy<T>
type that we implemented in chapter 11.

In this section, we looked at the last of the three techniques for parallelizing func-
tional programs that we’re discussing in this chapter. Task-based parallelism is particu-
larly useful when we’re recursively processing large immutable data structures. This 
kind of computation is common in functional programming, so task-based parallelism 
is a great addition to our toolset, along with declarative data processing.

E

F

G
H

Tasks and lazy values
When we discussed lazy values in chapter 11, we highlighted the fact that we can 
use them when we don’t need to specify when the value should be executed. This is 
the case for tasks as well. Both evaluate the function exactly once. A lazy value eval-
uates the result when it’s needed for the first time, whereas a future value performs 
the computation when a worker thread becomes available.

Another way to see the similarity between Task<T> and Lazy<T> is to look at the op-
erations that we can do with them. When constructing a task or lazy value, we create 
them from a function that calculates the value. The F# type signature for this would 
be (unit -> 'a) -> T<'a>, where T is either Lazy or Task. The second operation 
is to access the value. This simply takes a lazy or future value and gives us the result 
of the computation, so the type signature is T<'a> -> 'a.
Licensed to   <kr_wilson@hotmail.com>



395Running graphical effects in parallel
 Now we’re going to return in more depth to our first topic: parallelizing impera-
tive code that’s hidden from the outside world to keep the program functional. We’ll 
demonstrate this using a larger application that applies graphical filters to images.

14.2 Running graphical effects in parallel
To demonstrate the first technique, we’ll develop an application that needs to process 
large arrays in parallel. One of the simplest examples of large arrays is image data rep-
resented as a two-dimensional array of colors. We used the same example in chapter 8 
when we discussed behavior-centric applications, but this time we’ll be focusing on dif-
ferent aspects.

 The user will be able to open an image, select one of the filters from a list, and 
apply it to the image. First we’ll develop a few filters, then work out how to run a single 
effect on different parts of the image in parallel.

14.2.1 Calculating with colors in F#

To implement graphical effects such as blurring or grayscaling, we need to perform 
calculations with colors. We can do this by working with the standard Color type in 
System.Drawing, but we’d have to treat the red, green, and blue components sepa-
rately, which isn’t always convenient. 

 There’s a more natural way to perform these calculations in both F# and C#. We 
can use operator overloading and implement our own color type. When we blur the 
image later, we’ll be able to simply add colors together and divide the resulting color 
by the number of pixels. You probably already know how to do this in C#, but you can 
find an implementation in the downloadable source code at the book’s website. List-
ing 14.9 shows the F# version.

[<Struct>]                                      
type SimpleColor(r:int, g:int, b:int) = 
   member x.R = r
   member x.G = g
   member x.B = b
   member x.ClipColor() =            
      let check(c) = min 255 (max 0 c)
      SimpleColor(check(r), check(g), check(b))
   static member (+) (c1:SimpleColor, c2:SimpleColor) =  
      SimpleColor(c1.R + c2.R, c1.G + c2.G, c1.B + c2.B)
   static member (*) (c1:SimpleColor, n) =                
      SimpleColor(c1.R * n, c1.G * n, c1.B * n)
   static member DivideByInt (c1:SimpleColor, n) =  
      SimpleColor(c1.R / n, c1.G / n, c1.B / n)
   static member Zero = SimpleColor(0, 0, 0)  

The type is annotated using a .NET attribute named Struct B. This is a special attri-
bute that instructs the F# compiler to compile the type as a value type; it corresponds 
to the C# struct keyword. In this example, it’s important to use the value type, 

Listing 14.9 Implementing color type with operators (F#)

B

C

D

E

F

G

Licensed to   <kr_wilson@hotmail.com>



396 CHAPTER 14 Writing parallel functional programs
because we’ll create an array of these values and allocating a new object on the heap
for every pixel would be extremely inefficient.

 The type provides a constructor that takes red, green and blue components of the 
color and exposes them via members. Note that when declaring value types, we have to 
explicitly provide types of all parameters. The parameters specify fields of the type and 
define the structure of value types, so it is useful to see them. The type then provides a 
member that clips the values of components if they are less than 0 or exceed 255 C. This 
can be used for creating valid color values with all components in range 0-255. Next, the 
type provides overloaded operators for component-wise addition of colors D and for 
multiplying components by an integer E.

 Just like in C#, overloaded operators are implemented as static members of the type. 
We’ve already seen another way to implement operators in F# (in chapter 6), where we 
declared them like functions using let bindings. Overloaded operators are more suit-
able if the operator is an intrinsic part of the type. The pipelining operator (|>) doesn’t 
logically belong to any type, whereas our operators are specific to SimpleColor.

 Some F# library functions can work with any types that provide basic operators and 
members. That’s also the reason why we provided the member Zero, which returns a 
black color G. When a type has the plus operator and the Zero member, it should be 
true that clr = clr + T.Zero for any clr. We can see that this is true for our type. The 
DivideByInt member is another name expected by some F# library functions, as we’ll 
see later. It performs division of the color value of an integer F. We could provide this 
functionality as the / operator, but it’s more common for the / operator to have the 
same types of operands, so we’d use it if we wanted to implement division that takes 
two colors as its arguments.

 Another important aspect of the type is that it’s immutable. None of the opera-
tions modify the existing value; instead they return a new color (even the instance 
member ClipColor). Even if you’re not programming in a functional style, this is 
good practice when you write your own value types. Mutable value types can cause 
headaches in all kinds of subtle ways.

 Now that we have a type to represent colors, let’s see how to represent graphical fil-
ters and how to run them. We won’t parallelize the operation yet—it’s generally worth 
writing code that works correctly when run sequentially before trying to parallelize it, 
while bearing parallelization in mind.

14.2.2 Implementing and running color filters

First we’ll look at one special type of effect: color filters. Later, we’ll extend the appli-
cation to work with any effect, implementing blurring as an example. A color filter 
only changes the coloration of the image, so it’s simpler. The filter calculates a new 
color for each pixel without accessing other parts of the image. As we saw in chapter 8, 
this is a behavior that’s naturally represented as a function.

 Filters for adjusting colors can be represented as a function that takes the original 
color and returns a new color. The F# type signature would be SimpleColor -> Sim-
pleColor. In C# we can represent the same thing using the Func delegate. The code 
Licensed to   <kr_wilson@hotmail.com>



397Running graphical effects in parallel
that runs the filter will apply this function to every pixel of the image. When we pro-
cess the bitmap, we’ll represent it as a 2D array.

The implementation of the filters themselves will be similar in C# and F#, but the 
code to execute the filter sequentially will be different. The F# library includes higher-
order functions for working with 2D arrays, but .NET doesn’t, so we’ll need to imple-
ment those first. We won’t make the code fully general as the functions in the F# 
Array2D module. Let’s start by implementing a couple of filters in C#.
CREATING AND APPLYING COLOR FILTERS IN C#

Even though we’re going to represent color filters using the Func delegate, we’ll 
implement them as ordinary methods that we can convert to delegates when we need 
to, such as to store them in a collection of filters. Listing 14.10 shows two simple color 
filters. The first converts the color to grayscale and the second lightens the image.

class Filters {
   public static SimpleColor Grayscale(SimpleColor clr) {
      var c = (clr.R*11 + clr.G*59 + clr.B*30) / 100;         
      return new SimpleColor(c, c, c);                              
   }

   public static SimpleColor Lighten(SimpleColor clr) {
      return (clr * 2).ClipColor();                           
   }
}

To calculate the grayscale color, we use a weighted average B because the human eye 
is more sensitive to green light than to red or blue. The implementation of the second 
filter is even simpler, but this time it uses the overloaded operators of the Simple-
Color type. It uses component-wise multiplication to multiply the color by 2. This may 

Listing 14.10 Grayscale and lighten filters (C#)

Converting bitmaps to arrays
The .NET representation for images is the Bitmap class from the System.Drawing
namespace. This class allows us to access pixels using GetPixel and SetPixel, 
but these methods are inefficient when you need to access lots of pixels—they’re the 
graphical equivalent of reopening a file each time you want to read a byte of data. 
That’s why we’re going to represent the bitmap as a 2D array instead.

We still need to convert the bitmap to an array and back. This can be done efficiently 
using the LockBits method. This gives us a location in unmanaged memory that we 
can address directly. Writing and reading to the memory can then be done using the 
.NET Marshal class. In our application, we need two functions to do the conversion. 
These functions are implemented in the BitmapUtils module and are called 
ToArray2D and ToBitmap. While they’re of some interest in themselves, they’re not 
directly relevant to the topic of parallelization. You can find the full implementation in 
the online source code at this book’s website.

B

C

Licensed to   <kr_wilson@hotmail.com>



398 CHAPTER 14 Writing parallel functional programs
create colors with components outside the normal range of 0–255, so we use the 
ClipColor method C to limit each component appropriately.

 Now that we have our filter methods, let’s apply them to the 2D array representa-
tion of an image. Listing 14.11 does this by implementing an extension method on 
the array type itself. At the moment we’re still performing all the computation in a sin-
gle thread.

public static SimpleColor[,] RunFilter
      (this SimpleColor[,] arr, Func<SimpleColor, SimpleColor> f) {
   int height = arr.GetLength(0), width = arr.GetLength(1);
   var result = new SimpleColor[width, height];               
   for(int y = 0; y < height; y++)                
      for(int x = 0; x < width; x++)                
         result[y, x] = f(arr[y, x]);             
   return result;
}

The RunFilter method first creates a new array that will be returned as a result B. 
We’re writing the application in a functional way, so the method won’t modify the 
array given as the input. In the body of the method, we imperatively iterate over all the 
pixels in the array and apply the color filter function to every pixel C. Note that we 
specify Y as the first coordinate of the array. This can make some operations on images 
more efficient, because a single horizontal scan line in this setting is just a block 
of memory.

 Given our earlier experience with Parallel.For you can probably already see how 
to parallelize this code. Before we get onto that, we’ll finish up the single-threaded 
version by looking at the F# code.
CREATING AND APPLYING COLOR FILTERS IN F#

In chapter 10, when we wanted to apply a function to all elements of an array and col-
lect the results in a new array, we used the Array.map function. This is exactly what 
our method RunFilter from listing 14.11 did, with the exception that it worked on 2D 
arrays. It may not surprise you that the F# library contains a module Array2D for work-
ing with 2D arrays, which is similar to the one-dimensional Array module. This mod-
ule also contains a map function, which makes the F# implementation of runFilter
trivial. You can see it together with the two color filters in listing 14.12.

> let runFilter f arr = Array2D.map f arr  

  module ColorFilters =                 
     let Grayscale(clr:SimpleColor) =
        let c = (clr.R*11 + clr.G*59 + clr.B*30) / 100
        SimpleColor(c, c, c)
     let Lighten(clr:SimpleColor) =
        (clr * 2).ClipColor()
  ;;

Listing 14.11 Sequential method for applying filters (C#)

Listing 14.12 Applying filters and two simple filters (F# Interactive)

B

C

B

C

Licensed to   <kr_wilson@hotmail.com>



399Running graphical effects in parallel
val runFilter : ('a -> 'b) -> 'a [,] -> 'b [,]

module ColorFilters =                                  
  val Grayscale : SimpleColor -> SimpleColor 
  val Lighten : SimpleColor -> SimpleColor   

The runFilter function calls Array2D.map to do the work B; in fact, we could just 
use Array2D.map in our later code. Wrapping Array2D.map into another function 
makes the code more readable and self-explanatory. Also, if we eventually decided to 
change the representation of the bitmap, we could update the runFilter function 
without touching the code that uses it.

 We also use F# modules to organize the code in a more structured fashion. All the 
graphical filters are encapsulated in a module called ColorFilters C. The listing 
shows that you can enter the entire module in the F# Interactive to see the inferred 
type signature D. The implementation of our two sample filters is almost the same as 
in C#, but we’ll see later that F# allows us to do a little more with custom types that 
provide standard overloaded operators.

 Before we look at how to parallelize the application, we need to wrap all the code 
we’ve written so far into an application that we can run. This will allow us to test our 
filters and measure the performance. You’ll do this in the next section. We’ll only 
show you the C# version, and not in much detail; the full source code is available at 
the book’s website. We’ll focus on the interesting bits.

14.2.3 Designing the main application

So far, we’ve only created color filters, but we want our final application to cater for 
more general graphical effects. A color filter such as grayscaling or lightening applies 
a function to each pixel based only on that pixel’s value. Other effects may be much 
more general—they could do anything with the image, such as geometrical transfor-
mations or blurring. We’ll use blurring as an example later on, just to show that it’s 
possible. We’ll take this goal into account as we build the application.

 The application allows you to open an image file, select an effect from a list, and 
apply it to the image. We’ll create a sequential and parallel version of each of the 
effect, so that we can measure the performance. After running the effect, the applica-
tion automatically displays how long it took to apply. Figure 14.2 shows a screenshot of 
the finished application.

 In C#, we can create the UI for the application using the Windows Forms designer. 
The application uses the ToolStrip control to create the toolbar with the necessary 
commands, and uses a ToolStripComboBox control for the list of available effects. A 
PictureBox control wrapped in a TabControl shows the image, so we can easily switch 
between the original image and the processed version.

 Once we’ve created the GUI in the designer, we can use the filter we’ve already 
implemented. As we said earlier, the application will be flexible enough to work with 
general effects beyond just filters, so let’s look at how we want to represent these 
effects in code.

D

Licensed to   <kr_wilson@hotmail.com>



400 CHAPTER 14 Writing parallel functional programs
REPRESENTING EFFECTS

A color filter was a function that took a color and returned the new color. Effects are 
functions too; however, the parameter and result type is different. An effect can process 
the entire image, so it needs to take the whole image as the input. In the C# GUI appli-
cation, we also need to store the name of the effect. Later when we’ll look how to par-
allelize the processing, we’re going to add a separate item for the parallel version of the 
effect. Listing 14.13 shows all of this information wrapped up into an EffectInfo type.

Figure 14.2 Completed 
image-processing Applica-
tion after first running the 
grayscale and then the 
lighten filter on a sample 
image

Creating Windows applications in F#
Unfortunately the F# support in Visual Studio doesn’t include a Windows Forms de-
signer. We’ve seen how easy it is to create simple GUIs by hand in F#, but for this 
kind of application a designer would be useful. Fortunately, F# can easily reference 
C# libraries, and vice versa, so several options are available to us.

If you only need to create forms, you can create a C# class library project that con-
tains the graphical elements such as forms and user controls, then reference the li-
brary from your F# application and use the GUI components from F#. This is the 
approach we used to create the F# version of this application, so you can see exactly 
how it works if you download the source code.

An alternative approach is to implement the user interaction in C# and reference an 
F# library that contains all the data processing code. If we wanted to use this approach, 
we’d wrap the graphical effects in an F# object type (as discussed in chapter 9) and 
compile the F# code as a library. The C# application would then use the types in the 
library to run the graphical effects. 
Licensed to   <kr_wilson@hotmail.com>



401Running graphical effects in parallel
class EffectInfo {
   public Func<SimpleColor[,], SimpleColor[,]> Effect { get; set; }
   public string Name { get; set; }
}

The class is simple, with just two properties. We’ve created it in the most straightfor-
ward way possible, with mutable properties. We’re only going to use this type within 
the GUI itself, so while that may leave us feeling a little uncomfortable, we won’t worry 
about it too much. The first property of the class is a function that runs the effect and 
the second is a name. This is similar to an F# record containing a function and a 
string; that’s the design we’ll use in the F# version of the application. Next we’ll look 
at how we can create EffectInfo instances to represent the color filters we imple-
mented earlier. 

14.2.4 Creating and running effects

In section 14.2.2, we implemented a couple of color filters, but our application con-
tains a list of more general graphical effects. It appears that we still have a lot of work 
to do, but actually, we already have everything we need to create graphical effects 
from a simple color filter. Everything should start making sense in the next section, 
where you’ll learn how to create an effect from a color filter. 
CREATING EFFECTS FROM COLOR FILTERS IN C#

To create a general effect based on a color filter, we can apply the filter to all the pix-
els in the image. We’ve already implemented the sequential form of this as the Run-
Filter method. Let’s start by writing a simple function that uses RunFilter to create 
an effect that runs the given filter sequentially, and we’ll look at the parallelized ver-
sion shortly. As you can see in listing 14.14, to construct an effect we use a lambda 
function and return a delegate from the method. 

Func<SimpleColor[,],SimpleColor[,]> MakeEffect
      (Func<SimpleColor, SimpleColor> filter) {
   return arr => Filters.RunFilter(arr, filter);  
}

The method has only a single argument, which is the color filter that we want to con-
vert into an effect. The effect should apply this filter to each pixel of an image, but 
how can we do this when we don’t have the image yet? The answer is that we’ll get the 
image later as an argument for the function that represents the effect, so the body of 
the method returns the effect via a lambda function B.

 The lambda function takes only a single argument: the image to process. Once we 
have this information, we can call the RunFilter method. If you remember our dis-
cussion about closures in chapter 8, you know that the filter argument to the 
method will be captured by a closure that’s associated with the returned function.

Listing 14.13 Representation of graphical effect (C#)

Listing 14.14 Creating graphical effect from a color filter (C#)

B

Licensed to   <kr_wilson@hotmail.com>



402 CHAPTER 14 Writing parallel functional programs
 It’s important to note that the return type is exactly the same as the type of the 
function stored in EffectInfo, so we can use it immediately when we’re building our 
drop-down list of effects for the toolbar. When we’ll look at the parallelization of 
image filters later, we’ll implement a parallelized version of the processing method 
called RunFilterParallel, and we’ll also need to add a parallelized version of the 
MakeEffect method, but this will be just another three-line method that only adapts 
the method signature. 

 Here’s an example of how to create effects from our two existing color filters and 
add them to the listFilter control. When we finish the parallelized version of Make-
Effect, we’ll be able to add parallelized versions of the effects as well:

var effects =
   new List<EffectInfo> {
      new EffectInfo { 
         Name = "Grayscale (sequential)",
         Effect = MakeEffect(Filters.Grayscale) },  
      new EffectInfo { 
         Name = "Lighten (sequential)",
         Effect = MakeEffect(Filters.Lighten) }  
   };
listFilters.ComboBox.DataSource = effects;  
listFilters.ComboBox.DisplayMember = "Name";  

We’re using a C# 3.0 collection initializer to create a List<EffectInfo> containing 
information about the two color filters that we created so far. When we call MakeEffect, 
we give it a method group from the Filters class as an argument. The method group
is automatically converted into a Func delegate by the C# compiler. The last two lines set 
the list as the data source for the drop-down control and use the DisplayMember prop-
erty to specify that the displayed text should be the name of the effect.

 The corresponding code in the F# version of the application is quite interesting, so 
even though we won’t look at the full source code, we’ll discuss this part.
USING PARTIAL FUNCTION APPLICATION IN F#

The F# solution to this problem will be a lot easier. The method that we’ve just imple-
mented in C# only changes the way we provide arguments to the RunFilter method. 
It’s called MakeEffect, to better reflect what it does return, but aside from the name, 
it isn’t really too different. To understand this better, let’s look at the types. Here’s the 
type signature of the MakeEffect method using the F# notation:

(SimpleColor -> SimpleColor) -> (SimpleColor[,] -> SimpleColor[,])

Let’s recall the runFilter function that we’ve implemented as an F# alternative to the 
RunFilter method in C#. We’ve seen that it’s a generic function for working with 2D 
arrays. If we replace the type parameter with the actual type we’re using to represent 
pixels, we’ll get the following signature:

(SimpleColor -> SimpleColor) -> SimpleColor[,] -> SimpleColor[,]

The only difference between these two signatures is that the first returns a function as 
the result while the second one takes two arguments and returns the processed array. 

Converts grayscale, 
lighten filters to effects

Shows effects in 
drop-down list
Licensed to   <kr_wilson@hotmail.com>



403Running graphical effects in parallel
As we’ve learned in chapter 5, the F# compiler treats these two functions as if they 
were exactly the same. This means that if we call the F# function runFilter using par-
tial application and specifying only the first argument (color filter function), we’ll get 
a function representing an effect as the result: 

> let effect = runFilter ColorFilters.Grayscale;;
val effect : (SimpleColor[,] -> SimpleColor[,])

As you can see, thanks to the partial function application, we don’t need any F# func-
tion that would correspond to the MakeEffect method and we get conversion from fil-
ters to effects for free. We could write the C# RunFilter method in a way that it would 
behave the same as MakeEffect, but that wouldn’t be a natural way to write C# code, so 
we’ve chosen to add one simple method to serve as a simple façade. As the description 
suggests, this form of conversion isn’t in any way dissimilar to the façade design pattern.

 Now let’s get back to the user interface, and look at what the event handler for the 
Apply button has to do.
EXECUTING GRAPHICAL EFFECTS

When we apply the effect, we need to measure the time it takes. We could remember 
the time before running the effect, then run the effect and subtract the original time 
from the current time. However, this mixes the calling aspect with the timing aspect. If 
we wanted to measure the time in different places, we’d have to copy and paste the 
code, which isn’t a good practice. Functional programming gives us a better way to 
approach the problem.

 We can implement time measurement as a higher-order function, taking another 
function as an argument and measuring the time taken to run it. The return value is a 
tuple containing the result of the function and the elapsed time in milliseconds. List-
ing 14.15 shows this implemented in both F# and C#.  

The function first initializes the Stopwatch class to measure the time and then runs 
the specified function. We don’t want to throw away the result, so we store it locally 
and count the elapsed time. Since we need to return multiple values from the func-
tion, we use a tuple value. The first element of the tuple is the result of the function 
we passed in, which can be any type, depending on the function. The second element 
will contain the time taken in milliseconds.

Listing 14.15 Measuring the time in C# and F#

C# F#

using System.Diagnostics; open System.Diagnostics

Tuple<T, long> MeasureTime<T> let measureTime(f) = 
      (Func<T> f) {    let st = Stopwatch.StartNew()
   var st = Stopwatch.StartNew();    let res = f()
   var res = f();    let t = st.ElapsedMilliseconds
   var t = st.ElapsedMilliseconds;    (res, t)
   return Tuple.Create(res, t);
}

Licensed to   <kr_wilson@hotmail.com>



404 CHAPTER 14 Writing parallel functional programs
 Listing 14.16 uses this new method in the event handler for the Click event of the 
Run button.

var info = (EffectInfo)listFilters.SelectedItem;
var effect = info.Effect;
var arr = loadedBitmap.ToArray2D();
var res = MeasureTime(() => filter(arr));  

pictProcessed.Image = res.Item1.ToBitmap();
lblTime.Text = string.Format("Time: {0} ms", res.Item2);

The available effects are in the drop-down list, stored as EffectInfo instances, so we 
start by accessing the selected item from the list. Once we have the effect, we can per-
form the bitmap processing. We first convert the bitmap to a 2D array and then apply 
the filter. The operation is wrapped in a call to the MeasureTime method, so the type 
of res is Tuple<SimpleColor[,], long>. We first convert the returned array into a 
bitmap, display it, and show the time taken to apply the effect.

 We’re currently concerned only with the performance of the effect itself, but it 
would be possible to parallelize the conversion between a bitmap and an array as well. 
We’ll leave that as an exercise if you’re interested, but for the moment let’s get on with 
parallelizing the effect.

14.2.5 Parallelizing the application

Because this chapter is really about parallelization, this is the most interesting part of 
the application. We’re going to discuss the code in both languages; we’ll begin by 
implementing the C# version in the simplest way possible.
RUNNING FILTERS IN PARALLEL IN C#

To implement the C# version, we’ll take the RunFilter method from listing 14.11 and 
replace the for loop with a call to the Parallel.For method. Thanks to lambda func-
tions in C# 3.0, this is just a syntactic transformation. We’ll also write a parallel variant 
of the MakeEffect method from listing 14.14 that returns graphical effect (as a func-
tion) that executes the color filter. You can see the parallel versions in listing 14.17. 

public static SimpleColor[,] RunFilterParallel
      (this SimpleColor[,] arr, Func<SimpleColor, SimpleColor> f) {
   int height = arr.GetLength(0), width = arr.GetLength(1);
   var result = new SimpleColor[height, width]; 
   Parallel.For(0, height, y => {                
      for(int x = 0; x < width; x++)     
         result[y, x] = f(arr[y, x]);
   });
   return result;
}

public static Func<SimpleColor[,], SimpleColor[,]> MakeParallelEffect

Listing 14.16 Applying the selected effect to a bitmap (C#)

Listing 14.17 Applying color filter in parallel (C#)

Runs effect, 
measures time

Parallelizes outer loop
Leaves inner 
loop sequential
Licensed to   <kr_wilson@hotmail.com>



405Running graphical effects in parallel
      (Func<SimpleColor, SimpleColor> filter) {
   return arr => RunFilterParallel(arr, filter);  
}

The original code contained two nested for loops, but we’re only parallelizing the 
outer loop. For most images this will give the underlying library enough flexibility to 
parallelize the code efficiently, without creating an unnecessarily large number of 
tasks. Making the filter run in parallel involved changing only two lines of code. 
Changing for loops to Parallel.For method calls isn’t always as simple as it looks. 
You always have to look carefully at the code and consider whether parallelization 
could introduce any problems. 

 For instance, we have to be careful if the loop modifies any mutable state. In list-
ing 14.17, we avoided this problem by using only local mutable state. The result
array can’t be accessed from outside this function, which makes the overall method 
functional. Also, each iteration only uses a separate part of the array (a single hori-
zontal line).

 Additionally, many .NET types aren’t thread-safe, which means that when you start 
accessing a single instance from several threads, their behavior may be undefined. In 
section 14.3, we’ll see that this is a problem even for simple-looking types such as Ran-
dom; we’ll also see how to solve this problem by using locks. First, let’s look at the F# 
version of the previous code. 
PARALLEL ARRAY PROCESSING IN F#

The source code for the F# version will be almost a direct translation of what we’ve seen 
in the previous C# listing—but at the same time, it’ll be a much more general function. 
If you reimplemented the previous C# listing in F#, one of the changes you’d probably 
make would be to delete all the unnecessary type annotations. After doing that, you’d 
see that the code doesn’t explicitly mention the SimpleColor type anywhere and it 
doesn’t need to know that it’s working with colors. If you hover over the function trans-
lated from C# in Visual Studio, you’d see the following inferred type:

('a -> 'b) -> 'a[,] -> 'b[,]

Just by deleting type annotations, we’ve made the function more generic. The type of 
the function is the same as the type of Array2D.map, which we used earlier in this 
chapter. The change in type signature also suggests that the name should be general-
ized too—after all, we’re performing a mapping operation, just in parallel. The result 
of these changes is shown in listing 14.18.

module Array2D =
   module Parallel =        
      let map f (arr:_ [,]) =
         let height, width = arr.GetLength(0), arr.GetLength(1)
         let result = Array2D.zeroCreate height width
         pfor 0 (height - 1) (fun y ->                    
            for x = 0 to width - 1 do

Listing 14.18 Parallel map function for the 2D array (F#)

Returns effect 
as function

B

Parallelizes 
outer loop
Licensed to   <kr_wilson@hotmail.com>



406 CHAPTER 14 Writing parallel functional programs
               result.[y, x] <- f(arr.[y, x]))
         result

let runFilterParallel f arr  = Array2D.Parallel.map f arr  

The fact that the simple act of translation has revealed a deeper aspect of our original 
code is quite a strange phenomenon. The new function does the very same thing as 
Array2D.map but executed in parallel, so we’ve named the function map and placed it 
inside a module called Array2D.Parallel B to make it more reusable. To implement 
the parallelization, we’re using our utility function pfor from section 14.1.1.

 After we’ve noticed this generalization in F#, we could change the C# version to 
match it, changing the method declaration to something like this:

public static TResult[,] ParallelMap<TSource, TResult>
      (this TSource[,] arr, Func<TSource, TResult> f) {

We’d then have to propagate the type parameters appropriately through the code, 
substituting SimpleColor for either TSource or TResult, depending on the context. 
Type inference would then take care of providing the type arguments where we call 
the method.

 The final line of listing 14.18 creates an alias for the parallel map function C. Our 
original goal was to write a function to run a graphical filter in parallel, and this alias 
makes the code more readable, because the name provides a better clue as to how the 
function can be used. 

 Now that we’ve parallelized simple color filters, we’re going to implement a single, 
more general effect: blurring the image. This will wrap up our coverage of the applica-
tion, but you may want to experiment with more effects.

14.2.6 Implementing a blur effect

Our final effect won’t be just a color filter. The process of blurring an image relies on 
computing a new pixel value based on multiple original pixels. We can still perform a 
pixel-by-pixel transformation of the image. However, the transformation will need to 
access the whole image, as well as the coordinates of the pixel we want to transform. 

 We’ve left the implementation of RunEffect and RunEffectParallel as an exer-
cise for you, but it’s fairly straightforward; it’s simply a matter of changing the details 
of the loop and giving the transformation function more information. Converting the 
sequential form into a parallel form is the same for this effect as for color filters. If you 
get stuck, look at the full source code on this book’s website.

 The blurring transformation itself is quite interesting, as shown in listing 14.19. It’s 
not particularly difficult, but it does provide a nice demonstration of declarative 
programming.

let blur(arr:SimpleColor[,], x, y) =                                    
   let height, width = arr.GetLength(0) - 1, arr.GetLength(1) - 1
   let checkW x = max 0 (min width x)                                   
   let checkH y = max 0 (min height y)                                     

Listing 14.19 Implementing the Blur effect (F#)

C

B

C

Licensed to   <kr_wilson@hotmail.com>



407Running graphical effects in parallel
   [ for dy in -2 .. 2 do                                        
        for dx in -2 .. 2 do                                       
           yield arr.[checkH(y + dy), checkW(x + dx)] ]
   |> List.average                                            

The blur function takes three parameters that specify the image and X, Y coordinates 
of the pixel that we want to calculate B. If you were implementing blur in an impera-
tive style, you’d create a mutable variable, initialize it to 0, and add the colors of all the 
nearby pixels. Divide the result by the number of pixels to get the average color.

 In F#, we can use a more declarative approach and write that we want to calculate 
the average color. We first declare utility functions for checking that the index is in 
the range of the array C. Next, we use a sequence expression to create a list contain-
ing colors of all the nearby pixels D and calculate the average value from this using 
List.average E.  

D

E

Exploring List.average
To calculate the average value, the List.average function needs to know three things:

■ What a “zero” value is for the particular type.
■ How to add values together. 
■ How to divide value of the particular type by integer.

The first two bullets are enough to sum the list. Then it needs to divide the result by 
the number of elements in the list and here we need the third item. In our effect, 
we’re working with values of the SimpleColor type, and this type implements the 
plus operator. We also added the special members Zero and DivideByInt. The av-
erage function uses these members. It’s a generic function, but it requires the type 
to implement the appropriate members. A constraint like this one can’t be expressed 
using .NET generics. Constraints available for generic types can require parameter-
less constructor or an interface, but not a specific member.

For this reason, F# implements its own mechanism for compile-time member con-
straints. In this case, the constraint is resolved by the F# compiler at compile time 
(as opposed to constraints for .NET generics, which are also checked by the .NET run-
time). The following example demonstrates how to use this feature to define a func-
tion that calculates half of any value that supports division by integers:  

> let inline half (num: ̂ a) : ̂ a =
     LanguagePrimitives.DivideByInt< (^a) > num 2
  ;;
val inline half : ̂ a -> ̂ a 
   when ̂ a : (static member DivideByInt : ̂ a * int -> ̂ a)

> half(42.0);;
val it : float = 21.0

> half(SimpleColor(255, 128, 0));;
val it : SimpleColor = SimpleColor {B = 0; G = 64; R = 127;}

> half("hello");;
error FS0001: The type 'string' does not 
support any operators named 'DivideByInt'
Licensed to   <kr_wilson@hotmail.com>



408 CHAPTER 14 Writing parallel functional programs
In this example, we’ve looked at key parts of a larger application. You can get the com-
plete source code from the book’s website and see how the parts we implemented in 
this chapter are connected. Even though the most important parts of the application 
use mutable arrays, we’ve designed the whole application in a functional way, includ-
ing using the arrays in the functional style as described in chapter 11. This approach 
allowed us to parallelize the core algorithms easily and safely.

 This has been an example of a behavior-centric application. Our main concern was 
how to parallelize individual behaviors. Another way to parallelize a behavior-centric 
application is to run different behaviors in parallel. We might want to process a series 
of images in a batch, applying multiple effects to each image. In the next section, we’ll 
turn our attention to data-centric applications.

14.3 Creating a parallel simulation
Our next sample application is going to be a simulation of a world containing animals 
and their predators. The goal of predators is to move close to animals to hunt them, 
and the aim of animals is to run away within the area of the world. Just like our image-
processing example, we’ll only show the most interesting aspects here, but the full 
source code is available at this book’s website.

 This is a data-centric application, so the first task is to identify the primary data struc-
ture involved. In this case, it’s the representation of the “current” state of the world. The 
world effectively has a single operation: make time “tick,” moving all the animals and 
predators. In a data-centric application, we can either run multiple operations in par-
allel or focus on parallelizing individual operations. In our simulation, we’ll obviously 
have to parallelize the tick operation. The operation isn’t that simple, so there’s enough 
room for parallelization. We’ll use the normal techniques involved in data-centric func-
tional programs, with a combination of declarative and task-based parallelism. 

 As usual when creating data-centric applications, we’ll start by designing a data 
structure to represent our world. The parallelization will come later when we’ll be 
writing operations to manipulate with that data structure.

(continued)
The function is called half and we use explicit type annotations to specify that the 
type of the parameter num and the type of the results is a generic parameter ̂ a. Note 
that we’re using a type parameter starting with a hat (^) instead of the usual apos-
trophe ('). In the body, we invoke the DivideByInt function from the LanguagePrim-
itives module. This is one of primitive functions with member constraint that 
divides numeric type by an integer or uses the DivideByInt member if available.

As you can see, the member constraint is present in the inferred type signature. Now 
that we have the function, we can use it with various numeric types, but also with our 
SimpleColor type. If we try to call it with an argument that doesn’t support the Di-
videByInt operation, we’ll get a compile-time error. 
Licensed to   <kr_wilson@hotmail.com>



409Creating a parallel simulation
14.3.1 Representing the simulated world

Our simulated world is quite simple. It 
contains only animals and predators, so 
we can represent it using two lists. In 
principle, we should also include the 
width and height of the world area, but 
we’ll use a fixed size to make things sim-
pler. You can get a better picture about 
the world we’re trying to represent by 
looking at figure 14.3, which shows a 
screenshot of the running simulation.

 We’ll look at the interesting elements 
of the simulation in both languages, just 
as we did for the image application. 
We’ll start with the F# version to illus-
trate a typical functional approach. 
REPRESENTING THE SIMULATION STATE IN F#

As we’ve mentioned, the state of the simulation will be two lists with the locations of 
animals and predators. We’ll need to perform calculations with locations, such as cal-
culating several locations on a path between two locations. To make this easier, we’ll 
implement our Vector type and use it to represent the location of the animal (rela-
tively to the origin). We’ll also implement a couple of operators for adding and sub-
tracting vectors as well as for multiplying the vector by a scalar floating point number.

 We’ll implement our vector as a simple immutable value type, and the state of the 
simulation will be an F# record type with two fields. You can see the data structure dec-
laration in listing 14.20.

[<Struct>]                           
type Vector(x:float, y:float) =
   member t.X = x
   member t.Y = y
   static member (+) (vect1:Vector, vect2:Vector) =
      Vector(vect1.X + vect2.X, vect1.Y + vect2.Y)  
   static member (*) (vect:Vector, f) = 
      Vector(vect.X * f, vect.Y * f)                      
   static member (-) (vect1:Vector, vect2:Vector) = 
      vect1 + (vect2 * -1.0)                                 

type Simulation =         
 { Animals : list<Vector>
   Predators : list<Vector> }

The location is a simple object marked using the Struct attribute B. It contains the X 
and Y coordinates as immutable properties, set in the constructor. It supports operations 
for component-wise addition C, multiplication by a scalar value D and subtraction of 

Listing 14.20 Representing the state of the world (F#)

B

C

D

E

F

Figure 14.3 Running simulation with 10 predators 
(larger circles) hunting 100 animals (small circles)
Licensed to   <kr_wilson@hotmail.com>



410 CHAPTER 14 Writing parallel functional programs
vectors E. Note that the subtraction is implemented by using the two other operators. 
All the operators return new values, as you’d expect. The type that represents the sim-
ulation is also straightforward F. This type is immutable too, so in order to work with 
it, we’ll need to construct a new Simulation value for each step of the simulation.

 Now let’s look at our C# representation. We’re mostly going to use standard .NET
types, but we’ll work with them in a functional way.
REPRESENTING SIMULATION STATE IN C#

In C#, the simplest approach is to represent some of the state using mutable types, 
because that’s what the C# language and the standard .NET libraries provide the most 
support for. In particular, .NET doesn’t provide a functional list type. We could have 
used our FuncList<T> type from earlier chapters, which would have made the two 
representations similar. However, functional programming is a style and not a technol-
ogy, so we can write functional code even with the classes that we already have; we’ll 
just have to be more careful to do it correctly.

 Listing 14.21 shows the class we’re going to use to represent the simulation in C#. 
We’ve omitted the implementation of the Vector type because it’s a simple immutable 
struct with overloaded operators, exactly the same as the F# version. 

public class Simulation {
   private readonly IEnumerable<Vector> animals;
   private readonly IEnumerable<Vector> predators;

   public Simulation(List<Vector> animals, List<Vector> predators) {     
      this.animals = animals;
      this.predators = predators;
   }

   public IEnumerable<Vector> Animals 
   { get { return animals; } }            
   public IEnumerable<Vector> Predators 
   { get { return predators; } }        
}

We use two different collection types here; one for the constructor arguments B 
when we’re creating the simulation state and a different one for the properties C. In 
the constructor, we use List<T>, to ensure that we get a fully evaluated collection that 
contains all the locations. Since IEnumerable<T> is a lazy sequence, we wouldn’t know 
if the locations were evaluated already or whether they’ll be evaluated later when we’ll 
need them somewhere later in the code. This isn’t a big problem, but it would make it 
difficult to measure the performance because we wouldn’t know when the code exe-
cuted. Also, if we ran the tick operation multiple times without forcing the evaluation 
of the sequence, it would create a lazy sequence that would perform the work later, 
which might be confusing in this kind of application.

 We don’t want to expose the state as List<T>, because that’s a mutable type and 
someone could modify it. Instead, we use IEnumerable<T> so client code can iterate 
over the animals and predators but can’t directly modify the existing state. 

Listing 14.21 Representing the state of the world (C#)

Creates new 
simulation state

B

Exposes properties as 
immutable sequence

C

C

Licensed to   <kr_wilson@hotmail.com>



411Creating a parallel simulation
 Now that we have the data structures to represent the state, we should also look at 
what we can do with it. In a typical functional design, that’s always the next thing to do.

14.3.2 Designing simulation operations

In this section we’ll consider the operations that we need to implement for the simula-
tion. We won’t implement all the difficult operations now, because we only want to 
design the structure of the application. Our first goal is to get the application running 
with minimal effort and then we can get back to the interesting parts, such as the algo-
rithms describing the movements of animals and predators.

 In a typical functional fashion, we’ll start with some initial state, and in each step 
we’ll create a new state based on the previous one. This means that we’ll need an 
operation to create an initial state, and another to run a single step of the simulation. 
Both are logically related to the simulation state, so in C# we’ll add them to the Simu-
lation class. In F#, we’ll add them to the Simulation type using intrinsic type exten-
sions, which we discussed in chapter 9. The following snippet shows the types of these 
operations using C# syntax: 

class Simulation {
   public static Simulation CreateInitialState();   
   public Simulation Step();                        
}

If you’re writing the sample code as you read the book, you can implement these on 
your own in some simple way. For now, the Step method can return the original state 
or it can move all the animals by one pixel in some direction, so that we can tell that 
the simulation is running. The CreateInitialState method should generate a cou-
ple of randomly located animals and predators. We’ll get back to these methods after 
we finish implementing the machinery that runs the simulation.

 Next we need the ability to draw the simulation state. In C#, we’ll make this part of 
the MainForm class. In F#, the form is a global value, so we can implement the drawing 
code as a simple function. The operation will iterate over all the animals and preda-
tors in the current simulation state and draw them on the form using System.Drawing
classes. The C# method has this signature:

bool DrawState(Simulation state);;

We won’t present the full code here, but now you’ll recognize it when we call it. One 
notable thing about the method is that it returns a Boolean value, which specifies 
whether the form is still visible. We’ll use this result shortly to stop the simulation 
whenever the user closes the form.

 At this point, we have everything we need to run the simulation, even though we 
haven’t implemented any interesting algorithms for animal and predator movement. 
Let’s put everything together, so we can test it before we start making the animals 
behave more intelligently.
RUNNING THE SIMULATION

We’ll run the simulation as fast as the computer is able to, so we’ll implement it as a loop
that runs the Step method, redraws the form, then starts again and runs until the form 
Licensed to   <kr_wilson@hotmail.com>



412 CHAPTER 14 Writing parallel functional programs
is closed. We don’t want to block the main application thread, because that would make 
the application unresponsive, so we’ll run the simulation as a background process. The 
F# and C# versions are implemented in different ways, so we’ll look at both of them. 
Listing 14.22 shows the C# code, which explicitly creates a thread. 

private void MainForm_Load(object sender, EventArgs e) {
   var th = new Thread(() => {
      var state = Simulation.CreateInitialState();  
      bool running = true;                              
      while(running) {
         state = state.Step();                                  
         running = (bool)this.Invoke(new Func<bool>(() =>
            DrawState(state)));                                 
      }
   });
   th.Start();
}

This method is the only part of the C# version of the simulation where we need to use 
mutable state. In particular, we create a variable that holds the current state of the sim-
ulation B and a variable that specifies whether the simulation form is still opened C. 
We run the simulation on a thread in a while loop, and we calculate the new state. We 
store this state in the same local variable for each iteration and update the form. In 
C#, we can’t write the code without mutation, but we won’t need this in F#.

 Another notable point is the way we update the form D. In Windows Forms, we 
can only access controls from the main GUI thread. We use the Invoke method that 
takes a delegate and runs on the GUI thread. Earlier we said that the DrawState
method E returns a flag whether the form is still opened, so we wrap the method call 
into a Func<bool> delegate. When it returns a Boolean as the result, we update the 
running flag.

 We don’t use threads explicitly in the F# version, because we can start the simula-
tion using asynchronous workflows. Also, we can replace the mutable variable and 
imperative while loop using recursion as shown here:

let rec runSimulation(state:Simulation) =
   let running = form.Invoke(new Func<bool>(fun () ->
      drawState(state))) :?> bool                              
   if (running) then 
      runSimulation(state.Step())  

Async.Start(async {                                            
      runSimulation(Simulation.CreateInitialState())  
   })                                                                

The loop that runs the simulation is implemented as a recursive function. We don’t 
need to worry about running out of stack space, because the recursive call is tail 

Listing 14.22 Running simulation on a thread (C#)

Listing 14.23 Running simulation using recursion and async (F#)

B
C

D

E

Triggers redraw 
of form

B

C

Licensed to   <kr_wilson@hotmail.com>



413Creating a parallel simulation
recursive B. The lack of tail recursion in C# is the only thing that prevents us from 
using the same technique there.

 The function is an ordinary function that loops in a blocking way while the form is 
visible, but we can still use asynchronous workflows to launch it in the background C. 
This isn’t related to the typical asynchronous programming as we discussed it in the 
previous chapter; Async.Start is a simple way to start executing the function on a sep-
arate thread. The workflow calls the recursive function that blocks the thread and 
runs the simulation loop.

 If you’ve implemented the Step method and added the code to draw the simula-
tion, you should have a working application by now. Now that we have the skeleton in 
place, we can work on making the animals and predators behave intelligently, but first 
we’ll need a couple of helper functions.

14.3.3 Implementing helper functions

Before we look at the code that calculates locations of the animals, we’ll digress slightly. 
We’ll need to implement a couple of functions that will be used by the algorithm for 
determining animal and predator locations. These functions need to use random num-
bers for various purposes, and to generate random numbers correctly, we first need to 
discuss how to safely access objects that aren’t thread-safe. This can be problem when 
we’re dealing with objects with mutable state, which is often the case with .NET types.
ACCESSING SHARED OBJECTS SAFELY

The Random class is a commonly used .NET class that’s not thread-safe. In our applica-
tion, we’ll need to generate random locations to choose where the animal or predator 
should move to; this functionality can be called from several threads simultaneously. 
However, Random needs to be initialized once, then used again and again. (If you cre-
ate a new Random instance for each call, you’ll often get repeated numbers as the ini-
tial “seed” for the random number generator is taken from the system time.) If you 
call the Next method on the same instance from multiple threads, the behavior of the 
method is undefined. Actually, it will eventually start returning zero. We’re responsi-
ble for making sure that only a single thread will access one object at a time.

 To avoid this problem we can use locking, which blocks other threads from executing 
code guarded by the same lock until the operation completes. This makes the code less 
efficient. Listing 14.24 provides a solution that’s safe but allows us to be efficient.  

Listing 14.24 Safe way for generating random numbers (F# and C#)

F# C#

module SafeRandom = static class SafeRandom {
   let private rnd =       static Random rnd =      
      new Random()       new Random();

   public static Random New() {
   let New() =       lock (rnd)                
      lock rnd (fun () ->               return new            
         new Random(rnd.Next())             Random(rnd.Next()); 
      )                           }  

}

B B

C
C

Licensed to   <kr_wilson@hotmail.com>



414 CHAPTER 14 Writing parallel functional programs
We created a module in F# and a static class in C#, both of which serve the same pur-
pose: they can be used for generating random number generators. These generators 
are created using a random seed that’s obtained from a single global random number 
generator B that’s safely accessed within a lock C. Thanks to this approach, we don’t 
have to use locks every time we’ll need to create a random number. We only need to 
create a new generator every time we execute an operation that can be executed in 
parallel with other tasks. Within a single thread, we can reuse the same instance safely, 
knowing that no other thread will have access to it.

 The F# equivalent of C#’s lock keyword is the lock function that takes a simple func-
tion as its argument. It acquires the lock using the Monitor class, runs the specified func-
tion, then releases the lock. We’ll make good use of SafeRandom in the next section, 
where we’ll need to generate random locations somewhere in the simulation world.
WORKING WITH LOCATIONS

When generating locations of animals, we’ll need to generate random locations as 
possible targets; then we’ll need some way of measuring which of the locations is the 
best choice. This can be done depending on how close other predators and animals 
are. To write these algorithms, we’ll need a couple of functions. We’ll look at their 
type signatures, which should give you enough information to understand how they 
work and also to implement them on your own if you want to. The following snippet 
shows their commented F# type signatures:

/// Returns the distance between two specified locations
val distance : Vector -> Vector -> float

/// Returns specified number of check-points 
/// on the path between the specified locations
val getPathPoints : int * Vector * Vector -> seq<Vector>

/// Returns the specified number of randomly generated locations
val randomLocations : int -> seq<Vector>

The first function can be implemented using Math.Pow and Math.Sqrt. Note that 
we’ve given the function several parameters, which allows us to use partial application. 
This is convenient in F# when we want to calculate the distance of a collection of loca-
tions from one specific point. The second and third functions can be implemented 
using sequence expressions in F# and iterators in C#.

 We’ll need to call the randomLocations function from multiple threads running in 
parallel, so we need to use the SafeRandom module we created earlier. Each call to 
randomLocations first creates a new random number generator using SafeRan-
dom.New() and then uses this generator repeatedly to build the result. The result is a 
lazy sequence, so it will be actually generated on demand. As it happens, we’ll need all 
the items in the sequence to calculate the location of animal, so this doesn’t make a 
big difference.

 These three helper functions are relatively simple, but we’ll use them all the time 
when implementing the simulation. Thanks to the rich standard F# library and these 
three functions, the algorithms for movement can be written in a concise way.
Licensed to   <kr_wilson@hotmail.com>



415Creating a parallel simulation
14.3.4 Implementing smart animals and predators

The algorithms that compute the new locations of animals and predators look quite 
similar in C# and F#, because we can implement them using the same collection pro-
cessing functions. In F# and other standard functional languages, these are part of 
standard libraries and in C# 3.0 they’re available using LINQ. We’ll look at these algo-
rithms in the next two sections, showing each in a single language.
MOVING ANIMALS IN F#

Let’s start with a function that takes the location of a single animal and the current state 
as arguments and returns the animal’s new location. We’ll have around 100 animals in 
the simulation, and we’ll have to calculate the new location for all of them. This means 
it’s probably not worth making the function run its logic in parallel within a single call. 
Instead, we’ll just parallelize the many calls to the function later. Working out where to 
split the computation is an important part of parallelizing an application.

 Listing 14.25 implements an animal’s behavior by generating 10 random locations 
in the world and working out which is the safest. It does this by looking at the direct 
path to the location and calculating how close the nearest predator is.

let moveAnimal (state:Simulation) (animPos:Vector) =
   let nearestPredatorDistanceFrom(pos) =                
      state.Predators 
      |> Seq.map (distance pos) |> Seq.min 

   let nearestPredatorDistanceOnPath(target) =          
      getPathPoints(10, animPos, target)
      |> Seq.map nearestPredatorDistanceFrom |> Seq.min

   let target = 
      randomLocations(10)                                
      |> Seq.maxBy nearestPredatorDistanceOnPath  

   animPos + (target - animPos) *         
      (20.0 / (distance target animPos))  

Listing 14.25 starts by implementing two local utility functions. The first one B uses 
Seq.map to calculate the distance between each predator and the specified location, 
then uses Seq.min to get the shortest of those distances. The second one C looks for 
the nearest predator on the path between the animal’s current location and a speci-
fied destination by checking several points on the path between them. 

 Next we choose a target location for the animal. We generate 10 random locations 
and choose the one the animal can reach while staying as far away from predators as 
possible D. We do this with Seq.maxBy, which returns the element for which the given 
function returns the largest value. In our case, the function returns the shortest dis-
tance between the predators and the path from the animal’s current location to the 
randomly generated target. Finally, we use the overloaded operators of the Vector
type to calculate and return a new location of the animal. Each time the function is 
called, the animal moves 20 points in the best generated direction E. 

Listing 14.25 Implementing the animal behavior (F#)

B
Gets distance of 
nearest predator

C
Checks safety of 
path to the target

D Chooses best 
location…

E …moves in that 
direction by 20 points
Licensed to   <kr_wilson@hotmail.com>



416 CHAPTER 14 Writing parallel functional programs
 We’ll use a similar algorithm to move the predators—but obviously with a different 
aim. The predator will also generate random locations, then move in the best possible 
direction. The following section shows the C# version of the code.
MOVING PREDATORS IN C#

The algorithm for determining the best target for a predator is a bit more difficult. 
We’re going to make the predator follow a path to the largest number of animals and 
the smallest number of other predators. The C# method that implements the algo-
rithm is shown in listing 14.26. It’s a part of the Simulation class, which lets us access 
other predators and animals easily. (This is why we don’t need to take the current 
state as a parameter as we did in the F# animal behavior function; the current state is 
available as this.)

int CountCloseLocations(IEnumerable<Vector> an, Vector pos) {  
   return an.Where(a => 
      Distance(a, pos) < 50).Count();
}

int CountCloseLocationsOnPath(IEnumerable<Vector> an, 
      Vector pfrom, Vector ptarget) {                         
   return GetPathPoints(10, pfrom, ptarget)
      .Sum(pos => CountCloseLocations(an, pos));
}

Vector MovePredator(Vector predPos) {
   var target = RandomLocations(20).MaxBy(pos =>                   
      CountCloseLocationsOnPath(Animals, predPos, pos) -          
      CountCloseLocationsOnPath(Predators, predPos, pos) * 3);

   return predPos + (target - predPos) *  
      (10.0 / Distance(target, predPos));  
}

In the F# code for animal movement, we started by implementing two local helper 
functions. In C#, we implement similar helpers as ordinary methods. In principle, we 
could also use local lambda functions, but we decided to use a more typical C# 
approach to make the code simpler. 

 The first method B takes a collection of vectors (which can be our collection of 
animals or predators) and counts how many are close to the specified point. The sec-
ond helper C sums how many predators are close to a selected point on the whole 
path. This is done by generating a collection of points on that path, calling the first 
method on each point and summing the results. This can count a single predator mul-
tiple times if it’s close to multiple points on the path. In practice this isn’t a problem, 
because if a predator is close to multiple points, it’s probably more dangerous.

 To implement the predator behavior, we generate 20 random locations and choose 
the one with the largest number of animals and smallest number of predators D close 
to the path between the predator’s current location and the target. For each random 
location, we compute this “score” with two calls to LocationsOnPath. We multiply the 

Listing 14.26 Implementing the predator behavior (C#)

B

Counts 
locations 
close to 
given point

C
Counts locations close 
to specified path

D Selects path 
with many 
animals, few 
predators

Moves predator 
by 10 points
Licensed to   <kr_wilson@hotmail.com>



417Creating a parallel simulation
count of nearby predators by a constant to make it more significant, because the num-
ber of predators in the whole simulation is smaller. The MaxBy extension method
returns the location with the largest score. This method isn’t a standard LINQ opera-
tor, but you can find its implementation in the complete simulation source code at 
this book’s website.

 Now that we have functions for calculating new locations for both animals and 
predators, we can finally implement the larger step function of the simulation. It will 
need to calculate new locations of all the animals and predators, so this will be the 
best place to introduce parallelism into the simulation.

14.3.5 Running the simulation in parallel

To run the simulation in parallel, we’ll use a combination of task-based parallelism 
using Task and declarative parallelism using PLINQ (and the PSeq module in F#). To 
calculate the new state of the simulation, we need to perform two basic tasks: move all 
the animals and move all the predators. With the algorithms from section 14.3.4, 
these two tasks take roughly the same time, so this would be enough on a dual-
core machine.

 Splitting the work into just two tasks isn’t the best option if we have a machine with 
more than two processors, or if one of the tasks takes longer than the other. At this 
point, we can use declarative data parallelism, because we can calculate the new loca-
tion of each animal and predator independently: we can view it as a list-processing 
operation. Listing 14.27 uses both of these techniques to implement an F# function 
that runs the simulation.

let simulationStep(state) = 
   let futureAnimals = Task.Factory.StartNew(fun () ->  
      state.Animals 
         |> PSeq.ofSeq
         |> PSeq.map (moveAnimal state)
         |> List.ofSeq)
   let predators =     
      state.Predators 
         |> PSeq.ofSeq
         |> PSeq.map (movePredator state)
         |> List.ofSeq
   { Animals = futureAnimals.Result; Predators = predators }

type Simulation with                        
   member x.Step() = simulationStep(x)  
   static member CreateInitialState() =
      { Animals = randomLocations(150) |> List.ofSeq    
        Predators = randomLocations(15) |> List.ofSeq }  

The listing implements the simulation step as an F# function and makes this function 
part of the Simulation type using type extension D. It adds the CreateInitial-
State method that generates 150 random locations for animals and 15 randomly 
located predators.

Listing 14.27 Generating random state and running a simulation step (F#)

B

C

D

Licensed to   <kr_wilson@hotmail.com>



418 CHAPTER 14 Writing parallel functional programs
 The simulation step starts processing collection of animals using a Task in back-
ground B, then processes predators on the current thread C, so we only need a sin-
gle Task value. This is similar to the tree-processing code we discussed earlier. Each 
task creates a new list with locations for the next simulation step. The list processing is 
further parallelized using the PSeq module.

TIP Tweaking the code to get the maximal performance is always difficult 
and requires a lot of experimentation. If you run the simulation with 
either parallelization technique, you should get a reasonable speedup. 
On our dual core machine, it’s about 155 percent times the speed of a 
sequential implementation when we just use Task, and 175 percent when 
using both PLINQ and Task. You can try various configurations to find 
the best performance on your system.

The C# implementation of the Step method is similar to the F# version, as you can 
see next.

public Simulation Step() {
   var futureAnimals = Task.Factory.StartNew(() =>  
      Animals.AsParallel()
         .Select(a => MoveAnimal(a))
         .ToList());                   
   var predators =
      Predators.AsParallel()           
         .Select(p => MovePredator(p))
         .ToList();
   return new Simulation(futureAnimals.Result, predators);  
}

Just as in the F# version, we create a single Task value to process animals B and run 
the code that processes predators on the primary thread C. Each list-processing task 
uses the AsParallel method D so the query operators are executed in parallel. We 
only need the Select operator to get a new location for every animal or predator, so 
we use the extension method directly rather than writing a query expression. Finally 
we create a new Simulation object E that holds the new state.

 As you can see, running the simulation in parallel wasn’t difficult because we used 
functional techniques in our application design. The data structure representing the 
state is immutable, and in every step of the simulation we create a new state. This 
means that we can’t run into race conditions while updating the state from multiple 
threads running concurrently.

Listing 14.28 Running the simulation step in parallel (C#) 

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



419Summary
14.4 Summary
In this chapter, we reviewed three approaches for writing parallel applications in a func-
tional style, two of which are based on essential aspects of functional programming.

 Declarative programming lends itself to data parallelization, and PLINQ makes this 
particularly easy. We can use this from both C# and F#, and a wrapper module makes 
the F# code more idiomatic than working with PLINQ directly. Both C# and F# use 
higher-order functions to represent the work to be done, either directly or through 
C# query expressions.

 The second technique is task-based parallelism. This is made simpler by using the 
immutable data structures we’re used to in functional programming. We can spawn 
multiple tasks to calculate different parts of the result and then just assemble these 
subresults; immutability guarantees that tasks can work independently and won’t cor-
rupt one another.

 You also learned how to parallelize applications that use mutable state but keep the 
mutation local. This is a valid and useful approach that allows us to use arrays in a func-
tional way. When we create a new array the result of an operation, we can initialize the 
array in parallel. We saw how helper functions can make this even simpler, and we 
implemented a parallel version of array mapping in the Array2D.Parallel module.

 Code is only useful when it’s part of an application, so we looked at two complete 
applications in this chapter. When an application is designed in a functional manner 
from the start, the changes needed to introduce parallelism are relatively straightfor-
ward. In fact, we could use the techniques from this chapter to parallelize all the appli-
cations we created when talking about functional architecture in chapters 7 and 8.

 In the next chapter, we’re going to leave the realm of asynchronous and parallel 
computing and look at how we can express logic and behavior as clearly as possible. 
Some of the aspects of F# that make it so expressive can also be applied in C# 3.0 
thanks to features such as lambda functions and extension methods. We’re going to 
look at a famous functional approach for creating animations as our main example, 
but the same ideas can also be used in other domains.
Licensed to   <kr_wilson@hotmail.com>



Creating composable 
 functional libraries
A design principle that arises in many aspects of functional programming is composi-
tionality. This means building complex structures from a few primitives using 
composition operations. We’re describing compositionality in a general sense 
because it can appear in countless forms. Let’s look at two examples you’re already 
familiar with. 

 We’ll begin with the F# type system: there are a few primitive types, such as inte-
ger and Boolean, as well as ways of combining them, such as using the * type con-
structor to build a tuple of type int * bool. If we leave out the object-oriented 
features of F#, we have only three ways of composing them: multiple values using 
tuples, alternative values using discriminated unions, and functions. We can use 
them to build incredibly rich types.

This chapter covers
■ Designing functional combinator libraries
■ Working with time-varying values
■ Composing time-varying values with drawings
■ Developing library for modeling financial contracts
420

Licensed to   <kr_wilson@hotmail.com>



421Approaches for composable design
 A second example of composable design is the F# library for working with lists. We 
can use this library as inspiration to teach us how to write good functional libraries. 
This time the primitives involved are the operations to create lists from scratch, and 
those we can apply to existing lists such as List.filter, List.length, and so on. We 
can use primitives individually, but more often we’ve composed them into a single list-
processing unit using the pipelining operator (|>). This composable design is also an 
essential element of the declarative style. We can describe what we want to achieve by 
composing primitives or derived components that we built earlier.

 Our main example in this chapter will be a library for creating animations. We’ll 
use a bottom-up approach when describing the library. This means that for most of 
the chapter we’ll be talking about very simple things. We’ll look at a couple of primi-
tives for representing values that change with the time and a simple representation of 
drawings. The beauty of a composable library is that each piece is easy to build, under-
stand, and test. The power is demonstrated when we start putting these building 
blocks together. In this case we’ll not only combine primitives from the same domain, 
but we’ll bring two domains together: a drawing that varies over time is practically the 
definition of an animation. This is a bit like using LINQ to XML, which is an XML API
designed to work well with LINQ to Objects. When libraries can be combined in a nat-
ural way, it can lead to readable and flexible code.

 To show that this approach works just as well in the world of business as in toy 
examples like animation, we’ll close the chapter with an example that specifies finan-
cial contracts in a composable and functional way.

15.1 Approaches for composable design
Let’s begin by reviewing how we can put the idea of composable design into practice. 
The idea of composing complex structures from a couple of primitives has been used 
for a long time in the LISP language. We’ll analyze one example in LISP, which will 
give us a good background for further discussion on composable libraries in both F# 
and C#.

15.1.1 Composing animations from symbols

Among other things, the LISP language is famous for its simple yet powerful syntax. 
When writing any sophisticated program, you always end up defining your own primi-
tives and then specifying what they mean. The following example shows how we could 
define a simple animation using the LISP syntax. The code creates two moving discs: a 
green one with a diameter of 50 and a smaller red one with a diameter of 20. The 
green one is rotating around the point (0, 0) with a 100 pixel radius and the red one 
is moving between two specified points:

(compose
   (disc 50 green (rotating 0 0 100))
   (disc 20 red (linear -100 0 100 0))  
)

Licensed to   <kr_wilson@hotmail.com>



422 CHAPTER 15 Creating composable functional libraries
In LISP, everything is either a symbol or a list. In the previous snippet, all the identifi-
ers (such as compose or red) as well as all the numeric constants are symbols. A list is 
created using parentheses, so the code (rotating 0 0 100 2) constructs a list contain-
ing five elements, all of them symbols. A list can consist of primitive symbols, but it can 
also contain nested lists. At the top level our example is a list consisting of the compose
symbol and two nested lists.

 If we look at the symbols that occur in the code snippet, we can identify several 
primitives. For example, disc is used for creating a visible shape, and we have two 
primitives (rotating and linear) to specify primitive shape movements. Then we 
have a symbol compose that builds a single animated object from other shapes. This is 
an example of an operation that composes primitives: we can use the result in exactly 
the same way as other shapes. We could specify the movement of the whole composed 
animation just as easily as we did for the individual shapes.

 From a syntactic perspective, the previous example creates a list containing one 
symbol and two other lists, so it’s natural to ask how we specify what our code actually 
means.

15.1.2 Giving meaning to symbols

The LISP code is quite readable and a human can easily understand what it means. 
The code doesn’t reveal any technical details. We can’t tell whether we’re creating an 
object that will represent the animation as a tree-like data structure that we can pro-
cess or whether we’re creating a function that knows how to draw the animation. This 
is the nice thing about declarative programming. When we use the library, the techni-
cal details are abstracted away from us.

 Of course, the technical details have to be present somewhere. We provide them 
when implementing the library. The options we have when creating composable librar-
ies in F# and C# are very similar to the following two ways that we can follow in LISP:

■ The code can build a tree-like data structure that stores all the primitives and 
how they’re composed. In the previous LISP example, this closely corresponds 
to the syntax of the code. We’ll get a list containing symbols and other lists. This 
option means we implement all the functionality (such as drawing of the anima-
tion) as a separate function that takes the data structure as a parameter.1

■ We can interpret the code as an executable computation. When executed, the 
computation builds a function value or an object type that performs the 
required operation, such as drawing the animation at the specified time. In this 
case, primitives are simple function values or objects. Operations for compos-
ing primitives are functions that take function values or objects as their argu-
ments and build a composite.

1 The terminology used to describe these approaches isn’t uniform. In Expert F# [Syme, Granicz, and Cistern-
ino, 2007], this approach is called abstract syntax representation to highlight the point where the data structure 
corresponds to the syntax. Martin Fowler [Fowler, 2008] calls similar constructs literal collection expressions, 
because they’re constructed as collections of literals (like lists of symbols in LISP).
Licensed to   <kr_wilson@hotmail.com>



423Approaches for composable design
Both techniques can be used to develop composable libraries in C# and F#. The first 
one is more suitable when we know exactly which primitives and which operations for 
composing them we’ll need. The second approach is appropriate if we know how we’ll 
want to use the composed entity. In section 15.2, we’ll use the second one. When 
designing our animations library, we know that we want to be able to draw the anima-
tion at the specified time and we don’t need to do anything else.

 Another interesting point about composable functional libraries is that the code 
often doesn’t look like LISP, F#, or even C#, but looks as if it were written in language
for solving problems from the specific problem domain (such as a language for creat-
ing animations).

Our goal in this chapter will be to create a declarative functional library. We listed the 
options we have earlier, so let’s now look at the first option from the list: creating a 
library so the code builds a data structure.

Language-oriented programming in F#
Language-oriented programming refers to writing code that somehow resembles a 
programming language, extends the language in some way, modifies its meaning, 
or changes its execution environment. In LINQ we can use it to describe what LINQ 
to SQL does when it executes a query written in C# 3.0 on the SQL Server. This is 
language-oriented programming, because it changes the execution environment of 
the C# code by translating the expression tree to an SQL statement. In F#, it’s 
used when talking about F# quotations (which correspond to C# expression trees) 
or computation expressions. In this case, we’re changing the meaning of standard 
F# code. Instead of running sequentially and blocking a thread, we modify it to 
run asynchronously.

The term can be also used when talking about composable libraries that we’re dis-
cussing in this chapter. In some sense, we’re designing a language for solving prob-
lems from a particular domain. In this chapter, the domain is creating animations, 
but other examples include processing collections of data (using functions for work-
ing with lists) or specifying business rules. These libraries are sometimes called em-
bedded domain-specific languages (DSL). Embedded refers to the fact that we’re not 
creating a standalone programming language, but that we’re instead extending the 
host language (C# or F#) in some way.

In the functional programming tradition, the term DSL means the same thing as de-
clarative functional libraries, but in recent years the term DSL is gaining more popu-
larity and has been used in numerous programming languages with various 
meanings. In this book, we’ll focus on creating well-designed declarative libraries. As 
we mentioned in the introduction, the key to this goal is to write the library in a com-
positional way. We’ll follow the language-oriented programming style in many ways, 
because we’ll try to make the syntax as nice as possible. You’ll see many tech-
niques that are useful for creating DSLs in F# and C#, but this isn’t the primary goal 
of this chapter.
Licensed to   <kr_wilson@hotmail.com>



424 CHAPTER 15 Creating composable functional libraries
15.1.3 Composing values

Describing the problem as a value is the simplest way of embedding a “language” in 
F#. This only works for simple problems: we shouldn’t have to specify any compli-
cated behavior (such as the predicate of a filtering function), and most problems 
should be de-scribed just by combining primitive objects or collections and specify-
ing their properties.

 When the code effectively describes values, we can implement it in F# by creating 
types that allow us to create values specifying all the properties we want. The most 
common F# type for this kind of problem is a discriminated union, but you can also 
use lists (to represent collections of items) or records for primitives with a large num-
ber of properties. Listing 15.1 shows a simple type declaration for the same sort of ani-
mation example as the one shown earlier in LISP. 

type AnimatedLocation =            
   | Static of PointF 
   | Rotating of PointF * float32
   | Linear of PointF * PointF

type Animation =                                   
   | Disc of Brush * int * AnimatedLocation
   | Compose of Animation * Animation 

Using this type, we can now create values describing simple animations. In some 
sense, the types in listing 15.1 specify the syntax when using the library for creating 
animations, because it specifies what a valid animation value is. The following snippet 
shows the same animation as the LISP example:

let animation = 
   Compose(
      Disc(Brushes.Green, 50, Rotating(PointF(0.f,0.f), 100.f)), 
      Disc(Brushes.Red, 20, Linear(PointF(-100.f,0.f), PointF(100.f,0.f)))
   )

This creates a value with a tree-like structure describing an animation composed from 
two discs. It specifies how the location of each object changes over time and the F# 
data structure AnimatedLocation allows us to create objects that are static, rotating, or 
moving along a line.

 When using this approach in C#, we can rewrite the discriminated union type as a 
class hierarchy. Then we’ll get similar results by creating an object tree. In C# 3.0 this 
is further simplified by object and collection initializer features:

var animation = new Compose(
   new Disc { Brush = Brushes.Green, Diameter = 50, Movement =
      new Rotating(new PointF(0.0f,0.0f), 100.0f) },
   new Disc { Brush = Brushes.Red, Diameter = 20, Movement = 
      new Linear(new PointF(-100.0f, 0.0f), new PointF(100.0f, 0.0f) } }
);

Listing 15.1 Specifying animations using discriminated unions (F#)

Movement 
of object

Shapes with 
animated location
Licensed to   <kr_wilson@hotmail.com>



425Approaches for composable design
The principle is the same: the declarative library is used to create values that describe 
the problem. The choice between discriminated unions or collections and objects is 
largely influenced by what syntax creates the most natural code in the host language.

 This has been a passive way of describing the animation—we were basically con-
structing data structure. Let’s look at a technique that gives a more active feeling to 
the code.

15.1.4 Composing functions and objects

The second option that we can use for creating composable libraries is to build some 
function or an object that represents the declarative specification and that can exe-
cute it. This limits the operations we can do with the composed object, because the 
operation is an intrinsic part of every primitive. In fact, it’s often used when we need 
to perform a single operation, such as drawing an animation frame or calculating 
trades of a financial contract. We can easily add new primitives and implement new 
ways for composing the primitives. In functional languages, libraries written in this 
ways are called combinator libraries.
USING COMBINATOR LIBRARIES IN F#

When developing a combinator library, we’ll create a couple of primitives imple-
mented as functions or simple object values. To build more sophisticated specifica-
tions, we’ll add combinators: functions or operators used to compose primitive values. 
This approach is flexible, because we can declare new primitives by composing core 
primitives provided by the library. We can also create more sophisticated functions to 
compose primitives by using several combinators together.

 We’ll use this programming style to create the F# version of the animation 
library. It’s worth having a look at an example of the final result, so you can see what 
we’re aiming for. The following snippet shows an animation with a sun and two 
rotating planets:

let planets = 
   sun -- (rotate 150.0f 1.0f earth)
         -- (rotate 200.0f 0.7f mars)

The animation is composed from three prim-
itives using a single combinator: --. We’re 
using three solar objects. These aren’t a core 
part of the animation library, but we defined 
them using other available primitives. The 
example also uses a rotate primitive, which 
gives us a way to specify how an object rotates. 
This looks like a basic primitive, but again, it’s 
derived from the only single primitive avail-
able for specifying the movement of an 
object. Figure 15.1 shows the result of run-
ning this animation.

Figure 15.1 Planet simulation with Mars 
and Earth rotating around the sun
Licensed to   <kr_wilson@hotmail.com>



426 CHAPTER 15 Creating composable functional libraries
We can implement something like a combinator library in C# too. Instead of using 
function calls and custom operators, we’ll use the most elementary expression that 
object-oriented languages like C# have: a method call. 
USING METHOD CHAINS IN C#

We’ve talked about immutable objects in numerous places in the book, so you under-
stand the basic axiom: all operations of an immutable object return a new instance of 
the object with modified values. This changes the way we work with the type, but it 
also changes the syntax we can use. When each method call returns a new object, we 
can sequence operations by creating a method chain. We’ll demonstrate this using a 
LINQ query as an example. As you already know, all LINQ operators return a new 
sequence, keeping the original one unchanged, so we can elegantly chain operations 
like this:

Parser combinators
Combinator libraries are popular in the functional programming community and have 
been used for numerous tasks. The best-known example may be the Parsec library
for creating parsers [Leijen, Meijer, 2001]. In that case, we’re building functions that 
take a list of characters as an argument and return a parsed value, which can be, for 
example, an XML document loaded in a tree-like hierarchy. The primitives that we’re 
starting with are extremely simple, such as a parser that returns a character if it 
matches a predicate specified by the user (for example, a function that returns true
when the character is +) and fails in all other cases. The combinators let us run two 
parsers in parallel and return values returned by the one that succeeded or run them 
in a sequence. 

The following example shows how to write a simple parser that can parse trivial nu-
meric expressions, such as addition with numbers and variables (5+10 and x-12). 
We’re using a primitive parse that creates a parser from a predicate and a primitive 
repeated that applies the parser one or more times in a sequence. Next, we use two 
custom operators that compose parsers. The <|> operator builds a parser that suc-
ceeds when any of the two parsers succeed and the <+> operator composes parsers 
in a sequence:

let argument = parse Char.IsLetter <|> repeated (parse Char.IsDigit)
let operator = parse ((=) '+') <|> parse ((=) '-') 
let simpleExpression = argument <+> operator <+> argument 

We start by defining a parser argument that succeeds when the input contains a let-
ter, representing a variable name, or when it contains one or more digits, represent-
ing a number (it can parse strings like “x” or “123”, but not for example “1x3”). Next 
we build a parser named operator that succeeds when the input contains a plus or 
minus symbol. Note that we’re using partial function application to build a predicate 
that returns true when the input is the specified character. Finally, we compose the 
two parsers in a sequence using the <+> operator to build a parser that parses the 
whole expression.
Licensed to   <kr_wilson@hotmail.com>



427Approaches for composable design
var q = data.Where(c => c.Country == "London")
                .OrderBy(c => c.Name)
                .Select(c => c.Name);

Usual code written using a composable functional library is written as a single expres-
sion. In F#, the expression can be factored into pieces using let bindings, but that’s 
only a way to make the expression more readable. The code written using method 
chains in object-oriented languages is no different. We’re writing a single expression 
that looks like a declarative specification of what results we want to get.

 Now, let’s return to our example with animations. We can easily imagine that the 
values representing solar objects (sun, earth, and mars) are some immutable objects. 
Then we can write the same declarative specification of the solar system like this:

var planets =
   sun.Compose(earth.Rotate(150.0f, 1.0f))
        .Compose(mars.Rotate(200.0f, 0.7f));

All solar objects are values of the same type that could be called AnimShape. (This isn’t 
the representation we’ll implement later in the chapter, but we can use it to describe 
the code snippet.) The Rotate method can be invoked on any AnimShape value. It 
takes parameters for the rotation as arguments and creates a new animated shape, 
with additional rotation. 

 The code is very compositional, because all the operations of AnimShape return a 
new AnimShape value as the result. The first call to the Compose method creates a new 
shape that consists of the sun and the rotating earth. The second call combines the 
composed shape with rotating Mars, so we’ll get a single AnimShape value representing 
three solar objects, each of them with a different movement. Movements are composi-
tional too. If we chain a call to the Rotate method with a call to MoveFromTo (repre-
senting movement between two specified points), the object will be rotating and the 
center of the rotation will be moving between the specified points.

 As a benefit of method chaining, we can write declaratively looking code. In func-
tional programming, this doesn’t require additional effort, because we get the syntax 
for free thanks to immutability. Similar constructs can be used when working with 
mutable objects as well.  

Method chains for mutable objects
In imperative programming languages, providing the same syntax is a bit more diffi-
cult. If we were writing code to build a solar system animation using mutable objects, 
the methods for configuring objects would return void and we couldn’t use method 
chaining. A typical imperative code to create and configure objects looks like this:

var planets = new AnimShape();
earth.SetRotation(150.0f, 1.0f);
mars.SetRotation(200.0f, 0.7f);
planets.Children.AddRange(new AnimShape[] { sun, earth, mars });
Licensed to   <kr_wilson@hotmail.com>



428 CHAPTER 15 Creating composable functional libraries
The example we’ve just seen shows that composition is a powerful principle, so you’re 
probably eager to know how we can implement the library that enables this. In the 
next few sections, we’ll implement F# and C# libraries for describing animations, and 
we’ll also see how combinators and method chains work.

15.2 Creating animated values
The idea of expressing animations in a functional language using a combinator 
library comes from a Haskell project called Fran, created by Conal Elliott and Paul 
Hudak in 1997 [Elliot, Hudak, 1997]. Fran (which stands for functional reactive anima-
tions) allows you to create animations and specify how the animation reacts to events 
such as mouse clicks.

15.2.1 Introducing functional animations

The library that we’ll implement in this chapter is largely motivated by Fran. We’ll 
focus on the animations alone and we won’t talk in detail about reacting to events. 
We’ll look at how the library could be extended to support this in the next chapter, 
where we’ll talk about reactive GUI programming. Animations can be elegantly mod-
eled using time-varying values. In Fran, these values are called behaviors, and we’ll use 
the same name.

NOTE In our animation system, a behavior is a time-varying value. It can be rep-
resented as a composite value, whose actual value may be different 
depending on the time. We talked about composite values earlier. 
Option<int> is a simple example: it can have an integer value or a special 
value of None. Similarly, we’ll have a type Behavior<int>, whose actual 
integer value can be different depending on the time.

Behaviors are an essential part of our animation framework, because we can use them 
to specify the locations of objects. We’ll create an application that counts the time and 
redraws the content repeatedly. During each redraw, we’ll get the locations of all 

(continued)
Once you become accustomed to using the declarative composable style, you’ll find 
this less readable than the previous snippet. You can use various techniques to get 
the same syntax, even when working with mutable objects. In the context of OOP, the 
programming style is also called a fluent interface, and it has many supporters be-
cause of the enhanced readability.

When using this style, you create a wrapper type that configures a mutable object cre-
ated under the hood. Martin Fowler calls the construct Expression Builder and de-
scribes how to do this [Fowler, 2008]. This is one of the nice benefits of using 
functional programming style in C#: you’ll often end up creating a readable fluent in-
terface even if you’re not doing that intentionally. Be careful when using an API like 
this. A class that uses fluent interfaces may look like immutable even though it’s not!
Licensed to   <kr_wilson@hotmail.com>



429Creating animated values
objects at the current time and we’ll draw them, which means that the whole scene
will be animated. We’ll focus on behaviors now and come back to their place in the 
animation library later. At that point you’ll see that once we have behaviors, the rest of 
the framework falls into place easily.

15.2.2 Introducing behaviors

Behaviors are largely independent from the animation library. They represent a value 
that varies according to time: it may not be related to graphics or drawing. A behavior
could model network traffic flow, tidal movement, a stock price, the value of sensory 
input of a robot such as the temperature, or any other time-varying measurement.

 This means that we can start by implementing behaviors without restricting our-
selves to animation. In a typically functional manner, we’ll first think about how we 
want to represent behaviors, then we’ll implement some simple ones. Once we’ve cre-
ated the behaviors, we’ll be able to apply them to animation; we’ll develop more 
sophisticated behaviors using composition toward the end of the chapter.

 We’ve already described a behavior as a composite type; let’s make that concrete 
and give it a name: Behavior<'T>. It’s generic so that it can represent any kind of 
time-varying measurement: a temperature behavior might return a float32, whereas 
an ad rotator in a web application might return a Uri for the ad to display at the given 
time. From the user’s perspective, the internal representation isn’t interesting. Our 
library will provide basic functions to create behaviors, and the user will build behav-
iors using these functions. Since we’re going to implement even the simple behaviors, 
we’ll need to work at a lower level.
REPRESENTING BEHAVIORS IN F#

One possible representation would be to store the initial value and some difference 
that specifies how the value changes over time. If we had an initial value of 10 and a 
“difference per second” of 1, the value after 15 seconds would be 25. This isn’t very 
flexible and we could represent only limited kinds of animated values. We’ll use a 
more general representation: a function that returns the value if we give it the time as 
an argument. This allows us to represent any kind of time-based value. Here are the 
F# type declarations.

type BehaviorContext =
   { Time : float32 }
type Behavior<'T> =
   | BehaviorFunc of (BehaviorContext -> 'T)

The BehaviorContext type represents arguments for evaluating time-varying values. 
The Behavior type is declared as a single-case discriminated union, and it consists of a 
function that evaluates the value of behavior. The simplest possible representation of 
the behavior would be an F# function type float32 -> 'T, and in that case we wouldn’t 
have to declare a type Behavior<'T>. 

Listing 15.2 Representing behaviors using functions (F#)
Licensed to   <kr_wilson@hotmail.com>



430 CHAPTER 15 Creating composable functional libraries
TIP In this chapter, we’re storing a time in behaviors as a value of type 
float32. The reason is that we’ll use behaviors primarily with graphics, 
and the System.Drawing namespace uses this numeric type. There are 
other options as well. Most interestingly, we could use units of measure 
and store the time as float<s> representing time in seconds. Units of 
measure would make the code more self-explanatory. We could define a 
pixel unit (px) and represent locations as float<px>. You can try aug-
menting the code with units yourself, or you can find a version that uses 
units on the book’s website.

It’s generally a good idea, to name the types that are important. Listing 15.2 has taken 
this guideline two steps further, so it will be easier to use and extend behaviors in the 
future. 

■ We’re using a simple record type to wrap the current time. This allows us to add 
new information that can be used by the behavior, beyond just the time.

■ We’re using a single-case discriminated union to wrap the function. This gives a 
name to the type and allows us to hide the internal representation of the type.

The user of our library could then see Behavior<int> without knowing that internally 
it’s just a function. The fact that we’re using single-case discriminated union also 
means we can use pattern matching to access the function value. Now that we’ve got 
the F# type declaration, let’s look at its equivalent in C#.
REPRESENTING BEHAVIORS IN C#

We have fewer options to choose from in C#, although there are possibilities other than 
creating a class. We could represent the behavior directly using a delegate such as 
Func<float, T> but we’re going to follow the F# model and hide the internal represen-
tation. Listing 15.3 shows a simple implementation that’s quite similar to the F# code.

internal struct BehaviorContext {       
   public BehaviorContext(float time) {
      this.time = time;
   }
   private readonly float time;
   public float Time { get { return time; } }
}
public class Behavior<T> {
   internal Behavior(Func<BehaviorContext, T> f) { 
      this.f = f; 
   }
   private readonly Func<BehaviorContext, T> f;
   internal Func<BehaviorContext, T> BehaviorFunc
   { get { return f; } }                                       
}

We’re using a simple immutable value type to store the current time B. We’ll pass its 
values as arguments to various functions, so we want to make sure it can’t be modified. 
In this case, making the type immutable is as simple as creating a read-only field and 

Listing 15.3 Representing behaviors (C#)

B
Represents 
animation state

C
Stores 
current time

D Wraps function that 
calculates value
Licensed to   <kr_wilson@hotmail.com>



431Creating animated values
property C. The representation of the behavior itself is a generic class with a single 
immutable property of type Func<DrawingContext, T> D, which corresponds to the 
function value wrapped inside an F# discriminated union.

 To hide the representation of the Behavior type from the user, we’ve marked the 
property as internal. Similarly, the BehaviorContext type is also internal. Instead of 
constructing the behaviors directly, the user will create them using the primitive func-
tions that we provide. Let’s look at those primitives now, starting with the C# version.

15.2.3 Creating simple behaviors in C#

We’ll begin with just a few basic functions for creating behaviors. Once we have a nice 
way for visualizing behaviors, we’ll return to this topic and add interesting constructs.

 The simplest method that creates a behavior will take a function that we can 
directly use as the underlying representation of the behavior. This will be an internal 
method used for implementation of other primitives. Since we’re going to wrap the 
creation of the object in a method, we can create a generic method in a nongeneric 
class and use C#’s type inference to make the calling code simpler. This resembles the 
helper methods we implemented earlier, such as Option.Some. Here’s the code for 
this trivial creation method.

internal static class Behavior {
   internal static Behavior<T> Create<T>(Func<BehaviorContext, T> f) {
      return new Behavior<T>(f);
   }
}

Listing 15.4 creates a new instance of the immutable Behavior<T> class. We’ll see that 
we can create most of the behaviors without using this method directly from the user’s 
code, so we can mark it as internal. This means that the internal representation of 
behaviors can stay fully hidden.

 Next, we can use the Behavior.Create method to create a couple of primitive con-
structs that we’ll make available to the user. In C#, we’ll expose them as static methods 
and properties in a static class. You can see this class in listing 15.5.

public static class Time {
   public static Behavior<float> Current {             
      get { return Behavior.Create(ctx => ctx.Time); }
   }
   public static Behavior<float> Wiggle {  
      get { return Behavior.Create(ctx =>
               (float)Math.Sin(ctx.Time * Math.PI)); }
   }
   public static Behavior<T> Forever<T>(T v) {  
      return Behavior.Create(ctx => v);
   }

Listing 15.4 Creating behavior from a function (C#)

Listing 15.5 Primitive behaviors (C#)

B

C

D

Licensed to   <kr_wilson@hotmail.com>



432 CHAPTER 15 Creating composable functional libraries
   public static Behavior<float> Forever(this float v) {  
      return Behavior.Create(ctx => v);
   }
}

The first three constructs are quite straightforward. The Current property returns a 
behavior that represents the current time B. The property named Wiggle calculates 
the sine function of the time C. This will be quite useful in the animation—sine can 
be used for creating circular movements, and we’ll use it later to create rotating draw-
ings. The Forever method creates a behavior that always has the same value, which is 
specified as an argument D. This method is generic, so we can use it to create con-
stant behaviors of any type. The nongeneric overload of the method E makes it possi-
ble to use a nicer syntax when creating constant behaviors of floating-point numbers. 

 We’ll use behaviors for creating animations later, but there’s another way to visual-
ize them: we can draw a graph of a numeric value against time in the obvious way. Fig-
ure 15.2 shows the three primitive behaviors we just implemented. The function that 
draws the screenshot is available as part of the source code available at this book’s web-
site, so you can use it to experiment with behaviors yourself.

 The last construct in listing 15.5 is an extension method for the C# float type E. 
The C# syntax allows us to call methods directly on numeric literals, so we can use this 
method to write expressions such as 0.5f.Forever(). This is syntactically very simple, 
which makes our library look a bit like DSL. In later examples, this construct will be 
used frequently; calling the Time.Forever method directly would definitely make the 
code less readable.

 Why didn’t we create a single generic method that was also an extension method? 
That would work, but we’d add a Forever method to each and every single .NET type. 

E

Figure 15.2 Primitive behaviors during the first two seconds. The value of 
current ranges from 0 to 2 and wiggle oscillates between +1 and –1. The 
constant behavior has a value of 1.5.
Licensed to   <kr_wilson@hotmail.com>



433Creating animated values
This looks like overkill, because we won’t need to create behaviors from most of the 
.NET types. On the other hand, this extension method makes sense for floats, since 
we’ll need to create constant behaviors from floating-point numbers relatively often.

 Now we know what behaviors we want to implement, it’s easy to do the same thing 
in F#. After that, we’ll experiment with them in F# Interactive to learn how we can use 
them later in this chapter. 

15.2.4 Creating simple behaviors in F#

We’ll begin by duplicating the functionality we’ve just implemented in C#. Listing 15.6 
implements two behavior values (called wiggle and time) and a function for creating 
constant behaviors (called forever).

> open System;;
> let sample(a) = BehaviorFunc(a);;                     
val sample : (BehaviorContext -> 'a) -> Behavior<'a>

> let forever(n) = sample(fun _ -> n)
   let time          = sample(fun t -> t.Time)
   let wiggle          = sample(fun t -> sin(t.Time * float32 Math.PI))
  ;;
val forever : 'a -> Behavior<'a>
val time : Behavior<float32>       
val wiggle : Behavior<float32>  

Listing 15.6 starts by creating a utility function called sample B, which is similar to the 
previous Behavior.Create method. We could use the discriminated union construc-
tor BehaviorFunc directly, but we want to make sure that the internal representation 
isn’t unnecessarily exposed. In case we later wanted to change the representation 
from a function to, say, a list of values, we could still provide a reasonable implementa-
tion of the sample function. The name sample reflects the fact that the function can 
be used to get individual observations at selected times (called sampling in statistics).

 Once we have the utility function, we create three primitives just as we did in list-
ing 15.5. You can also see the type signatures inferred by F# Interactive C. We have 
a generic function (forever) and two simple values (time and wiggle). The one 
aspect of the C# code that we haven’t implemented yet is a syntactically friendlier 
way to construct constant numeric behaviors. Using the forever function, we could 
write (forever 0.5f), which isn’t as elegant as it could be. We can use the same 
approach as in C# and define a type extension for the type float32:

type System.Single with 
   member x.forever = forever(x)

To implement an extension member, we have to use the full .NET name of float32, 
which is System.Single. Extension members in F# aren’t limited to methods, so we’ve 
implemented this extension as a property. It’s used like this:

> let v = 123.0f.forever;;
val v : Behavior<System.Single>

Listing 15.6 Primitive behavior functions and values (F#)

B
Builds behavior 
directly

C Declares generic 
function, two values
Licensed to   <kr_wilson@hotmail.com>



434 CHAPTER 15 Creating composable functional libraries
As you can see, this is syntactically very elegant. If we strictly followed .NET naming, 
the name of the property would start with an uppercase F. However, we’re writing a 
library that attempts to look like a language. In that case, the syntax is important and 
lowercase single-word identifiers are often used as keywords of DSL. Now that we know 
how to create primitive behaviors, we’ll explore working with them. The best tool for 
explorative programming like this is F# Interactive.

15.3 Writing computations with behaviors
In this section, we’ll write a few utility functions to help us work with behaviors. Even 
though we’re experimenting at this stage, most of the code in this section will be use-
ful when we implement our animation sample. We’ll implement the functions in F# 
first and test them in F# Interactive, then reimplement the most important ones in C#. 

 The first thing we’ll need to implement in order to test any code using behaviors is 
a function that reads the value of a behavior at the specified time.

15.3.1 Reading values

Calculating the value of a behavior at the given time is easy. The internal representa-
tion is a function that gives us the value when it gets the time as an argument, so we 
need to execute this function. Listing 15.7 shows a function called readValue, which 
takes a time and a behavior and returns the value. Once we have this function, we use 
it to read values from the primitive behaviors we created earlier.

> let readValue time (BehaviorFunc bfunc) =
     bfunc { Time = time };; 
val readValue : float32 -> Behavior<'a> -> 'a

> 42.0f.forever |> readValue 1.5f;;
val it : System.Single = 42.0f

> time |> readValue 1.5f;;
val it : float32 = 1.5f

> wiggle |> readValue 1.5f;;
val it : float32 = -1.0f

The function in listing 15.7 takes a behavior as the second parameter, which makes it 
possible to call the function elegantly using the pipelining operator. We use pattern 
matching to extract the function carried by the behavior passed into the function. Next 
we construct a BehaviorContext value to wrap the given time, and pass it as an argu-
ment to the function, which calculates the value of the behavior at the specified time.

 The rest of listing 15.7 shows values calculated by the primitive behaviors we imple-
mented earlier. The constant behavior works as expected, the time primitive returns 1.5f 
after one and half seconds, and the value of wiggle in the lowest peak is –1.0f. The inter-
active development style once again helped us make sure that we’re starting with correct 
code. Reading values of primitive behaviors is a good start, but how can we create behav-
iors that are more sophisticated? Suppose we wanted to create behavior that represents 

Listing 15.7 Reading values of behaviors at the specified time (F# Interactive)
Licensed to   <kr_wilson@hotmail.com>



435Writing computations with behaviors
the square of the current time. We could write this using sample, but that’s quite com-
plicated—and we’re hoping to hide that from the end user anyway. Ideally, we want to 
apply the square function to a behavior.

15.3.2 Applying a function to a behavior

When describing behaviors earlier, we explained that a behavior is a composite value 
and that a similarity exists between Behavior<int> and Option<int>. Both are com-
posite values that contain another value, but in some special way. The option type is 
unusual because it may be empty, and behavior is unusual because the value depends 
on the time.

 This analogy suggests a way forward for behaviors. We’ve seen the Option.map
function in a few different contexts now, and its ability to apply the specified function 
to the value carried by the option is exactly what we’re looking for in our behavior sys-
tem. Listing 15.8 creates a similar map function for behaviors and demonstrates it with 
a simple “time squared” behavior.

> module Behavior =
     let map f (BehaviorFunc bfunc) = 
        sample(fun t -> f(bfunc(t)));;  
module Behavior = 
   val map : ('a -> 'b) -> Behavior<'a> -> Behavior<'b>  

> let squared = time |> Behavior.map (fun n -> n * n);;  
val squared : Behavior<float32>

> squared |> readValue 9.0f;;  
val it : float32 = 81.0f

The map function is declared inside a module to follow the standard naming pattern. 
The first argument of Behavior.map is a function (f) that we want to apply to values of 
the behavior. The second argument is the behavior itself, and we again extract the 
underlying function that represents it (bfunc) using pattern matching. To build the 
result B, we need to create a new behavior, so we construct its underlying representa-
tion, which is a function. We use a lambda function that takes the time as the argument. 
It first runs bfunc to get the value of the original behavior at that time, then runs the f
function to get the final result. In fact, the body is just composing the functions, so we 
could also write sample(bfunc >> f) as the implementation. In listing 15.8, we used a 
lambda function to make the code more explicit, but after working with functional 
code for some time, you’d probably find function composition easier to use and more 
readable in this case.

 We can now use Behavior.map to perform any calculation with the values carried 
by the behavior. The second command C shows that we can calculate the square of 
other primitive behaviors. The behavior that we get as a result doesn’t execute the 
square function until we ask it for an actual value at the specified time. When we do 
this D, it executes the function that we returned as a result from map. This function 

Listing 15.8 Implementing map for behaviors (F# Interactive)

B

C

D

Licensed to   <kr_wilson@hotmail.com>



436 CHAPTER 15 Creating composable functional libraries
then gets the current time by evaluating the value of the original behavior (in this case 
the time primitive). Then it runs the square function that we provided. 

 The general goal of combinator libraries is to provide a way to describe the prob-
lem by composing other primitives rather than writing a program to solve the prob-
lem. Functions like Behavior.map play a key role in this approach, because they 
represent a well-understood idea (such as projection) that we can use when writing a 
declarative description of the problem. As we’ll see shortly we can employ the map
function in one very useful way that we didn’t think of when designing it.

 We’ve made a lot of progress: we can now take a primitive behavior and construct a 
more complex behavior using almost any calculation. We could now implement the 
wiggle primitive just by applying the sine function to the time primitive using map. 
There are still things that we can’t do easily. What if we wanted to add two behaviors? 
Is there a more elegant way to do this than using the sample primitive?

15.3.3 Turning functions into “behavior functions”

The Behavior.map function takes two arguments and we specified both in listing 15.8. 
Partial function application allows us to call the function with a single argument. 
Using the function in this way will give us an interesting insight. In listing 15.9, we only 
specify the first argument (a function); we’ll use the abs function, which returns the 
absolute value of an integer.

> abs;;
val it : (int -> int)                              

> let absB = Behavior.map abs;;
val absB : (Behavior<int> -> Behavior<int>)        

The first line shows the type of the abs function, and the second line shows what hap-
pens if we call Behavior.map with abs as the first and only argument. The type of the 
result is a function that takes a Behavior<int> and returns a Behavior<int>. This 
means that we used Behavior.map to create a function that calculates the absolute 
value of a behavior. We can use this trick to turn any function that takes a single 
parameter into a function that does the same thing for behaviors. 
LIFTING OF OPERATORS AND FUNCTIONS

The construct that we’ve just seen is a well-known concept in functional program-
ming, usually called lifting. In some senses, we could even call it a functional design 
pattern. The Haskell wiki [HaskellWiki, 2009] defines lifting as a concept that allows 
us to transform a function that works with values into a function that does the same 
thing in a different setting. Lifting is used in one C# 2.0 language feature, so we can 
demonstrate it using familiar code. If we want to create a primitive value such as int, 
which can have a null value, we can use C# 2.0 nullable types:

int? num1 = 14;
int? num2 = null;

Listing 15.9 Using Behavior.map with partial application (F# Interactive)
Licensed to   <kr_wilson@hotmail.com>



437Writing computations with behaviors
So far, there’s nothing out of the ordinary. We’ve declared two nullable int values. 
One contains a real integer value and the other doesn’t have a value. You may not 
know that you can write following:

int? sum1 = num1 + num2; 
int? sum2 = num1 + num1;

The result of the first calculation will be null, because at least one of the arguments is 
null. The result of the second expression will be 28, because both arguments of the + 
operator have a value. In this example, the C# compiler takes the + operator, which 
works with integers, and creates a lifted + operator that works with nullable types. This 
operation is similar to what we want to do with behaviors. 

 Behavior.map implements lifting for functions with a single argument, but we’d 
like to implement the same functionality for other functions. Listing 15.10 shows help-
ers to allow functions with up to three arguments to be lifted.

> let lift1 f behavior =
     map f behavior
   let lift2 f (BehaviorFunc bf1) (BehaviorFunc bf2) =
     sample(fun t -> f (bf1(t)) (bf2(t)))
   let lift3 f (BehaviorFunc bf1) (BehaviorFunc bf2) (BehaviorFunc bf3) =
     sample(fun t -> f (bf1(t)) (bf2(t)) (bf3(t)))
  ;;
val lift1 : ('a -> 'b)                 -> B<'a> -> B<'b>
val lift2 : ('a -> 'b -> 'c)         -> B<'a> -> B<'b> -> B<'c>
val lift3 : ('a -> 'b -> 'c -> 'd) -> B<'a> -> B<'b> -> B<'c> -> B<'d>

We’re placing all functions to the Behavior module, but the listing doesn’t repeat the 
module declaration. Our example first shows how to implement the lifting functions 
and, separately, shows their signatures. Note that we’ve abbreviated Behavior as B in 
the printed type signatures.

 The implementation of lifting function with one parameter is trivial, because it 
does the same thing as Behavior.map. This is possible only thanks to partial function 
application, so the C# implementation will be different. The implementations of 
lift2 and lift3 are similar to the map function we saw earlier, and the same pattern 
could clearly be applied to functions with more than three arguments.

 At this point, we can implement general computations for behaviors without using 
the low-level sample primitive. Any computation you can think of can be implemented 
using the time primitive and one of the lifting functions. Here’s the solution to our 
earlier problem of adding two behaviors:

> let added = Behavior.lift2 (+) wiggle time;;
val added : Behavior<float32>

This example uses the lift2 function, passing in the + operator and two primitive 
behaviors. If we read the value of the returned behavior, it will get the values of the two 
behaviors used as arguments and add them together. We can visualize this behavior in 

Listing 15.10 Lifting functions of multiple arguments (F#)
Licensed to   <kr_wilson@hotmail.com>



438 CHAPTER 15 Creating composable functional libraries
the same way as before. Figure 15.3 shows this behavior and a version of the “squaring” 
behavior, modified slightly to avoid it going off the top of the screenshot too quickly. 

 You may be wondering if that’s the best we can do in terms of syntax—it’s still a lit-
tle clumsy, after all. Indeed, later on we’ll see what’s required to allow us to write just 
wiggle + time, but first let’s implement Behavior.map and the lifting functions in C#.

15.3.4 Implementing lifting and map in C#

Lifting functions and a map operation are essential for constructing behaviors, so we’ll 
need them in the C# version of the project as well. After the previous discussion about 
the F# version, you have some idea of what these functions should do, so we won’t dis-
cuss everything in detail. The C# version has interesting differences from the F# code.

 Whenever we’ve seen a map function in F#, we’ve used the name Select in C#. This 
is the standard terminology used in LINQ, so we’ll stay consistent and implement a 
Select extension method for behaviors. Earlier we mentioned that in C# there’s a dif-
ference between the Select method and the lifting methods. The best way to under-
stand the difference is to look at the function signatures for Select and the simplest 
lifting method:

// Apply the function 'f' to values of 'behavior'
Behavior<R> Select<T, R>(Behavior<T> behavior, Func<T, R> f);

// Returns a function that applies 'f' to the given behavior
Func<Behavior<T>, Behavior<R>> Lift<T, R>(Func<T, R> f);

In C#, we can create an overloaded method, so the lifting method for different types 
of functions will be called Lift. The version in the previous code snippet takes one 
argument (a function) and returns a function (as a Func delegate). The Select
method takes the function to apply and also the behavior, so it can immediately con-
struct a new behavior using this function. The implementation of these functions will 
be similar, so we can still see that they’re related, but we can’t implement them easily 
using the same code. (It’s possible to implement each of these functions using the 
other one. If you want to practice your functional thinking skills, you can try to do 
that.) Listing 15.11 shows the implementation of Select, and two overloads of Lift. 

Figure 15.3 Graph showing 
values of two complex behaviors 
during the first 10 seconds
Licensed to   <kr_wilson@hotmail.com>



439Writing computations with behaviors
public static Behavior<R> Select<T, R>
      (this Behavior<T> behavior, Func<T, R> f) {
   return Create(ctx => f(behavior.BehaviorFunc(ctx)));  
}

public static Func<Behavior<T>, Behavior<R>> 
      Lift<T, R> (Func<T, R> f) {
   return behavior => Create(ctx => f(behavior.BehaviorFunc(ctx)));  
}

public static Func<Behavior<T1>, Behavior<T2>, Behavior<R>>
      Lift<T1, T2, R>(Func<T1, T2, R> f) {
   return (b1, b2) => Create(ctx =>                          
      f(b1.BehaviorFunc(ctx), b2.BehaviorFunc(ctx)));  
}

We’ve added all the extension methods to the static, nongeneric Behavior class, which 
already contained the internal Create method. The implementation of Select B is a 
direct translation of the F# version. It constructs a behavior and gives it a function that 
calculates the value at the specified time using the original behavior (behavior) and the 
provided function.

 The second method C is more interesting, because it returns a function. We 
implement this with a lambda function that takes the behavior as an argument and 
does the same thing as the previous method. Finally, we implement one more 
overload, which is similar but works with functions of two arguments D. Using these 
methods, we can construct the same behaviors as we did in F#. The best way to 
create a behavior representing the squared time is to use the Select extension 
method. To add two primitive behaviors, we’ll create a lifted addition function and 
then use it:

var squared = Time.Current.Select(t => t * t);

var plusB = Behavior.Lift((float a, float b) => a + b);
var added = plusB(Time.Current, Time.Wiggle);

The first example should be fairly straightforward. It uses the Select method to spec-
ify a function that will be used for calculating values of the squared behavior. The sec-
ond example first declares a value plusB, which is a function that can add two 
behaviors of type float. The overall type of this function is quite long:

Func<Behavior<float>, Behavior<float>, Behavior<float>>

Fortunately we can use an implicitly typed local variable to avoid cluttering up the 
source code. Once we have this lifted + operator, we can use it to add two behaviors 
together. In this case we add behaviors representing the current time and the wiggle
primitive, with the result being another behavior (more specifically Behavior<float>).

 Behaviors are essential to our animation framework and are the most difficult 
aspect of it. The next step is to decide how we’re going to draw our shapes. We’re not 
animating them yet—we’re drawing an individual frame.

Listing 15.11 Lifting methods and Select (C#)

B

C

D

Licensed to   <kr_wilson@hotmail.com>



440 CHAPTER 15 Creating composable functional libraries
15.4 Working with drawings
If we’re going to work with a drawing, first we must ask ourselves, what is a drawing? 
What do we want it to represent in a general sense? What do we want to be able to do 
with it? What’s the best way to represent graphics in our animations?

 We’ll think about these questions in a moment, but we already know some of the 
answers—in particular, we know that we want to be able to compose our drawings. The 
animation will be described in terms of drawings that are moving and that are com-
posed to form a single drawing. In the future, we could also support other geometrical 
transformations such as scaling and skewing.

15.4.1 Representing drawings

In chapter 2 we used the concept of a shape to demonstrate discriminated unions. 
This would be a good choice for a diagramming application, where the application 
needs to understand the structure of shapes. It wouldn’t be particularly flexible 
for our animation library, so we’ll use a more extensible representation. In C#, a 
drawing will be an interface with a method to draw with a Graphics object. This 
could be represented more simply as a function, but again we want to hide the inter-
nal representation. 

 The F# version will follow the C# style and use an interface too. The reason is that 
the code will be using a lot of .NET functionality, and interfaces are more consistent 
with standard .NET programming than F#-specific types. Another reason is that it’s a 

Behaviors and LINQ
The signature of the Select method in listing 15.11 has the same structure as the 
Select method used in LINQ when writing queries. This isn’t accidental, and it 
means you can use C# query expressions to create behaviors. Here’s another way of 
creating the squaring behavior:

var squared = from t in Time.Current select t * t;

This means the same thing as the earlier version: the compiler translates the query 
expression into the same code. This type of query is interesting because the source 
of the values (Time.Wiggle) effectively contains a potentially infinite set of values. 
The “query” is only evaluated when we need a value from the new behavior for a spe-
cific time. We won’t discuss LINQ queries for behaviors in any more detail here, but 
we could also implement the SelectMany query operator, which would allow us to 
combine behaviors like this: 

var added = from a in Time.Current
                from b in Time.Wiggle
                select a + b;

This is definitely an interesting alternative to using lifting explicitly. In F#, we could 
implement a computation expression builder too. You can find implementations of 
these interesting extensions on this book’s website. 
Licensed to   <kr_wilson@hotmail.com>



441Working with drawings
good chance for us to exercise working with F# object types. As the representations 
are so similar, we can discuss them together. Listing 15.12 shows the first steps in 
implementing drawings.

// C# version
using System.Drawing;

interface IDrawing {     
   void Draw(Graphics gr);
}

class Drawing : IDrawing {               
   private readonly Action<Graphics> f;
   public Drawing(Action<Graphics> f) {
      this.f = f; 
   }   
   public void Draw(Graphics gr) {
      DrawFunc(gr);
   }
}

// F# version
open System.Drawing

type Drawing =                         
   abstract Draw : Graphics -> unit

let drawing(f) =   
  { new Drawing with 
       member x.Draw(gr) = f(gr) }

Even though the architectural idea is the same in both languages, the implementation 
uses different techniques. In both C# and F#, we first define an interface B D. In F# 
we don’t say that we’re declaring an interface—the compiler infers that because the 
type contains only abstract members. As we mentioned in chapter 9, we can omit the I
prefix from the F# interface name as long as it’s used only from F#, because F# unifies 
all type declarations. 

 Next we need to decide how we’re going to create a drawing. It’s specified by the 
drawing function, so we want to be able to specify a lambda function. In C#, we create 
a simple class C that implements the interface and takes a function of type 
Action<Graphics> as the argument of its constructor. The argument represents the 
function that is called when the drawing is asked to draw itself. In F#, we could use 
object expressions every time we need to create a Drawing value, but we implement a 
utility function to simplify this task. The function drawing E takes a function that 
does the drawing as an argument and returns a Drawing value that will use this func-
tion. This allows us to use a lambda function, which is syntactically simpler than an 
object expression.

 Listing 15.12 shows that object-oriented and functional concepts can be used 
effectively together. The interface declaration uses a conventional object-oriented 

Listing 15.12 Representing drawings in C# and F#

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



442 CHAPTER 15 Creating composable functional libraries
idea, because the sample we’re discussing in this chapter is already a more evolved 
application. However, for the implementation, we can still use the simplicity of 
functional style. We’ll see this in the next section as we implement our first con- 
crete drawing.

15.4.2 Creating and composing drawings

We’re going to keep things simple by drawing a circle. We could implement many 
other types in a similar way, but we’ll look at one example and you can add additional 
drawings yourself. The exact shapes aren’t particularly important, but we need some-
thing concrete before we can discuss the more interesting topic of composition.
CREATING AND MOVING CIRCLES

Creating a drawing is a matter of providing a function to draw on the Graphics object, 
which is given to the function as an argument. The Graphics type has a FillEllipse
method, so the implementation shouldn’t be tricky at all. It’s worth noting that the list-
ing contains a small amount of additional noise: adding another drawing would only 
take a few lines of code. Listing 15.13 shows both the C# and F# implementations.

// C# version 
public static class Drawings {                                    
   public static IDrawing Circle(Brush brush, float size) {
      return new Drawing(gr =>                                             
         gr.FillEllipse(brush, -size/2.0f, -size/2.0f, size, size)
      );
   } 
}

// F# version
module Drawings =        
   let circle brush size =
      drawing(fun g ->                                                        
         g.FillEllipse(brush, -size/2.0f, -size/2.0f, size, size))

To better structure the code, we’ve placed the functionality inside an organizational 
unit named Drawings. In C# it’s implemented as a static class B, while in F# we’re 
using a module D. The C# code that implements the Circle method creates a new 
Drawing object B, giving it the drawing function as an argument. The lambda func-
tion calls FillEllipse with the specified brush and size. In F#, we implement circle
as a simple function that takes the brush and the size as two arguments.

 In the traditional functional design, this is the preferred way of writing functions 
unless there’s some logical reason for using tuples (such as when a tuple represents a 
point with two coordinates). We’ve been using tupled parameters more often in F#, to 
conform with the usual .NET coding style, but in this case, we’ll use the functional 
approach. Using the functional style when developing combinator libraries is gener-
ally a good idea—we’ll see shortly how this design makes it easier to create an ani-
mated circle.

Listing 15.13 Creating circle in F# and C#

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



443Working with drawings
 The function uses the higher-order function drawing that we implemented earlier 
and gives it a lambda function to draw the circle E. We’ll use circle as the only prim-
itive drawing for now, and see what we can do with it.

 If we created two circles, the center of both would be the point (0,0). This means 
that if we composed two circles, we wouldn’t get very interesting results. The code in 
listing 15.13 allows us to specify a circle’s size, but it appears we forgot to specify a loca-
tion! Actually this was deliberate, because we’re going to use a different approach to 
specify the location. We’ll create a circle with the center at (0,0) and move it to any 
point we’ll need.

 We’ll implement movement of a drawing as a function (or method) that takes a 
drawing and a pair of coordinates as arguments. It then returns a new drawing that 
draws the original one translated by the given offset. How can we implement this func-
tionality? We could draw the original drawing to a bitmap and then draw the bitmap to 
the specified coordinates, but there’s a simpler solution. The Graphics type that we’re 
using to do the drawing supports the translation transformation directly. Listing 15.14 
shows the implementation for both languages.

// F# version
let translate x y (img:Drawing) =
   drawing(fun g ->
      g.TranslateTransform(x, y)    
      img.Draw(g)                      
      g.TranslateTransform(-x, -y) )  

// C# version
public static IDrawing Translate(this IDrawing img, float x, float y) {  
   return new Drawing(g => {
      g.TranslateTransform(x, y);
      img.Draw(g);
      g.TranslateTransform(-x, -y); } 
   );
}

The combinator returns a new translated drawing value. The implementation uses the 
same creation pattern as the code to draw a circle. The F# function uses the drawing
primitive to specify how to draw the translated image, while in C# we create a new 
Drawing object directly and specify the drawing function. The C# version implements 
Translate as an extension method E, so that we can call it using dot notation. Note 
that we’re adding a method to an interface IDrawing. This wouldn’t be possible with-
out extension methods, because interfaces can contain only abstract members.

 The implementation is slightly more interesting this time. It changes the origin of 
the coordinate system used when drawing on the graphics using the TranslateTrans-
form method B. This means that if we run the original drawing code (drawing a circle, 
for example), it will still draw at (0,0), but the point will actually be somewhere else on 
the graphics surface. Once we configure the translation, we run the original drawing C

Listing 15.14 Translating drawings in F# and C#

B
C

D

E

Licensed to   <kr_wilson@hotmail.com>



444 CHAPTER 15 Creating composable functional libraries
and reset the transform D. Strictly speaking, we should run the code that restores the 
original settings in a finally block, but we wanted to keep the code simple.

 Now that we can move drawings around, we can finally create something other 
than circles drawing on top of each other. However, we don’t want to work with a 
collection of drawings all the time. How can we create a single drawing from two 
other drawings?
COMPOSING DRAWINGS

If we composed drawings by storing all the drawings in a collection, we’d have to dupli-
cate many functions. We might want to move all the drawings in a collection, but trans-
late only works with a single drawing. Instead, we want to create a single drawing that 
will draw all the composed values. We’re going to create a composition function to 
achieve this. To understand how the function works, we can look at its type signature:

val compose : Drawing -> Drawing -> Drawing

The function takes two drawing values as arguments and returns a single drawing. We 
don’t need to specify any offsets to define the positions of drawings, because we can 
translate the arguments before calling compose using the translate function from 
the previous section. The implementation is quite simple, as you can see here.

// F# version
let compose (img1:Drawing) (img2:Drawing) = 
   drawing(fun g ->
      img1.Draw(g)   
      img2.Draw(g) )  

// C# version
public static IDrawing Compose(this IDrawing img1, IDrawing img2) {
   return new Drawing(g => {
      img1.Draw(g);
      img2.Draw(g); }
   );
}

Listing 15.15 once again repeats the pattern that we’ve been using to create drawings. 
This time, the lambda function used for the new drawing invokes the Draw method of 
both of the original drawings that we’re composing together B. 

 Using the three functions we’ve just implemented, we can create drawings contain-
ing multiple colorful circles at different locations. Implementing other primitive 
drawings would be simple but wouldn’t teach us anything new: we’ll stick with circles 
for this chapter.

 So far we’ve seen the code used to implement the drawings, but we haven’t used 
any of it. Before we explore animations, let’s look at some code to create a simple 
drawing. We won’t create a full application yet, because that will be easier to demon-
strate when we start animating the drawings, so for now we’ll look at only the code. 
Figure 15.4 shows a simple drawing that we want to create.

Listing 15.15 Creating composed drawing in F# and C#

B Draws both 
composed drawings
Licensed to   <kr_wilson@hotmail.com>



445Creating animations
 We’ll just look at the F# version of the code. There 
will be more interesting C# samples once we turn 
everything into animations.

open Drawings            

let greenCircle = circle Brushes.OliveDrab 100.0f
let blueCircle = circle Brushes.SteelBlue 100.0f

let greenAndBlue = 
   compose (translate -35.0f 35.0f greenCircle)    
                (translate 35.0f -35.0f blueCircle)         

The code starts by opening the Drawings module, 
which contains all the functions for working with draw-
ings. Next, we create one green and one blue circle of size 100 pixels. We move these 
circles in different directions by about 50 pixels and then compose the two translated 
drawings to create a single drawing value.

NOTE In this section, we’ve only implemented a couple of basic drawing features, 
but there are many other ideas you may want to try. You could create new 
primitives such as squares or bitmaps, and also new transformations such 
as rotating and scaling. The Graphics type makes it easy to implement 
these using RotateTransform and ScaleTransform. You may want to finish 
the chapter first, so you can see how everything runs as an animation.

Now that we’ve implemented the separate concepts of drawings and time-varying val-
ues, implementing animation is simply a matter of combining the two.  

15.5 Creating animations
We began this chapter by promising you a library for animations, and here we are, many 
pages later, without a single animation to be seen. It should be fairly clear that all the 
foundations we’ve been building will make it pretty easy to animate our drawings. 

 Let’s briefly recap what we’ve done so far. We created a type Behavior<'T> to rep-
resent a value that changes over time, as well as functions to create new behaviors 
based on old ones. We’ve also created a drawing type (Drawing in F#, IDrawing in C#) 
along with construction and manipulation functions. How can we use these two com-
ponents to create an animation?

You might describe the concept of an animation as a drawing that changes 
over time. We’ve seen that we can represent a value changing over time as 
a behavior, so animation is a behavior of a drawing. This means that we can 
represent animations using the Behavior<Drawing> type.

By that definition, we’ve already implemented a library for creating animations! Let’s 
see how to create an animation using our existing types. We ended the previous 

Opens module with 
drawing functions

Composes two 
translated circles

ANIMATION

Figure 15.4 Two circles  
moved using translate and 
composed using compose
Licensed to   <kr_wilson@hotmail.com>



446 CHAPTER 15 Creating composable functional libraries
section by creating a simple drawing in F# (a value called greenAndBlue). We can turn 
it into an animation by using a function that creates a constant behavior:

> let animDrawing = forever greenAndBlue;;
val animDrawing : Behavior<Drawing>

The type of the result is Behavior<Drawing>, which is the type that we’ll use to repre-
sent animations. This is only an animation in the weakest possible sense: the drawing 
always stays the same but it’s enough to let us at least try to display animations. It’s at 
last time to create the application to run the animations.

15.5.1 Implementing the animation form in F#

In this section, we’ll implement a form for displaying animations. This is particularly 
interesting in F#, because we’ll use it from F# Interactive to create and experiment 
with animations. At this point, the typical style of development in F# is very different 
from C#. In C#, we’ll implement the form, create the animation, compile our appli-
cation, and run it. In F#, we’ll implement the form, load it into F# Interactive, and 
then try to write some animations, injecting them into the existing form to see how 
they work. 

 Listing 15.16 shows the F# implementation of the form. The C# version is essen-
tially the same and you can find it at this book’s website. We won’t discuss the C# code 
needed to display the animation, because we’d have to compile the whole application, 
but we’ll continue to show all the interesting parts of the code (such as creating some 
nice animations) in both C# and F#.

open System.Windows.Forms

type AnimationForm() as this =
   inherit Form()                                       
   let emptyAnim = forever(drawing(fun _ -> ()))
   let mutable startTime = DateTime.UtcNow   
   let mutable anim = emptyAnim                     

   do 
      this.SetStyle(ControlStyles.AllPaintingInWmPaint |||
                          ControlStyles.OptimizedDoubleBuffer, true)
      let tmr = new Timers.Timer(Interval = 25.0)               
      tmr.Elapsed.Add(fun _ -> this.Invalidate() )               
      tmr.Start()                                                          

   member x.Animation  
      with get() = anim 
      and set(newAnim) =
         anim <- newAnim                   
         startTime <- DateTime.UtcNow  

   override x.OnPaint(e) =                                      
      let w, h = x.ClientSize.Width, x.ClientSize.Height
      e.Graphics.Clear(Brushes.White)
      e.Graphics.TranslateTransform(float32(w) / 2.0f), float32(h) / 2.0f))

Listing 15.16 Implementing a form for showing animations (F#)

B

C

D

E

F

G

Licensed to   <kr_wilson@hotmail.com>



447Creating animations
      let elapsed = (DateTime.UtcNow - startTime).TotalSeconds
      let currentDrawing = anim |> readValue (float32(elapsed))
      currentDrawing.Draw(e.Graphics)                                    

The type inherits from the .NET Form class B and uses mutable value bindings to 
store the state of the object C. Inside the constructor, we create a timer to redraw the 
animation form every 25 ms D.

 The class exposes animation as a mutable property E that gets or sets the local 
mutable value. In the setter, we also reset the starting time of the animation F.

 The drawing is implemented inside the overridden OnPaint method G. It uses the 
readValue function to get the drawing at the given time H.

 The class declaration contains a few advanced aspects of OOP in F# that we’ll need 
to explain. The form inherits from the .NET class Form. This is written using the 
inherit Form() construct directly following the type declaration. The body of the 
class starts with a few ordinary let bindings. The first one declares an empty anima-
tion: a constant behavior containing a drawing (created using the drawing primitive) 
that doesn’t draw anything. We use this as the initial animation displayed on the form. 
In order to experiment with animations, we’ll create one form in F# Interactive and 
use mutation to imperatively change the animation to display. This is a common and 
perfectly valid use of mutable state when using interactive development in F#. 

 The mutation is performed using a property named Animation. To create a read/
write property, we use the with keyword and specify the getter and setter as two blocks 
of code using syntax that’s similar to a normal function declaration. In the setter, we 
set the new animation and reset the starting time.

 The declaration of the form also contains the as this construct directly following 
the implicit constructor. This allows us to use the reference to the form in the con-
structor code. We use it to call the SetStyle method to avoid flickering (the ||| oper-
ator is the F# bitwise or operator, which can also be used for working with 
enumerations). The this reference is also used when we create the timer that forces 
redrawing of the form.

 The most interesting part is the OnPaint member. This overrides the default 
OnPaint method of a .NET form and draws the animation. It’s called repeatedly, due 
to the timer that invalidates the form using the Invalidate method. After we’ve 
cleared the window, drawing the animation is easy. We use the helper function read-
Value, which we declared earlier when experimenting with behaviors. The function 
gives us the appropriate drawing for the current time in the animation. Once we have 
the drawing, we invoke its Draw method, which paints it on the graphics object pro-
vided by the system.

 This was the only complex piece of code we had to write in order to start creating 
animations. Now, we can instantiate the form in F# Interactive and set its Animation
property to the simple drawing we created earlier (the value we called animDrawing). 
At this point you should see a circle. It’s theoretically animated, but you won’t see any 
movement because the drawing is always the same. To show a real animation, we’ll 
need to use more interesting behaviors. 

H

Licensed to   <kr_wilson@hotmail.com>



448 CHAPTER 15 Creating composable functional libraries
15.5.2 Creating animations using behaviors

Now that we have all the underlying machinery to create animations and a form to dis-
play them in, we can start creating animations. We’ll start with the drawing of two col-
orful circles we created in F# earlier and create an animation that moves it. We’ll only 
use F# in this section as we’ll be using F# Interactive to experiment. You’ll see that the 
primitives we’ve already written provide quite a lot of flexibility, and we’ll consider 
what other operations we might want to do with animated graphics. After that we’ll go 
back to implementing everything in both F# and C#. Listing 15.17 creates the form 
and displays our first animation.

> let translate x y img = Behavior.lift3 Drawings.translate x y img;;     
val translate : 
   Behavior<float32> -> Behavior<float32> ->
   Behavior<#Drawing> -> Behavior<Drawing>

> let wiggle100 = Behavior.lift2 (*) wiggle 100.0f.forever;;            
val wiggle100 : Behavior<float32>

> let af = new AnimationForm(ClientSize = Size(750, 750), Visible = true);; 
val af : AnimationForm

> af.Animation <- translate wiggle100 0.0f.forever animDrawing;;

Listing 15.17 begins by creating a version of the translate primitive that works with 
animations using lifting B. The original function created a new drawing by translating
an existing drawing in a fixed way. This version creates a new animation by translating 
an existing animation in a variable way. Whenever the form wants to draw a frame of 
the animation, the animation will ask the two float32 behaviors what their values are 
at that point, to work out how to translate the drawing. It will then ask the original ani-
mation to draw itself (again, for the specified time), but translated appropriately.

 The implementation uses the Behavior.lift3 primitive, which turns a function 
with three arguments into a function that works with behaviors. As you can see from 
the inferred type signature, the function now takes two behaviors specifying the offset 
and one specifying an animation (the use of #<type> isn’t important here, so we can 
read it as a type Behavior<Drawing>); the return type is another animation.

 Don’t worry if you find this a bit confusing to start with:2 just think of it as combin-
ing three entirely separate time-varying values. One specifies a horizontal offset, one 
specifies a vertical offset, and one specifies what the drawing would look like if we 
weren’t translating it at all. On the next two lines, we use this primitive to create an 
animation, which you can see in figure 15.5.

 To define the animation, we first need to create a behavior that will give us reason-
ably large X and Y offsets. We do this by multiplying the wiggle primitive by a constant 

Listing 15.17 Creating simple animation (F# interactive)

2 Both of the authors certainly did: Tomas when understanding the Haskell Fran library and Jon when reading 
the code presented here. We’re confident you’ll be able to get your head around it.

B
Translates animation 

using behaviors

COscillates in range -100 … 100
Licensed to   <kr_wilson@hotmail.com>



449Creating animations
behavior that always returns 100. This means that the value of wiggle100 C will oscil-
late between –100 and +100. Next, we create and display an animation of an appropri-
ate size. Finally, we use the new translate function that takes behaviors as its 
arguments. We give it the wiggle100 value as the X coordinate and a behavior that’s 
always 0.0f as the Y coordinate. The result is an animation that sets the coordinates of 
the drawing to values ranging between (-100,0) and (100,0).

NOTE Presenting animations in a book is somewhat challenging, for obvious 
reasons. To give you an indication of how the animations move, we 
added shadows that show earlier locations of the objects. Implementing 
this attractive effect was rather easy: all we need to do is to draw the ani-
mation repeatedly, passing different times to the behaviors and using 
.NET’s drawing features to make older animations more and more trans-
parent. We won’t look at the implementation in the book, but you can 
find it at the book’s website (as an additional type of form that presents 
the animation). It’s another example of the power of composition.

Listing 15.17 suggests that we’re going to need two kinds of operations quite often 
when creating animations. We need lifted versions of primitive functions such as 
translate or compose applied to animations, and it would also be nice if we could 
perform simple arithmetic on behaviors without using explicitly lifted operators as we 
did here to create wiggle100. Let’s see what we can do.

15.5.3 Adding animation primitives

Our goal is to make the code that constructs animations as declarative and simple as pos-
sible. For this reason, we want to provide primitives that are specifically designed for cre-
ating animations. We’ve seen that we can already do anything we need just using the 
existing functions for working with behaviors and drawings, but the code would look 
more elegant if we could use specialized primitives for creating animations rather than 
using lifting explicitly. Let’s start by looking at functions for working with drawings.
CREATING DRAWING PRIMITIVES FOR ANIMATIONS

In listing 15.17, we created a translate primitive that works with animations by lifting 
the Drawings.translate function. Now we need to do the same thing for the other 

Figure 15.5 Two circles from figure 
15.4 moving from the left to the right 
(shadows are added, so you can see 
how objects move)
Licensed to   <kr_wilson@hotmail.com>



450 CHAPTER 15 Creating composable functional libraries
drawing primitives, circle and compose. Listing 15.18 shows the F# declarations for a 
composition operator and a primitive that creates an animated circle. We’ve included 
the C# version of composition (this time as an extension method) to demonstrate 
how to use lifting in C#. The C# implementation of the other lifted operations is 
essentially the same, so it isn’t included in the listing.

// F# version
> let circle brush size =
     Behavior.lift2 Drawings.circle brush size
   let ( -- ) anim1 anim2 =                             
     Behavior.lift2 Drawings.compose anim1 anim2
  ;;
val circle : Behavior<#Brush> -> Behavior<float32> -> Behavior<Drawing>  
val (--) : Behavior<#Drawing> -> Behavior<#Drawing> -> Behavior<Drawing>  

// C# version
public static class Anims {
   public static Behavior<IDrawing> Compose
         (this Behavior<IDrawing> anim1, Behavior<IDrawing> anim2) {  
      return Behavior.Lift<IDrawing, IDrawing, IDrawing>
         (Drawings.Compose)(anim1, anim2);                
   }
}

Using lifting in F# is quite easy thanks to its advanced type inference. We created the 
translate primitive earlier, so in this listing we add the circle function and a custom 
operator -- B for composing animations. Both have two arguments, so we can use 
the Behavior.lift2 function to take a function that works with drawings and turn it 
into a variant that works with animations. As you can see from the inferred type signa-
ture C, the resulting function (or an operator) takes two behaviors as arguments and 
returns a behavior (more specifically, the type Behavior<Drawing>, which represents 
an animation). The circle function now takes both the brush and the size as behav-
iors, so we can create circles that change color and size over time.

 In the C# version, we’ve created a static Anims class for all the operations. In chap-
ter 6 we compared custom operators in F# with extension methods in C#, which sug-
gests that we should implement Compose as an extension method D. In the body of 
the method, we use lifting to get a lifted version of the Drawings.Compose method. 
The Lift method returns a function that we call immediately. We give it two anima-
tions as arguments and return the result, which is the composed animation E. Before 
we look at how to use the new functionality, let’s make two more improvements that 
will allow us to do interesting things with behaviors.
CALCULATING WITH BEHAVIORS

Another operation that we’ll need quite frequently is to multiply or add numeric 
behaviors. In the sample animation, we wanted to multiply the wiggle value by the 
constant behavior 100.0f.forever. Instead of using lifting explicitly, it’s more conve-
nient to provide overloaded operators that work with numeric behaviors. Listing 15.19 
shows how to implement two operators for addition and multiplication in F#.

Listing 15.18 Creating animation primitives using lifting in F# and C#

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



451Creating animations
type Behavior<'T> with                               
   static member (+) (a:Behavior<float32>, b) = 
      Behavior.lift2 (+) a b
   static member (*) (a:Behavior<float32>, b) =
      Behavior.lift2 (*) a b                         

In F#, we can add operators to a type using intrinsic type extensions B. It adds two static 
members to the type; each member takes two arguments of type Behavior<float32>. 
Adding generic operators that work with any numeric type would be more difficult, so 
we only create operators for the numeric type we’re using in this chapter. The imple-
mentation of the operator is easy, because we can express it using the appropriate lifting
function C. The C# implementation is almost the same, so we won’t talk about it.

 We’ve already applied the concepts of addition and multiplication to locations, but 
the other dimension our animations work with is time. What can we do with that? Well, 
we might want to speed up an animation, or delay it for a period of time. If we had two 
rotating circles, we may want to rotate one twice as fast as the other. We could create a 
new primitive behavior, but there’s a more elegant way. We can create a function that 
takes a behavior as an argument and returns a new behavior that runs faster or that’s 
delayed by a specified number of seconds. You can see the F# version in listing 15.20.

let wait shift (BehaviorFunc bfunc) = 
   sample(fun t -> bfunc { t with Time = t.Time + shift })
let faster q (BehaviorFunc bfunc) = 
   sample(fun t -> bfunc { t with Time = t.Time * q })

Functions in listing 15.20 work with any kind of behavior, not just animations. Each 
takes a floating-point number as the first argument and an original behavior as the sec-
ond. To create a new behavior, we have to use the low-level sample primitive. We create 
a new behavior that calls the function extracted from the original behavior and gives it 
a different time as the argument. In the first case, the time is shifted by the specified 
number of seconds, and in the second case it’s multiplied by the provided coefficient. 
To explain what this means, let’s look at the second function and say we’re running a 
behavior twice as fast. When the actual time is 3 seconds, the returned behavior will 
invoke the original one with a time of 6 seconds, which means that the animation will 
do the movements it would usually perform in 6 seconds in just 3 seconds. 

 We could write an entirely general function for manipulating with the time. The 
more general version would specify the time adjustment as a behavior—a function 
that returns the adjusted time given the original time. The simple functions we’ve cre-
ated will be easier to use and understand.

 As a final demonstration, we’ll create an animation of the sun, the moon, and the 
earth. It will use everything we implemented so far to create a complicated and inter-
esting animation, and we’ll use it to demonstrate how composable and reusable our 
solution is. 

Listing 15.19 Extension operators for calculating with behaviors (F#)

Listing 15.20 Speeding up and delaying behaviors (F#)

B

C

Licensed to   <kr_wilson@hotmail.com>



452 CHAPTER 15 Creating composable functional libraries
15.5.4 Creating a solar system animation

At this point, we implemented all types and functions of the animations library. Even 
though we’re using F# Interactive, it’s a good idea to save the core part of the library 
into a separate file (for example, Animations.fs). Then we can load the entire library 
using the #load directive, which takes the filename as an argument. This way, you also 
ensure that intrinsic type extensions (including the operators we added to behaviors) 
are loaded correctly, because intrinsic type extensions have to be processed in the 
same command as the type they extend.

 The key part of the animation will be the rotation of objects around each other. 
The library we’ve just created allows us to compose the existing primitives into higher-
level ones for a particular problem. We can then encapsulate rotation inside a reus-
able function (or C# method) that we’ll later use to describe the simulation. This is an 
important property of a well-designed functional library; functions that work with 
sequences are composable in the same way. 

 Our new primitive will rotate an animation around the point (0,0) at a specified 
distance and speed. Listing 15.21 shows the implementation. Considering the com-
plexity of what we’re doing, very little code is required.

// F# function
let rotate (dist:float32) speed img = 
   let pos = wiggle * dist.forever       
   img |> translate pos (wait 0.5f pos)  
         |> faster speed                   

// C# extension method
public static Behavior<IDrawing> Rotate
      (this Behavior<IDrawing> img, float dist, float speed) {
   var pos = Time.Wiggle * dist.Forever();
   return img.Translate(pos, pos.Wait(0.5f))
                 .Faster(speed);                         
}

Somewhat surprisingly, we can implement the rotation just using the translate func-
tion. The movement created using the wiggle primitive is sinusoidal, which means 
that it gives us values for one coordinate of the rotating object. To get the second 
coordinate, we need to delay the phase by half a second. This gives us the same value 
we’d get if we created a similar primitive using a cosine function. To delay the behav-
ior, we can use the wait function we just implemented B. 

 We can use pipelining to specify sequence of operations that should be done with 
an animation. After specifying the rotation, we also apply the faster function C to 
specify the required speed of the rotation. In C#, we can use the same programming 
style thanks to the use of extension methods D that take the animation as a first argu-
ment and return a new one as the result. This is similar to applying multiple operators 
(filtering, projection, grouping) in a LINQ query.

Listing 15.21 Implementing rotation in F# and C#

Oscillates between 
-dist and +dist

B
C

D

Licensed to   <kr_wilson@hotmail.com>



453Creating animations
 Using the primitive to describe 
rotation, we can now create our solar 
system animation quite easily. We’ll 
start by creating three circles to repre-
sent the sun, the earth, and the moon 
and then describe how they rotate 
around each other. Figure 15.6 shows 
the running animation, so you can see 
what we’re creating.

 Let’s now look at the code. List- 
ing 15.22 shows the implementation in 
both languages, so we can see how the 
relevant constructs in F# and C# corre-
spond to each other.

 The code that constructs planets is 
quite simple. The only notable thing 
is that we’re using a circle primitive 
for creating animations, so we have to 
provide both the brush and the size as a behavior. This means we could make interest-
ing effects, such as creating a sun that grows bigger and changes color over time.

// F# version
let sun   = circle (forever Brushes.Goldenrod) 100.0f.forever
let earth = circle (forever Brushes.SteelBlue) 50.0f.forever
let moon  = circle (forever Brushes.DimGray)   20.0f.forever

let planets = 
   sun --
      (earth -- (moon |> rotate 40.0f 12.0f)  
                |> rotate 160.0f 1.3f)        
   |> faster 0.2f                

// C# version
var sun = Anims.Circle(Time.Forever(Brushes.Goldenrod), 100.0f.Forever());
var earth = Anims.Circle(Time.Forever(Brushes.SteelBlue),50.0f.Forever());
var moon  = Anims.Circle(Time.Forever(Brushes.DimGray), 20.0f.Forever());

var planets = 
   sun.Compose(
        earth.Compose(moon.Rotate(50.0f, 12.0f))  
               .Rotate(150.0f, 1.0f))                
        .Faster(0.2f);           

Composing the animation from rotating objects is more interesting. We’ll start explain-
ing it from the middle. We use the rotate function to create a moon that rotates 
around the center at a distance of 50 pixels. We compose this animation with the earth, 
which isn’t rotating B, so the result is the moon rotating around the earth. The type of 

Listing 15.22 Creating solar system animation in F# and C#

B
C

D

B
C

D

Figure 15.6 Running solar system simulation; the 
moon is rotating around the earth and both of them 
are rotating around sun.
Licensed to   <kr_wilson@hotmail.com>



454 CHAPTER 15 Creating composable functional libraries
this result is an animation, so we can again start, this time rotating it at a distance of 150 
pixels C. When we compose the resulting animation with a sun (that isn’t moving), we 
get the animation where the earth is rotating around the sun. Finally, we use the faster
primitive to change the speed of the animation D. We actually slow it down, because 
the multiplicator we use is less than 1. Note that in F#, we can use the pipelining oper-
ator to write the animated object first and then various transformations.

 We’ve animated only three objects here, but it’s easy to see how you’d add the 
remaining planets. The composable nature of the framework means that incremental 
changes remain simple, even as the overall result becomes increasingly elaborate.

The animation library provides an example of a library implemented in a functional 
programming style. You may be wondering how this style translates to more tradi-
tional business application development. Let’s take a quick romp through another 
example—we won’t cover it in nearly as much detail as our animation library, but it 
should give you an idea of what a business declarative library (or DSL) might feel like. 

15.6 Developing financial modeling language
So far in this chapter, we’ve seen most of the concepts that you need to know if you 
plan to design your own functional library or a DSL. To give you some idea how this 
could be done for a more business-oriented problem, we’ll sketch a library that can be 
used for modeling financial contracts. This example is motivated by an article by 
Simon Peyton Jones et al., “Composing Contracts: An Adventure in Financial Engineer-
ing” [Jones, Eber, Seward, 2000]. In this section, we’ll implement only the most basic 
parts of the library: the original article contains much more information, and is well 
worth reading.

Taking the animation library further
There are many interesting additions that we could make to the library. We already 
mentioned that we could add more primitive drawings and transformations. Adding 
lifted versions of the new primitives would allow us to use them easily when creating 
animations. There are other even more interesting options. 

We could implement behaviors that used additional contextual information. We’ve al-
ready encapsulated the context in the BehaviorContext type, so adding extra infor-
mation would be quite simple. We could add the current cursor location to the 
context, enabling us to create animations where shapes either chased the cursor or 
ran away from it.

A more sophisticated extension could allow us to create nonlinear dynamic systems. 
We could add a primitive that tells us how quickly is a certain behavior value changing, 
and we could then use it to create a system that depends on how quickly its state 
is changing.
Licensed to   <kr_wilson@hotmail.com>



455Developing financial modeling language
15.6.1 Modeling financial contracts

The financial industry uses a large number of types of contracts including swaps and 
futures. A contract generally specifies what commodity is bought or sold, when, and 
for what price. When creating an application for working with contracts, we could 
hard-code the support for each of the known types of the contract directly. Unfortu-
nately, there’s a huge number of options, so this solution wouldn’t be very flexible.

 Instead, we’ll create a language that allows us to describe contracts in general. The 
most elementary component of a contract is a trade, so we’ll provide primitives for say-
ing that we’re willing to make some trade—either purchasing or selling some amount 
of some commodity. For example, we could say that we’re willing to buy 1,000 shares 
of Google stock. 

 Contracts typically also specify when or under what conditions the trade can take 
place, so to support that in our language, we’ll add primitives for limiting the date 
when the offer is valid. Using these, we’ll be able to specify that we’re selling, say, 500 
Yahoo! shares from the next week but only until the end of the month.

 In the example with animations, we could also define our own primitives, such as 
rotate, in terms of more basic primitives, like translate. In the financial modeling 
language, the users should be able to do exactly the same thing. In particular, they’ll 
be able to define primitives for creating standard types of contracts such as swaps and 
futures. Let’s now start by taking the usual first step when creating a library: creating a 
couple of basic primitives.

15.6.2 Defining the primitives

We first need to define the type of value we’re working with and then implement a few 
primitives that can be composed later. Our primitive data type will be called Contract
and will represent trades that can occur at a particular date and time.
DECLARING THE CONTRACT TYPE

As you can see in listing 15.23, the Contract type is quite similar to the behavior type 
from the animation example. It’s a discriminated union with a single discriminator 
named ContractFunc. This is a trick we’ve been using already when defining behav-
iors, and it gives us a way to create simple, named, and encapsulated function values.

> type Contract =
     | ContractFunc of (DateTime -> seq<string * int>);;   
(...)
> let eval (ContractFunc f) dt = f(dt) |> List.ofSeq;;   
val eval : Contract -> DateTime -> (string * int) list

The function that represents the actual contract takes a single argument and returns a 
sequence of tuples B. When we call it with a particular date, it will generate all the 
trades that can occur on that date. Each trade is represented as a tuple containing the 
name of the stock and the number of shares that we want to buy or sell. We’ll use pos-
itive numbers to represent buying stocks and negative values for selling.

Listing 15.23 Type representing financial contracts (F# Interactive)

B

C

Licensed to   <kr_wilson@hotmail.com>



456 CHAPTER 15 Creating composable functional libraries
 The second part of listing 15.23 implements an eval function C that evaluates the 
contract at a given time and returns the list of trades. We’re using a sequence to repre-
sent the trades in the contract, because that makes the code more general. We’ve seen 
how easy it is to generate sequences dynamically and compose them. The eval function 
returns a list, because that will be easier to work with from the caller’s point of view.
IMPLEMENTING COMBINATORS

Once we have the data type representing the values of our language, we need to imple-
ment a couple of primitive functions for creating and composing these values. For 
behaviors, we created primitive values such as wiggle and lifted operators for compos-
ing them. In our language for contracts, we’ll start with a function trade that creates a 
contract representing a single purchase that can occur at any time. To compose con-
tracts, we’ll provide a function combine, which joins the trades of two other contracts.

 Listing 15.24 shows the implementation of these two functions as well as functions 
for restricting the dates on which contracts can occur and a function for creating 
trades where we’re selling the stocks represented by a contract.

> let trade what amount = ContractFunc(fun _ ->  
     seq { yield what, amount })
   let combine (ContractFunc a) (ContractFunc b) = 
     ContractFunc(fun now ->                           
        Seq.concat [ a(now); b(now) ])
   ;;
val trade : int -> string -> Contract
val combine : Contract -> Contract -> Contract

> let after dt (ContractFunc f) = ContractFunc(fun now ->  
     seq { if now >= dt then yield! f(now) })
   let until dt (ContractFunc f) = ContractFunc(fun now ->    
     seq { if now <= dt then yield! f(now) })
   let sell (ContractFunc f) = ContractFunc(fun now ->  
     seq { for itm, am in f(now) -> itm, -am })
   ;;
val after : DateTime -> Contract -> Contract
val until : DateTime -> Contract -> Contract
val sell : Contract -> Contract

A single trade that can occur at any time is represented as a function that ignores its 
parameter (the date on which we’re evaluating the contract) and returns a sequence 
with a single element B. Composition is also easy C, because we concatenate all 
trades of the two underlying contracts that can occur at the given date.

 The next two primitives let us limit the dates for which a contract is active D. We 
implemented them by creating a function that tests whether the given date matches the 
condition of the primitive. When the test succeeds, it returns all underlying trades using 
the yield! primitive; otherwise it returns an empty sequence. The final primitive can 
be used to change whether a contract is a sale or a purchase E. We iterate over all the 
underlying trades of a contract, changing positive amounts to negative, and vice versa.

Listing 15.24 Combinators for creating and composing contracts (F# Interactive)

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



457Developing financial modeling language
 Even though we’re only sketching out the library, the few primitives we’ve imple-
mented already allow us to describe many interesting scenarios.

15.6.3 Using the modeling language

Perhaps the most valuable thing about composable libraries is that we can use the 
basic primitives provided by the library designer to create more complicated functions 
using composition. This gives the library flexibility, because the users of the library (in 
our case financial experts) can create the primitives that they need. As the designers 
of the core library, we only need to provide primitives that are rich enough to allow 
users to build more.

 Listing 15.25 demonstrates this with two functions that are defined in terms of the 
primitives we’ve just built. First we define a function that builds a trading window: a 
time interval within which a trade can occur. A second function provides a particular 
kind of trading window: one that allows the trade to occur only on a single date.

> let between dateFrom dateTo contract = 
     after dateFrom (until dateTo contract);;
val between : DateTime -> DateTime -> Contract -> Contract

> let tradeAt date what amount = 
     between date date (trade what amount);;
val tradeAt : DateTime -> int -> string -> Contract

The first function is composed from the two primitives that we defined for restricting 
the date of the contract. It takes the start and end dates along with the contract to 
restrict, and returns a contract that can’t happen before or after the specified interval. 
The original contract can include trades that are already restricted in some other way. 
The second function creates a primitive trade that can occur only at the precisely 
specified date. It uses the trade function to construct an elementary trade and then 
limits its validity using the between function. Note that the after and until functions 
use operators that allow equality (>= and <=), so the use of between with the same 
value twice doesn’t create an impossible trade.

 Equipped with these functions for creating and composing contracts, let’s try to 
write some contracts and evaluate which trades can occur as part of the contract at two 
distinct dates. Listing 15.26 shows a contract where we’re willing to sell 500 shares of 
Google on one particular date and we can buy 1000 shares of Microsoft at any time 
within a specific 10-day period.

> let dfrom, dto = DateTime(2009, 4, 10), DateTime(2009, 4, 19) 
   let itstocks =   
     combine (sell (tradeAt (DateTime(2009, 4, 15)) "GOOG" 500))
                (between dfrom dto (trade "MSFT" 1000));;                
val itstocks : Contract = ContractFunc <fun:trade@6>

Listing 15.25 Implementing derived financial contract functions (F# Interactive)

Listing 15.26 Creating and evaluating sample contract (F# Interactive)

B

Licensed to   <kr_wilson@hotmail.com>



458 CHAPTER 15 Creating composable functional libraries
> eval itstocks (DateTime(2009, 4, 14));;         
val it : (string * int) list = [("MSFT", 1000)]

> eval itstocks (DateTime(2009, 4, 15));;       
val it : (string * int) list = [("GOOG", -500); ("MSFT", 1000)]

Listing 15.26 begins by creating values that represent two dates between which we’re 
willing to purchase Microsoft shares. Then we define a value, itstocks, that repre-
sents our contract. We’re using the combine primitive to merge two possible trades B. 
The first one is the sale of Google shares. One way to construct a sale is to create a 
contract that represents a stock purchase (using the tradeAt function implemented 
in listing 15.25) and then use the sell primitive to change purchase into a sale. This 
way, we can create reusable trades and use them to write both sales and purchases. 
Alternatively, we could have used tradeAt (DateTime(2009, 4, 15)) "GOOG" -500). 
The second trade is the purchase of Microsoft shares within the 10-day period.

 Once we’ve defined the contract, we can evaluate it. The contract represents a 
specification of trades that can occur at some specified date, so we can evaluate by 
providing that date. As you can see in the output, the result for the first date is a pur-
chase of Microsoft shares; for the second date, we’ll get both trades. 

C

Representing contracts as abstract values
In this example, we represented contracts in a way that is quite similar to our lan-
guage for behaviors. We essentially used a function to calculate the trades, and then 
wrote combinators that compose these functions. This is one of the two basic tech-
niques that we mentioned in the beginning of the chapter.

Another option would be to design a discriminated union representing the contract as 
data rather than as a computation. We could use different options covering our dif-
ferent primitives. It might look something like this:

type Contract = 
   | Exchange of string * int
   | After of DateTime * Contract
   | Until of DateTime * Contract
   | Combine of Contract * Contract

The type is recursive, so we can compose the elementary value Exchange that rep-
resents a single trade with other trades using Combine, limit their validity using After
and Until, and so on.

One difference between these two techniques is that when we’re using abstract value 
representations, we can write all sorts of processing functions for the language that 
are aware of the specific restrictions. We could add a function that takes a Contract
value and evaluates its overall value. On the other hand, when we use a function type 
under the hood, we can’t observe many properties of the value once it’s created: we 
can only execute it. In reality, it would probably be more practical to represent contracts 
using abstract values, but we wanted to demonstrate how you can use the technique 
we saw earlier with animations to create a language in a very different domain. 
Licensed to   <kr_wilson@hotmail.com>



459Summary
Clearly, the domain-specific language that we’ve described here is limited and simplis-
tic, but it demonstrated that the approach is applicable to a variety of problem 
domains. Hopefully you’re already thinking about situations in your own develop-
ment where it may be applicable.

15.7 Summary
We began the chapter by talking about the language-oriented programming style, and 
in particular about techniques for creating internal DSLs. We briefly mentioned tech-
niques like abstract value representations, in which case we usually design a data type 
(in particular discriminated unions) to represent the combinators. Next, we looked at 
fluent interfaces, which are particularly useful in C#, and combinator libraries, which 
are used in functional programming languages. 

 We spent the bulk of this chapter creating a language to describe animations. Most 
of the work went into developing separate concepts of behaviors and drawings. In 
each of these areas we created primitives (such as wiggle, time, and circle) and then 
operations for composition and transformation. It’s amazing how much flexibility can 
be achieved with relatively few of these, if you choose them appropriately.

 The next level of composition is at the library level; just as we can compose two 
primitives to create something more complex, we can combine two well-designed but 
orthogonal libraries to create a rich result—in our case, animations. We wrapped up 
the chapter with a quick look at a different problem domain, representing stock 
trades. The same techniques we used for behaviors and drawings are applicable in this 
and other domains.

 In the next chapter, we’ll turn our attention back to the asynchronous workflows 
we saw in chapter 13, but we’re going to use them differently. We’ll look at developing 
applications that react to external events, including events from the user interface. In 
general, we’ll talk about writing reactive applications and related techniques in F#.
Licensed to   <kr_wilson@hotmail.com>



Developing reactive 
 functional programs
This final chapter is about reacting to external events, such as user input. We’re 
also going to discuss another F# feature that can be used for creating concurrent
programs. Although these sound like unrelated topics, we’ll see similarities as we 
explore them. All of the libraries and examples we’ll see in this chapter share a sim-
ilar architecture, so let’s first look at the reactive architecture in general.

 A lot of the code we write (in both imperative and functional programming) 
assumes that it’s in the driving seat—that we’re in control of what happens at each 
step. This model often breaks down for UIs. A Windows application needs to handle 
a variety of UI events; it may also have to respond to the completion of an asynchro-
nous web service request or background task. The execution of this type of applica-
tion is controlled by the events, and the application is concerned with reacting to 

This chapter covers
■ Reacting to events and declaring them in F#
■ Working with events as first-class values
■ Programming GUIs using asynchronous workflows
■ Using message passing concurrency
460

Licensed to   <kr_wilson@hotmail.com>



461Reactive programming using events
them. For this reason, this principle is sometimes called inversion of control and is some-
times lightheartedly referred to as the Hollywood Principle.1

 The standard .NET mechanism for reactive code is an event. Subscribers add event 
handlers which are called when the event is triggered. Event handlers require muta-
ble state to keep track of the subscriptions, which is somewhat antithetical to func-
tional principles, but it’s the most straightforward way, and it’s the one used by many 
existing .NET classes. We’ve seen how to use it in Windows Forms applications, so our 
coverage here will be fairly brief. Instead, we’ll focus on some of the more functional 
alternatives that F# offers.

 We’ll start by looking at the declarative way to handle events, which is somewhat 
similar to declarative list processing. We’ll then look at using asynchronous workflows 
for event handling, which gives us a way to reverse the inversion of control, writing the 
code in a way where we at least appear to control what the application is doing. Finally, 
we’ll consider state management in reactive applications and message-passing concur-
rency, which is a powerful technique for writing multithreaded applications.

16.1 Reactive programming using events
At this point, you know how to write an application that reacts to events in C#, and 
we’ve seen that the same technique can be used in F# as well. The pattern is to register 
a callback function (or a method) with the event; when the event occurs, the callback 
function is executed. This can react to the event, perhaps updating the state of the 
application or making changes to the UI.

 Let’s first review this approach with an example. The code in listing 16.1 monitors 
changes in the filesystem using the FileSystemWatcher class. Once initialized, the 
watcher triggers an event every time a file is created, renamed, or deleted.

open System.IO
let fileWatcher = new FileSystemWatcher(@"C:\Test")  
fileWatcher.EnableRaisingEvents <- true

let isNotHidden(fse:RenamedEventArgs) =                         
   let hidden = FileAttributes.Hidden                               
   (File.GetAttributes(fse.FullPath) &&& hidden) <> hidden

fileWatcher.Renamed.Add(fun fse ->  
   if isNotHidden(fse) then                                           
      printfn "%s renamed to %s" fse.OldFullPath fse.FullPath)        

Listing 16.1 begins by creating the FileSystemWatcher object for a folder where we 
can easily create and rename some files to test the code. The next few lines B show a 
simple function that checks whether a file is not marked as hidden. The argument to 
this function is a class derived from EventArgs that carries information about the 
event triggered by the watcher. We’ll use this function to demonstrate one interesting 

1 “Don’t call us, we’ll call you.”

Listing 16.1 Monitoring filesystem events (F#)

Provide a path 
for testing

B

C

Licensed to   <kr_wilson@hotmail.com>



462 CHAPTER 16 Developing reactive functional programs
feature in declarative event handling shortly. We’re using binary and operator (&&&) 
to check whether a flag of .NET enumeration type is set.

 The last part of the code C registers an event handler that will be called when a 
file is renamed. Events are represented in a different way in F# compared to other 
.NET languages. In C#, an event is a special member of a class, and you can only work 
with it through the operators for adding (+=) or removing (-=) event handlers. In F#, 
events appear as standard members of type IEvent<'T>, where the T parameter speci-
fies the value carried by the event (usually derived from EventArgs). This type has an 
Add method that we can use for registering a callback function. It also supports meth-
ods called AddHandler and RemoveHandler, so you can still use delegates if you want to 
be able to remove the registered callback later.

 The example in listing 16.1 uses the Add method and gives it a lambda function as 
an argument. The lambda function takes only a single parameter and doesn’t include 
the usual “sender” parameter. The reason is that in F#, you can easily access the 
sender object by capturing it in a closure, so it doesn’t have to be passed explicitly as 
an argument. The callback reacts to the event by printing information about the 
renamed file, but we don’t want to react to every event. Instead we want to display the 
message only when the affected file is not marked as hidden. To do this, we write an if
condition inside the callback function. 

 This works fine, but F# allows us to write the filtering of events in a more declara-
tive way, which makes the program easier to read and promotes a cleaner separation 
of concerns. Later we’ll see that the same principles can be used in C#, at least to 
some extent.

16.1.1 Introducing event functions

Working with events by explicitly providing a callback function isn’t very declarative. 
We’re imperatively adding the event handler and the whole behavior is wrapped 
inside the callback function. How can we think of events in a more declarative way? 
We’ve seen that one important technique in declarative code is the use of higher-
order functions. The best examples are functions for working with lists such as 
List.filter, List.map, or List.fold. If we had a list of events from the filesystem 
watcher (called watcherEvents), we could split the code into two parts. The first one 
would transform the events from the source format to the format suitable for printing. 
This part would be written in a declarative way using higher-order functions for work-
ing with lists. The second part would be simple imperative code to print the informa-
tion. The key benefit of this approach is that most of the code is written in the 
declarative style. In particular, the filtering code would look like this:

let renamedVisible = 
   watcherEvents |> List.filter isNotHidden

This snippet uses the isNotHidden function as an argument to the function that filters 
the list. The second part could use List.iter to print each item in the list. This was 
just familiar working with lists, but listing 16.2 shows a complete example that uses 
Licensed to   <kr_wilson@hotmail.com>



463Reactive programming using events
exactly this pattern with events. We can think of events as similar to lists: both repre-
sent a sequence of values, with the difference that the values from an event aren’t 
available immediately. A new value appears every time the event is triggered. This 
sequence of event arguments can be filtered in a similar way to collections. The 
Observable.filter function creates an event that’s triggered when the source event 
produces a value that matches the given predicate.

> let renamedVisible =                                               
     fileWatcher.Renamed |> Observable.filter isNotHidden  
  ;;
val renamedVisible : System.IObservable<RenamedEventArgs>  

> renamedVisible |> Observable.add (fun fse ->                  
     printfn "%s renamed to %s" fse.OldFullPath fse.FullPath);;
val it : unit

The first command B filters the event in much the same way we filtered a list of val-
ues. The returned event listens to the event of the filesystem watcher, and when a file 
is renamed it uses the specified filtering function to test whether or not the value car-
ried by the event should be ignored. If the filtering function returns true, the result-
ing event is triggered; otherwise the current occurrence of the event is ignored.

 The type that represents the returned event value C requires more explanation. 
We get a value of a new .NET 4.0 type System.IObservable<'T>. It has been added as 
a uniform way of working with objects that need to notify other objects of state 
changes. In the previous section, I wrote that events in F# appear as values of the 
IEvent<'T> type, so you may be wondering why we’re not seeing IEvent<'T> here as 
well. We’ll first look at the rest of the listing, then discuss the relation between these 
two types in detail. 

 The last command in the listing registers a lambda function that prints informa-
tion about the renamed file using the filtered event D. We’re using another function 
for working with events called Observable.add. This function behaves similarly as the 
Add method of the IEvent<'T> type, which we used earlier. When using IObserv-
able<'T>, we’ll write the whole event-processing code as a single pipeline using 
higher-order functions. Now, let’s take a look at the way events and event values are 
represented in F# in more detail.

16.1.2 Using events and observables

So far, we’ve seen two types for representing events. The relation between them is 
fairly straightforward: the IEvent<'T> interface inherits from the IObservable<'T>
interface. The IEvent<'T> type is more specific and is used primarily by F# to repre-
sent standard .NET events instead of making them a special language feature. 

 We’ve also seen the Observable module with higher-order functions for working 
with events. Functions in the module take values of the IObservable<'T> interface as 
parameters, but since IEvent<'T> is inherited from IObservable<'T>, we can use the 

Listing 16.2 Filtering events using the Observable.filter function (F# Interactive)

B

C

D

Licensed to   <kr_wilson@hotmail.com>



464 CHAPTER 16 Developing reactive functional programs
functions for working with standard F# events as well. For completeness, there is also 
an Event module with functions similar to those from the Observable module. These 
functions take only values of type IEvent<'T> and produce event values of the same 
type. Deciding which interface and module to use may sound complicated, but we can 
decide using four simple facts and rules:

■ IObservable<T> has a method called Subscribe. It is used for registering an 
observer that will be called when the state of the observable object changes.

■ IEvent<T> adds a couple of methods that make it possible to use the usual cod-
ing patterns for working with standard events. It provides Add method as an easy 
way for registering handler and AddHandler/RemoveHandler pair, which is use-
ful when we want to use delegates. 

■ We can use the IEvent<'T> type, as we’ll see in section 16.1.5, when declaring C# 
compatible events in F#. If you want to construct an event like this from another 
event using higher-order function, you’ll need to use the Event module.

■ In the rest of the chapter, we’ll prefer functions from the Observable module, 
because these functions work better with the Async.AwaitObservable primitive 
that we’ll see in section 16.3. Combining functions from the Event module with 
the approach we’ll use later can introduce leaks where event handlers aren’t 
correctly removed.

Now that we know we’ll use mostly the Observable module, look at the table 16.1, 
which shows what functions the module provides. The structure of the Event module 
is very similar, except for the type signatures. As you can see, many of the functions 
correspond closely to functions working with sequences.

Table 16.1 Overview of the most important functions of the Observable module 

Function Type and description

filter ('T -> bool) -> IObservable<'T> -> IObservable<'T>

Returns an event that’s triggered when the source event occurs, but only if the value 
carried by the event matches the specified predicate. This function corresponds to 
List.filter for lists.

map ('T -> 'U) -> IObservable<'T> -> IObservable<'U>

Returns an event that’s triggered every time the source event is triggered. The value 
carried by the returned event is calculated from the source value using the specific 
function. This corresponds to the List.map function.

add ('T -> unit) -> IObservable<'T> -> unit

Registers a callback function for the specified event. The given function is called 
whenever the event occurs. This function is similar to List.iter.

scan ('U -> 'T -> 'U) -> 'U -> IObservable<'T> -> IObservable<'U>

This function creates an event with internal state. The initial state is given as the sec-
ond argument and is updated every time the source event occurs using the specified 
function. The returned event reports the accumulated state every time the source 
event is triggered, after recomputing it using the source event’s value.
Licensed to   <kr_wilson@hotmail.com>



465Reactive programming using events
Most of the functions from table 16.1 should be easy to understand, because we’ve 
seen similar functions working with lists. The only difference is Observable.scan, 
which looks a bit more complicated than the others. The scan function that works 
with lists exists as well, but we haven’t discussed it. The signature also resembles 
List.fold, which we know very well already.

 Both functions take an initial state and a function that knows how to calculate a 
new state from the original one and an element from the list or value carried by the 
event. The difference is that the fold function returns the result of accumulating all 
the elements of the list. This is impossible for events, because we don’t know when the 
event will take place for the last time. Instead of waiting for the last element, the 
Observable.scan function returns an event that’s triggered every time the internal 
state is recalculated, with the aggregated value so far. We’ll see an example of this 
function in section 16.1.3.

 The biggest benefit of using higher-order functions for events is that we can write 
the code in a more declarative way. In our example, we replaced an imperative if in 
the body of the event handler with a filter, but we can take the example even further. 
If we create a function (we’ll call it formatFileEvent) that formats the information 
carried by RenamedEventArgs, we can write the whole event handling as a single, suc-
cinct expression, as shown next.

fileWatcher.Renamed 
   |> Observable.filter isNotHidden
   |> Observable.map formatFileEvent
   |> Observable.add (printfn "%s")

Listing 16.3 implements the same functionality as listing 16.2, using two helper func-
tions and the functions from the Observable module. Once you start thinking of an 
event as a series of values, the code is easy to read. Instead of imperatively specifying 
what to do when the event occurs, we declaratively specify aspects of the required 
result. The first line specifies what kind of events we’re interested in, the second 

merge IObservable<'T> -> IObservable<'T> -> IObservable<'T>

Creates an event that’s triggered when either of the events passed as arguments 
occurs. Note that the type of the values carried by the events ('T) has to be the same 
for both events.

partition ('T -> bool) -> IObservable<'T>  
             -> IObservable<'T> * IObservable<'T>

Splits an event into two distinct events based on the provided predicate. When the 
input event fires, the partition function runs the predicate and triggers one of the 
two created events depending on the result of the predicate. The behavior corre-
sponds to List.partition function.

Listing 16.3 Declarative event handling (F#)

Table 16.1 Overview of the most important functions of the Observable module (continued)

Function Type and description
Licensed to   <kr_wilson@hotmail.com>



466 CHAPTER 16 Developing reactive functional programs
one specifies what information is important for us, and the last line displays the for-
matted information.

 Initially, we’re starting with an event carrying values of type RenamedEventArgs. 
The filtering operation doesn’t change the type; it doesn’t trigger the returned event 
in some cases. The projection can change the type and the formatFileEvent function 
returns a string value, so we end up with events carrying strings. This means that the 
last primitive expects a function taking a string as an argument and returning a unit. 
As you can see, we can easily create a function like this using partial function applica-
tion. The printfn function with the %s format specifier creates a function that prints 
the given string.

 This way of handling events also gives us a richer way to split the code into reusable 
elements. We could omit the last line to create an event that can be used in several 
other places in the application. We could then use Observable.add in conjunction 
with MessageBox.Show to display the notifications in a graphical form, and use the 
same event to append to a log file. Let’s look at a slightly more complicated example.

16.1.3 Creating a simple reactive application

We’re going to build a small Windows Forms
application to demonstrate the power of 
this type of event processing. Figure 16.1 
shows the main form of the application; the 
intended behavior should be fairly obvious 
from the figure. 

 One way to implement this application 
in the normal way is to create a mutable field 
(or mutable ref cell in F#) and an event handler to be called when either button is 
clicked. The event handler would test which of the buttons was clicked, and would incre-
ment or decrement the mutable state and display it on the label. There are many other 
possible approaches, but in most we’d have to explicitly declare some mutable state.

 Now, how can we implement the same behavior using the functions we introduced 
in the previous section without explicitly relying on a mutable state? One of the nice 
things about declarative coding is that in many cases the code can be visualized easily. 
This is true for events; figure 16.2 shows a diagram demonstrating our solution.

 The idea is that we’ll take the click events and turn them into events carrying an 
integer value. We’ll do this using a helper function named always. It returns a function 

map (always 1)

merge
map (always -1)

scan (+) 0 listen (…)

Increment

Decrement

Figure 16.2 An event-processing pipeline used in the sample application; the two boxes 
on the left represent source events, and the lighter boxes represent events created using 
processing functions.

Figure 16.1 We change the number displayed 
in the label by clicking the buttons.
Licensed to   <kr_wilson@hotmail.com>



467Reactive programming using events
that ignores its argument and always returns the same value. We’ll use it to create events 
that will carry either +1 or –1 depending on which button was clicked. Then we can 
merge these two events and use the Observable.scan function to sum the values car-
ried by the events. 

 The code required to build the UI isn’t very interesting, so listing 16.4 only shows 
the part that sets up the event processing. 

let always x = (fun _ -> x)   

let incEvent = btnUp.Click |> Observable.map (always 1)    
let decEvent = btnDown.Click |> Observable.map (always -1)  

Observable.merge incEvent decEvent   
   |> Observable.scan (+) 0
   |> Observable.add (fun sum ->
         lbl.Text <- sprintf "Count: %d" sum)   

We start by declaring a utility function always that returns a function that ignores its 
argument and returns the value specified as an argument B. Next, we start imple-
menting the event processing code. To make it more readable, we don’t encode the 
whole pipeline as a single expression. Instead, we first declare two helper values that 
represent events C.

 The type of both incEvent and decEvent is IObservable<int>, which means that 
they represent events carrying integers. The value carried by the event raised by the 
Increment button is always +1, and the value of the other event is always –1. To generate 
the value, we’re using the always helper function that returns a function ignoring the 
argument and always returning the same value. The value being ignored in listing 16.4 
is the EventArgs argument of the Click event. 

 We merge these events D to create an event that will be triggered every time either 
button is clicked. The event carries integer values, so we can use Observable.scan to 
sum the values starting with 0 as an initial value. We’re using the plus operator for 
aggregation, so for each click the function will add +1 or –1. Finally, we use the Observ-
able.add function E to specify a handler that displays the current sum of clicks.

 The ability to work with .NET events as values of type IEvent<'T> (which makes it 
possible to process them with higher-order functions) is a special feature of F#. F# 
automatically wraps .NET events into this type, so we can work with events as standard 
values. Using the same idea in C# is tricky, but it’s possible with a bit of effort, and it 
nicely demonstrates the power of the declarative programming style and LINQ.

16.1.4 Declarative event processing using LINQ

To use events as first-class values in C#, we can use the .NET 4.0 IObservable<T> type, 
but we’ll need a few additions. First, there must be a way of creating an IObserv-
able<T> value from a standard .NET event. Second, we’ll need C# versions of the func-
tions from the Observable module that we used in the previous section. 

Listing 16.4 Pipeline for handling events (F#) 

B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



468 CHAPTER 16 Developing reactive functional programs
NOTE The project that adds LINQ support to IObservable<T> is called .NET
Reactive Framework, and it’s expected to become part of the .NET Frame-
work. It’s discussed in a video interview “Inside .NET Rx and IObservable/
IObserver in the BCL (VS 2010)” [Hamilton, Dyer, 2009]. In this chapter, 
we’re using an early preview of this framework, so there may be several dif-
ferences. You can also find  examples of using LINQ queries to process 
events in C# in Reactive LINQ, which is a project by one of the authors. 
You can find more information about it in a series of online articles start-
ing with “Introducing Reactive LINQ” [Petricek, 2008]. You can find the 
latest version of the source code, as well as links to download the Reactive 
Framework, on the book’s website.

Even though you may not use the code from this section in the exact form in the final 
version of Reactive Framework, it will give you a good idea of how declarative pro-
gramming makes it easy to process events. As we’ll see shortly, LINQ provides an ele-
gant way for writing the code we implemented in section 16.1.3 using higher-order 
functions in F#.
USING REACTIVE LINQ IN C#

Let’s see how we could implement the Windows Forms example in C#. Reactive LINQ
gives us a couple of extension methods for doing the same things as Observable.fil-
ter, Observable.map, and others. The library follows the standard LINQ naming con-
vention, so the corresponding extension methods are called Where and Select. 

 The problem that we have to work around in C# is that events (such as btnUp. 
Click) aren’t first-class values; they can’t be passed as an argument to a method. First 
we have to convert them into the IObservable<T> representation. Reactive Frame-
work provides a method called Observable.Attach that takes the event publisher and 
the name of the event as a string and creates an event value of type IObservable<T>. 
The method is also available as an extension method for all Windows Forms controls, 
because this is a common scenario.

 We mentioned that the methods for working with events are called Where and Select. 
This is important, because it means we can use the syntactic sugar available in C# query 
expressions to write the event-processing code instead of calling the methods explicitly. 
Listing 16.5 uses Reactive Framework to create an application with buttons for incre-
menting and decrementing the displayed number, just like in the previous F# version.

var upEvent = Observable.FromEvent<EventArgs>(btnUp, "Click");
var downEvent = Observable.FromEvent<EventArgs>(btnDown, "Click");  

var up = from clickArgs in upEvent select +1;      
var down = from clickArgs in downEvent select -1;  

Observable.Merge(up, down)             
   .Scan(0, (state, num) => state + num)  
   .Subscribe(sum =>
      lblCount.Text = string.Format("Count: {0}", sum));

The code in listing 16.5 is an initialization of the whole event-processing chain, so we 
need to run it exactly once when the application starts. In C#, this is easily done by 

Listing 16.5 Processing WinForms events using LINQ (C#)

B

C

D
E

Licensed to   <kr_wilson@hotmail.com>



469Reactive programming using events
placing it in the handler for the OnLoad event. We use the FromEvent method to turn 
two Click events into a first-class value B represented using the IObserv-

able<IEvent<EventArgs>> interface. In Reactive Framework, the IEvent groups the 
event argument as well as the sender. The method takes a single argument, which is 
the name of the event. It uses reflection under the hood, so we have to be careful to 
specify the name correctly. This is unfortunately the only way, because the only way to 
work with btnUp.Click event directly is to use the += or –= operators.

 Next, we write two simple queries to create events carrying numeric values C. The 
clickArgs variable represents the event arguments and the sender that we get when 
the event is triggered. In this case, it has a value of type IEvent<EventArgs>, so it 
doesn’t carry any useful information, but if it carried, say, mouse location, we could 
use it in the where clause to filter certain events. Keep in mind that the C# compiler
translates the queries into ordinary calls to the Select extension method using 
lambda expressions, so there’s nothing magical going on. 

 Once we have the two primitive event values, we merge them into a single event 
that carries +1 or –1 as the value depending on which button caused it D. Then we 
can use the Scan method to construct an event that uses the specified lambda func-
tion to calculate a new state each time the event occurs E. The state is calculated 
based on the current state and a value carried by the event.

 The cover of this book says it includes examples in F# and C#. The sidebar “Using 
Reactive LINQ in Visual Basic” makes one exception. It shows how to use a Visual 
Basic 9 feature that’s not available in C# 3.0 when working with events.  

Using Reactive LINQ in Visual Basic
Similarly to C#, Visual Basic contains a special language support for writing LINQ que-
ries. The syntax is a bit more flexible and supports a few additional constructs, but 
the principle is the same. The interesting thing is that Visual Basic supports aggre-
gation directly. This means that we don’t have to call the Scan method explicitly and 
we can instead use the special syntax it provides. The following shows the core parts 
of listing 16.5 in Visual Basic 9:

Dim upEvent = Observable.FromEvent(Of EventArgs)(btnUp, "Click")
Dim downEvent = Observable.FromEvent(Of EventArgs)(btnUp, "Click")

Dim sumEvent = _
   Aggregate num In Reactive.Merge( _               
      (From clickArgs1 In upEvent Select +1), _     
      (From clickArgs2 In downEvent Select -1)) _
   Into MovingSum(num)                                            

This time, we’ve written the whole event-processing code inside a single query. This 
would be possible in C# as well, but we wanted to show one more complicated query
demonstrating how declarative event processing looks in action. As you can see, we 
use nested queries to create events carrying numbers and then merge them just like 
in the previous version. Then we use a query written using the Aggregate clause. 
The query specifies that we’re aggregating num values coming from the source se-
quence (in our case, the merged event stream) using an operation specified after the 
Into keyword.

Merges events, 
calculates sum
Licensed to   <kr_wilson@hotmail.com>



470 CHAPTER 16 Developing reactive functional programs
In the last few sections, you’ve learned how to construct new events based on exist-
ing ones using higher-order functions or LINQ queries. We still haven’t discussed 
how to declare a new event. In C# this is done using the event keyword, but F# is 
slightly different.

16.1.5 Declaring events in F#

To declare a new event, we need two things. First we must create an event value that 
we can publish so that others can subscribe to our newly created event. This time, 
we’ll need to use the F# specific IEvent<'T> interface instead of the .NET IObserv-
able<'T>. We also need a way to trigger the event. In C#, the event can be triggered 
using the method invocation syntax, but only from the class where it was declared. 
When we create a new event in F#, we’ll get a function used to trigger it as well. 

 All of this is clearer with an example. Listing 16.6 shows a simple concrete object 
type (a class) that exposes one event and one method that sometimes triggers it.

> type Counter() = 
     let mutable num = 0
     let changedEvt = new Event<_>()  

     member x.SignChanged = changedEvt.Publish  
     member x.Add(n) =
         let original = num
         num <- num + n
         if (sign(original) <> sign(num)) then 
            changedEvt.Trigger(num);;            

> let c = Counter()
  c.SignChanged |> Observable.add (printfn "Number: %d");;
type Counter = (...)

> c.Add(10);;        
Number: 10

> c.Add(10);;
> c.Add(-30);;  
Number: -10    

The Counter class contains a single mutable field that stores the current number. The 
Add method changes this field, and we want to trigger the SignChanged event when 
the sign of the stored number changes. To declare a new event, we use the Event<'T>
class from the F# library. This class contains a Publish member that returns the 

Listing 16.6 Declaring an event as a class member (F# Interactive)

(continued)
The query is translated to a call to the MovingSum extension method. This is a very 
simple extension method that we implement for the IObservable<int> type so the 
listing corresponds to simpler C# code than the one we saw in listing 16.5. It’s still 
interesting to see that LINQ queries intended for aggregating collections can be used 
for counting button clicks and reacting to them.

Creates 
event

B

C
Publishes 
IEvent value

D
Triggers 
event

Changes sign 
from 0 to 1

Changes sign to – 1
Licensed to   <kr_wilson@hotmail.com>



471Creating reactive animations
corresponding IEvent<'T> value that can be listened to and a Trigger member for 
running the event. 

 Listing 16.6 shows the typical way of working with events in a type declaration. We 
store the instance of the Event class as a local value B and we expose the event value 
returned by the Publish member as a public member of the class C, so that the users 
can listen to the event but can’t trigger it. When the appropriate condition is met, we 
raise the event using the Trigger member D.

So far, we’ve examined some of the benefits of using events as first-class values. The 
most important concept is probably the ability to use higher-order functions for work-
ing with events, treating them as sequences of values to an extent. Now we’ll extend 
our animation example from the previous chapter to allow the user to interact with 
the animations. 

16.2 Creating reactive animations
When we implemented the animation library in the previous chapter, we mentioned 
that its design was largely influenced by functional reactive programming. We were 
concentrating on the part that implements animations, so the examples couldn’t react 
to events such as mouse clicks. Implementing a complete library for functional reac-
tive programming is outside of the scope of this book, but we can look at one example 
that shows the relationship between behaviors (from the previous chapter) and the 
events we’ve seen so far.

Declaring C#–compatible events
The technique we’ve used in this section creates events that can be used very natu-
rally from F#, but they won’t appear as standard C# events. The F# compiler doesn’t 
treat properties of the IEvent<'T> type in any special way, so it will compile the 
SignChanged member as a standard property. We could use the AddHandler meth-
od of the interface from C#, but that would be confusing. 

Luckily, F# compiler provides an easy way to fix that. If you want to declare a standard 
.NET event in F#, we can use the CLIEvent attribute. This attribute is understood by 
the compiler, and in this case, the compiler creates an event that can be accessed 
using += and -= operators in C#:

type Counter() =
   [<CLIEvent>]
   member x.SignChanged = ev.Publish

Another difference between F# events that we’ve created so far and the usual C# event 
is that F# uses its own generic delegate type (Handler<T>). If you want to use some 
other delegate, you can create the event using a class Event<'TDel, 'T>, which al-
lows you to specify the type of the delegate as the first argument. For example, in a 
typical Windows programming, you’d create events using the Event<EventHandler, 
EventArgs> type.
Licensed to   <kr_wilson@hotmail.com>



472 CHAPTER 16 Developing reactive functional programs
 As you may remember from the previous chapter, a behavior is a value that can 
vary over time. In this section, we’ll create a function called switch that allows us to 
create behaviors that change when an external event occurs. We’ll use switch to cre-
ate an animation that starts as a static image and animates faster each time the user 
clicks on the form. 

16.2.1 Using the switch function

We’ll start by looking at the example, then describe the implementation of the switch
function. Here’s its type, which gives us a good starting point for understanding it:

val switch : Behavior<'T> -> IObservable<Behavior<'T>> -> Behavior<'T>

The result of the function is a behavior that represents a value of 'T varying in time. 
This means that the function somehow constructs a behavior using the first two argu-
ments. The first argument represents an initial behavior. Before the event occurs, the 
returned behavior will be the same as the one provided as the first argument. 

 The most interesting aspect is the second argument. It’s an event that carries val-
ues of type Behavior<'T>. This means that each time the event is triggered, it will give 
us a new behavior that we can use instead of the previous (or initial) behavior. Each 
time the event occurs, the switch function will (behind the scenes) replace the behav-
ior it returns with the one obtained from the event. You may be thinking that an event 
carrying a behavior as a value sounds a bit complicated. If we wanted to build such an 
event from scratch it would indeed be tricky—but as always, we can create a complex 
value by composing simpler ones.

 Now that we know what the switch function is going to do, let’s try using it. List-
ing 16.7 first creates a simple rotating circle similar to the ones we saw in chapter 15. 
It then constructs an event that’s triggered when the user clicks on the form, and car-
ries a new behavior: the same animation running a bit faster. Finally, it uses the 
switch function to construct a behavior that changes with every click.

let af = new AnimationForm(ClientSize = Size(400, 400), Visible=true)

let greenCircle = circle (forever Brushes.OliveDrab) 100.0f.forever
let rotatingCircle = rotate 100.0f 1.0f greenCircle                         

let circleEvent =  
   af.Click 
   |> Observable.map (always 0.1f)                        
   |> Observable.scan (+) 0.0f                              
   |> Observable.map (fun x -> faster x rotatingCircle)  

let init = faster 0.0f rotatingCircle
af.Animation <- switch init circleEvent  

Listing 16.7 first creates a standard behavior, rotatingCircle, that represents an ani-
mated green circle that’s rotating using a constant speed B. Next, it constructs the event 
that yields new behaviors C. We’re using the same trick that we did when counting the 

Listing 16.7 Animation with changing speed (F#)

B

C

D

E

F

Licensed to   <kr_wilson@hotmail.com>



473Creating reactive animations
number of clicks on a button to create an event that will yield a number specifying the 
speed, which increments with every click D. The last call to Observable.map in the pipe-
line E turns the event carrying the speed into an event that carries a behavior. It changes 
the speed of the original rotating circle each time by calling the faster function with 
the new speed as the first argument.

 Once we have the event, we can 
finally use the switch function. First we 
create an initial behavior, which is the 
circle with the rotation speed set to 
zero. Then we use this behavior and the 
event declared earlier to create the final 
animation F. Figure 16.3 shows the 
final animation in action; the left side is 
the result of 3 clicks, and the right is 
after 13 clicks.

 Thanks to the combination of first-
class events and behaviors, we can write 
quite interesting animations in a fully 
declarative way. Now it’s time to look at 
the implementation of the switch func-
tion, which makes it all possible.

16.2.2 Implementing the switch function

We described how the switch function behaves in the previous section, and the imple-
mentation isn’t much more than a direct translation of that description into code, as 
shown in listing 16.8. The key idea is that the function will return a behavior that uses 
an actual behavior stored in a mutable variable. Each time the event occurs, we’ll 
update the mutable variable, so that any subsequent requests for the behavior’s value 
use the new result. Note that this use of mutable state is hidden from the user, so the 
end-user code can be declarative and free from any visible side effects. 

let switch initialBehavior behaviorEvent = 
   let current = ref initialBehavior
   behaviorEvent |> Observable.add (fun newBehavior ->
      current := newBehavior)                                     
   sample(fun ctx -> 
      let (BehaviorFunc f) = !current
      f(ctx))                                  

The function in listing 16.8 first declares a mutable variable using an F# ref cell (as we 
discussed in chapter 8). The initial value of the ref cell is set to the initial behavior. 
Next, we set up a handler for the event that can yield a new behavior B. When the 
event occurs, we set the value of the ref cell to the new behavior that we obtained from 
the event. We’re not worrying about thread-safety in this example, because when we 

Listing 16.8 Implementing the switch function (F#)

B

C

Figure 16.3  Two forms showing the animation 
running using different speeds after several mouse 
clicks
Licensed to   <kr_wilson@hotmail.com>



474 CHAPTER 16 Developing reactive functional programs
use the switch function from Windows Forms, the state is only accessed from the (sin-
gle) GUI thread. The behavior that’s returned from the function is constructed using 
the sample primitive from the previous chapter C. When the lambda function is 
called to retrieve the value of the behavior at the specified time, we simply derefer-
ence the current behavior and use it to process the request.

 The functions from the Observable module are useful if the logic of the event 
handling isn’t complicated. If the reaction to an event is always the same and if you 
need to filter the event or combine it with other events, then the declarative style is 
useful. Describing more complex logic declaratively using events isn’t always simple. 
In the next section we’ll look at another technique that uses the asynchronous work-
flows we saw in chapter 13 to handle GUI events.

16.3 Programming UIs using workflows
When designing applications that don’t react to external events, you have lots of con-
trol flow constructs available, such as if-then-else expressions, for loops and while
loops in imperative languages, or recursion and higher-order functions in functional 
languages. Constructs like this make it easy to describe what the application does. The 
control flow is clearly visible in the source code, so drawing a flowchart to describe it 
is straightforward.

 Understanding reactive applications is much more difficult. A typical C# applica-
tion or GUI control that needs to react to multiple events usually involves mutable 
state. When an event occurs, it updates the state and may run more code in response 
to the event, depending on the current state. This architecture makes it quite difficult 
to understand the potential states of the application and the transitions between 
them. Using asynchronous workflows, we can write the code in a way that makes the 
control flow of the application visible even for reactive applications.

16.3.1 Waiting for events asynchronously

The reason why we can’t use standard control flow constructs to drive reactive applica-
tions is that we don’t have any way of waiting for an event to occur. Writing a function 
that runs in a loop and checks whether an event has occurred is not only difficult to 
implement, it’s also very bad practice: it would block the executing thread. As you 
learned in chapter 13, asynchronous workflows allow us to write code that looks 
sequential, but which can include waiting for external events (such as the completion 
of an asynchronous I/O operation) but is executed asynchronously without blocking 
the thread.

 So far, we’ve seen only asynchronous methods that perform I/O operations, but we 
can also define a primitive that stops the asynchronous workflow and resumes it when 
the specified event occurs. The primitive, called AwaitObservable, is available in the 
online source code for the book as an extension for the Async type.2 Let’s start by 
looking at its type signature: 

val AwaitObservable : IObservable<'T> -> Async<'T>

2 The Async.AwaitObservable primitive may eventually become part of F# core or F# PowerPack library.
Licensed to   <kr_wilson@hotmail.com>



475Programming UIs using workflows
The type shows us that the function is quite simple. It takes event as an argument and 
returns a value that we can use inside an asynchronous workflow using the let! key-
word. One important difference between events and Async<'T> values is that an asyn-
chronous workflow can be executed at most once, while events can be triggered 
multiple times. This means that the AwaitObservable function has to wait only for the 
first occurrence of the event and then resumes the asynchronous workflow. Let’s take a 
look at how we can use AwaitObservable in a GUI application.
COUNTING MOUSE CLICKS

We’ll start by implementing an example similar to the counter increment/decrement 
application we used to demonstrate higher-order functions from the Observable mod-
ule. This will be simpler: it counts the number of clicks that take place and displays the 
count on a label. This behavior could be implemented using Observable.scan and the 
source code would be shorter, but as we’ll see later AwaitObservable is a far more 
powerful construct. Listing 16.9 shows how to write event handling code using asyn-
chronous workflows.

let frm, lbl = new Form(...), new Label(...)                 

let rec loop(count) = async {                         
  let! args = Async.AwaitObservable(lbl.MouseDown)  
  lbl.Text <- sprintf "Clicks: %d" count
  return! loop(count + 1) }               

do 
   Async.StartImmediately(loop(1))  
   Application.Run(frm)

The essential part of the application that implements the counting is a single recur-
sive function that’s implemented as an asynchronous workflow B. The function 
appears to create an infinite loop, which sounds suspicious to start with. The construct 
is completely valid, because it starts by waiting for a MouseDown event C. This is done 
asynchronously, which means that the workflow will install the event handler and the 
rest will only be executed when the user clicks the label. Once the event occurs, we 
update the text and loop with the incremented counter D.

 Earlier we mentioned that the AwaitObservable primitive waits for the first occur-
rence of the event, because asynchronous workflows can yield only a single value. As you 
can see in this example, if we want to handle every occurrence of the event, we can simply 
use a recursive loop to wait for the next occurrence. Using recursion also allows us to 
store the current state in the function parameters. In fact, this technique for expressing 
computations is similar to the primitive recursive functions we saw earlier in the book.

 When working with Windows Form controls, we’re required to access them only 
from the GUI thread, which is the main thread of the application. When you try to use 
property from other threads, the behavior is undefined and the application could 
crash. This means that we need to make sure that the asynchronous workflow will be 
executed only on the GUI thread. So far, we didn’t really care where the workflow exe-
cutes, but F# libraries provide a mechanism to control that. 

Listing 16.9 Counting clicks using asynchronous workflows (F#)

Creates user 
interface (omitted)B

C

D

E

Licensed to   <kr_wilson@hotmail.com>



476 CHAPTER 16 Developing reactive functional programs
 First, most of the asynchronous operations return to the calling thread after com-
pletion. This means that when you invoke an operation such as AsyncGetResponse, 
AsyncRead, or Async.Sleep, the operation will release the calling thread and start 
executing in the background. When it completes (usually on some background 
thread), it will use the .NET SynchronizationContext class to return to the thread 
where it was started.

 When we start the workflow on the GUI thread, it will continue running on the GUI
thread even if the workflow includes some operations that involve background 
threads. Thanks to this behavior, we can safely access Windows Forms controls from 
any part of the workflow. The only remaining question is how we can start workflow on 
the GUI thread. In listing 16.9, we use the Async.StartImmediate primitive E, which 
runs the workflow on the current thread. When the application starts, the current 
thread will be the main GUI thread.

 Figure 16.4 shows what happens when we use the StartImmediate primitive to run 
a workflow that contains a call to AsyncGetResponse. The most important fact is that 
when we run an asynchronous operation (using the let! primitive), the GUI thread is 
free to perform other work. When the workflow running on a GUI thread spends most 
of the time waiting for completion of an asynchronous operation, the application 
won’t become unresponsive.

As we said earlier, we could easily have implemented this example using Observ-
able.scan; let’s look at a slightly more complicated problem. 
LIMITING THE SPEED OF CLICKS

Let’s say that we’d like to limit the rate of clicks. We want the count to stay the same at 
least for one second after it gets incremented by the user clicking on the label. One 
way for implementing this is to add another parameter to the loop function of type 
DateTime that will store the last time of a successful click. When the event occurs 
inside the loop, we could then check the difference from the current time and the last 
time and increase the count only when the difference is larger than the limit.

 There’s a much simpler way of achieving this. In chapter 13 we discussed the 
Async.Sleep method, which allows us to stop the workflow for a specified time. If we 
use it somewhere in the loop function, it will sleep for one second before reacting to the 

StartImmediate

GUI thread

AsyncGetResponse 
(start operation)

background thread

(other work)

AsyncGetResponse
(runs in background)

(resume workflow)

Figure 16.3 StartImmediate starts the workflow on a GUI thread. The AsyncGetResponse 
operation runs in the background, while the GUI thread can perform other work. When the background 
operation completes, the workflow returns to the GUI thread.
Licensed to   <kr_wilson@hotmail.com>



477Programming UIs using workflows
Waiting

MouseMove
(with button pushed)

MouseDown

Drawing

MouseMove
(button released)

Starting

Initial state

Figure 16.5 When the application 
is Waiting, we can press the 
button to start Drawing. In this 
state, we can either continue 
Drawing by moving the mouse or 
complete the task and change the 
state of the application back to 
Waiting by releasing the button.

next event, which is exactly what we wanted. All we have to do is to add the following sin-
gle line before the line that last line that runs the recursion:

do! Async.Sleep(1000)

This is already something that would be quite difficult to do using the functions from 
the Observable module. If you’re curious, you can find the solution using Observable
functions in the source code at this book’s website; it’s about 8 lines long and a bit 
tricky to understand. The control flow of this example was still pretty simple. In the 
next section, we’ll explore a more sophisticated example that better demonstrates the 
capabilities of using asynchronous workflows for GUI programming.

16.3.2 Drawing rectangles

One problem that’s surprisingly difficult to solve in a functional way is the user inter-
action when drawing graphical objects on a Windows Forms control. Suppose we want 
to draw a rectangle so that the user starts by pressing the mouse button in one of the 
corners, moves the cursor to the opposite corner, then releases the button. While 
moving the cursor with the button pressed, the application should draw the current 
shape of the rectangle, and when the button is released, it should be finally applied to 
a bitmap or stored in the list of vector shapes.

 A typical imperative implementation would use a 
mutable flag specifying whether we’re currently 
drawing and a mutable variable to store the last loca-
tion where the user pressed the mouse button. Then 
we’d handle MouseDown and MouseMove events and 
modify the state appropriately when one of them 
fired. We can check whether the drawing is finished 
in the handler for the MouseMove event, because it 
also carries information about the state of mouse 
buttons. Alternatively, we could use the MouseUp but-
ton, but the first version will be easier to start with. If 
we think of the control flow of the application, we 
can see that it’s quite simple. You can see a flowchart
that shows it in figure 16.5. 

 We’re almost ready to convert this state machine
into an F# program using asynchronous workflows, 
but first we need a form to draw on and a utility 
function to help us with the basic task of drawing 
a rectangle.
IMPLEMENTING PROGRAM FUNDAMENTALS

We’ll improve this application later, but let’s start with an empty form on which we can 
draw rectangles. Listing 16.10 shows the code required to create the form and a func-
tion, drawRectangle, that draws a rectangle on the form using the specified color and 
two of any corner points of the rectangle.
Licensed to   <kr_wilson@hotmail.com>



478 CHAPTER 16 Developing reactive functional programs
open System
open System.Drawing
open System.Windows.Forms

let form = new Form(ClientSize=Size(800, 600))

let drawRectangle(clr, (x1, y1), (x2, y2)) =   
   use gr = form.CreateGraphics()
   use br = new SolidBrush(clr)
   let left, top = min x1 x2, min y1 y2             
   let width, height = abs(x1 - x2), abs(y1 - y2)  
   gr.Clear(Color.White)
   gr.FillRectangle(br, Rectangle(left, top, width, height))

Listing 16.10 is very straightforward. The function drawRectangle takes all its argu-
ments as a tuple, so it can be used in a way that’s consistent with calling .NET methods. 
In addition, its second and third parameters are nested tuples that represent the X and 
Y coordinates of the corners of the rectangle. This makes the rest of the code easier.
IMPLEMENTING THE STATE MACHINE

Now that we have all the basics of the application, we can implement our user interac-
tion. We’re going to follow the state machine described in figure 16.5, with two states 
(Waiting and Drawing) that have various transitions between them. Asynchronous work-
flows allow us to translate this directly, representing each state with a single function. The 
transitions can be encoded as function calls or by returning a value from a function.

 For our example this means that we’ll have two functions called drawingLoop and 
waitingLoop. The first of these also needs to remember some state, which we repre-
sent using the function’s parameters. Listing 16.11 shows both functions.

let rec drawingLoop(clr, from) = async {
   let! move = Async.AwaitObservable(form.MouseMove)                
   if (move.Button &&& MouseButtons.Left) = MouseButtons.Left then
      drawRectangle(clr, from, (move.X, move.Y))                        
      return! drawingLoop(clr, from)                                         
   else
      return (move.X, move.Y) }  

let waitingLoop() = async {
   while true do                                                 
      let! down = Async.AwaitObservable(form.MouseDown)
      let downPos = (down.X, down.Y)
      if (down.Button &&& MouseButtons.Left) = MouseButtons.Left then
         let! upPos = drawingLoop(Color.IndianRed, downPos)            
         do printfn "Drawn rectangle (%A, %A)" downPos upPos }

The most direct way to encode the state machine would be to use recursive calls 
between the two functions using the return! keyword. Listing 16.11 makes a minor 
change to this, to aid readability. The waitingLoop function contains an infinite while
loop E that waits until the user clicks the left button, then transfers control to the 

Listing 16.10 Creating a user interface and drawing utility (F#)

Listing 16.11 Workflow for drawing rectangles (F#)

Passes points as tuples

Specifies upper-left 
point, rectangle size

B

C

D

E

F

Licensed to   <kr_wilson@hotmail.com>



479Programming UIs using workflows
drawingLoop function. When drawingLoop completes, it returns the end position of 
the rectangle D and transfers the control back to waitingLoop F. We can then print 
the information about the drawn rectangle and wait for another MouseDown event.

 The function that runs while the user is drawing a rectangle is looping using recursive 
calls, because it needs to keep some state. It starts by waiting for the MouseMove event, 
which is also triggered when the button is released B. It then tests whether the button 
is currently pressed; if that’s the case, it refreshes the view of the form C. This transition 
corresponds to the arc looping in the Drawing state. When the button is released, it 
returns the last location as a result C, which is the transition back to the Waiting state.

 That’s almost everything we need to run the application. All that remains is to start 
the asynchronous workflow that handles drawing of rectangles and run the applica-
tion. We’ll use the Async.StartImmediately primitive to start the workflow on the 
GUI thread:

[<STAThread>]
do 
   Async.StartImmediately(waitingLoop())
   Application.Run(form)

In this simple application, we need only a single asynchronous workflow that handles all 
the interaction with the application, but multiple workflows can be combined easily. If 
we wanted to allow polygons to be drawn using the right mouse button, we could imple-
ment that without making any changes to the existing code. We’d simply create another 
workflow for drawing polygons and start it independently using Async.StartImmedi-
ately. This way of writing the UI code gives us a modular way of splitting complex inter-
actions into separate processes.   

Running workflows on the GUI thread
The application we just implemented consists of a single running process, but it’s 
important to realize that a process in the sense we’re using here doesn’t correspond 
to a thread. Even if we had multiple processes waiting for GUI events, the application 
would still be single-threaded. 

When we run the Async.StartImmediately method in the earlier example, it starts 
running the workflow and doesn’t complete until the workflow reaches a point where 
it waits for a completion of an asynchronous operation (such as waiting for an event). 
Both Async.Sleep and Async.AwaitObservable, which we’ve used so far, return to 
the caller thread after completion, so the workflow will continue running exclusively 
on the GUI thread.

Even if we add multiple processes that wait for UI events, this technique doesn’t in-
troduce any parallelism. All the code runs on the GUI thread, and if a single event 
causes state transition in multiple processes, the bits of workflows are executed se-
quentially. Using asynchronous workflows to write UIs gives us an easier way to write 
our single-threaded GUI processing. 
Licensed to   <kr_wilson@hotmail.com>



480 CHAPTER 16 Developing reactive functional programs
The code we’ve written so far isn’t a drawing application, because it doesn’t store the 
rectangles we’ve drawn. Once a rectangle has been completed by the user releasing 
the button, it prints information to the console and forgets the rectangle. We could 
store a list of rectangles as a parameter of the waitingLoop function (if we made it a 
recursive function), but that would cause other problems. The list would be private to 
the drawing loop, so it couldn’t be accessed from other parts of the application. We 
need a different approach to handle global state that’s used by the whole application.

16.4 Storing state in reactive applications
The asynchronous workflow we used to draw rectangles can be viewed as a lightweight 
process that runs inside the application to handle a specific task. In this chapter, the 
task was a GUI interaction, but we could just as easily add other asynchronous work-
flows that perform other tasks, such as downloading the content of a website as we saw 
in chapter 13. This means there can be multiple processes like this running in paral-
lel. An asynchronous workflow doesn’t correspond to a thread. Unless we explicitly 
limit it to run on the GUI thread using the StartImmediately method, we can have 
numerous workflows running in parallel.

 Structuring the code using workflows allows us to split the code into small pieces 
nicely, but we haven’t discussed one essential aspect yet: how these processes can 
communicate. 

16.4.1 Working with state safely

In a single-threaded application like the drawing of rectangles we’ve implemented so 
far, we could use global mutable variables. This may not be the most elegant solution 
from the pure functional point of view, but it’s a pragmatic choice, because using 
mutation in .NET programming is easy. You could no doubt write the code using, for 
example, the mutable List<T> type to store the rectangles yourself, so we’ll look at an 
alternative solution that’s more important once we introduce parallelism and makes 
the code clearer from a functional point of view.

 In this book, we won’t introduce parallelism in the demo, but you can get a more 
evolved version of the sample from the book’s website. In that version we make the 
application online and allow multiple users to connect to a single server and collabo-
rate on drawing a single image. In that case, the state can be modified by the user, but 

(continued)
Later on, we’ll see a technique that allows us to integrate this form of GUI processing 
with other processes that can potentially run in parallel. However, code for user inter-
face interaction like this should be simple and shouldn’t perform any complicated com-
putations, so there’s no need for parallelism. Even when we need to perform some 
time-consuming computations for the GUI, it’s still a good idea to move all this work 
to a background worker thread. 
Licensed to   <kr_wilson@hotmail.com>



481Storing state in reactive applications
also concurrently by a message coming from a network communication. If we decided 
to use mutable state, we’d have to carefully use locking, which would complicate the 
code. When we store the state using the technique we’ll introduce in this section we 
won’t have to do a single change—the code as we’ll write it is perfectly thread-safe, 
which is quite important nowadays.

 The technique we’re going to use instead is called message passing. In a message-
passing application, the processes can send messages to each other and exchange all 
the state they need just by sending or replying to messages. 

16.4.2 Creating a mailbox processor

Let’s look at using message passing in practice. We’ll extend the application from the 
previous section and add a process that will store the current state of the application: 
the currently selected color (we’ll add an option to change the color) and a list of all 
the rectangles that we’ve drawn so far. The application will handle messages that will 
be sent from the process for drawing rectangles or from other event handlers that 
we’ll add to the application. In the extended version of the demo that we mentioned 
in the section introduction, the messages can also be sent concurrently from a compo-
nent handling the network communication. In F#, the processes that can receive mes-
sages are also called mailbox processors. Before we can start implementing the mailbox 
processor, we need to know what a message is.
IMPLEMENTING THE MESSAGE TYPE

Each process can handle messages of a single known type, so we’ll begin by declar-
ing the type that represents the message. We’ll use a discriminated union, because 
that way we can represent multiple kinds of messages as discriminators of a single 
union type. As you can see in listing 16.12, discriminated union is the right F# type 
for this purpose.

type RectData = Color * (int * int) * (int * int)

type DrawingMessage = 
   | AddRectangle of RectData
   | SetColor of Color
   | GetRectangles of AsyncReplyChannel<list<RectData>>
   | GetColor of AsyncReplyChannel<Color>

Listing 16.12 starts by declaring a type alias called RectData, which is a tuple contain-
ing all the information that we need to store about a single rectangle. The discrimi-
nated union itself then contains two types of messages. The first two messages are used 
to change the current state. In the case of AddRectangle, the processor will add the 
information about the newly created rectangle to an internal list; in the case of Set-
Color, it will change the currently selected color. 

 The next two messages look a bit trickier, because the value they carry has a type 
AsyncReplyChannel<'T>. This type allows us to create messages that send a reply back 

Listing 16.12 The type representing messages (F#)
Licensed to   <kr_wilson@hotmail.com>



482 CHAPTER 16 Developing reactive functional programs
to the caller. In our case, it means that when the process receives one of these mes-
sages, it will send a reply back containing either a list of all the rectangles or the cur-
rently selected color. 

 Now that we’ve got the message, we need to know how to implement the mailbox 
processor, and how to send and receive messages. Let’s start with the mailbox processor. 
IMPLEMENTING THE PROCESSOR

In general, mailbox processors can be quite complicated. They can perform calcula-
tions in reaction to the messages they receive; they can send messages to other proces-
sors and collect the replies; they can even start new mailbox processors. Our example 
is simple: the mailbox processor stores the current state of the application and han-
dles the messages to read or update this state.

 Listing 16.13 implements the processor in much the same way as our earlier state 
machine code. Most of the code is a recursive function written using asynchronous 
workflows that maintains the current state using function parameters.

let state = MailboxProcessor.Start(fun mbox ->  
   let rec loop(clr, rects) = async {
      let! msg = mbox.Receive()    
      match msg with
      | SetColor(newClr) -> 
         return! loop(newClr, rects)         
      | AddRectangle(newRc) ->
         form.Invalidate()
         return! loop(clr, rects@[newRc])
      | GetColor(chnl) -> 
         chnl.Reply(clr)               
         return! loop(clr, rects)
      | GetRectangles(chnl) -> 
         chnl.Reply(rects)            
         return! loop(clr, rects) }
   loop(Color.IndianRed, []) )  

To create a mailbox processor, we use the Start member of the MailboxProcessor
type. It initializes the mailbox for the messages and runs the specified function B to 
start processing messages. The function returns an asynchronous workflow that can 
wait for messages using the Receive method C of the mailbox that we get as an argu-
ment during the initialization.

 We’ve implemented the workflow using a recursive function called loop that takes 
two parameters. The parameter clr represents the currently selected color and rects
is a list of rectangles. To return the workflow from the lambda function, we call loop
with a red color and an empty list as the initial state F.

 Now let’s have a look at the body of the loop function. It starts by receiving the 
next message from the mailbox C. The mailbox internally stores a queue, so if a mes-
sage is already in the queue it will be returned immediately. If the queue is empty, the 
Receive method will block the workflow (without blocking the actual thread) and 

Listing 16.13 Creating the mailbox processor (F#)

B

C

D

E

F

Licensed to   <kr_wilson@hotmail.com>



483Storing state in reactive applications
resume it once a message is sent to the processor. Once we receive a message, we use 
pattern matching to decide how to handle it. The first two messages modify the state 
of the processor, so we call the loop function recursively with the updated state using 
the return! keyword D. Note that when we get a new rectangle, we want to add it to 
the end of the list to make sure that it will be displayed on the top, so we use the @
operator for concatenating lists. 

 The last two messages E are used for reading the state of the processor and carry a 
reply channel as an argument. When the processor receives the message, it uses the 
Reply method of the channel to send the list of rectangles or the current color back as 
a result to the caller, and then loops without altering the state. 

NOTE When you’re writing mailbox processors, it’s important to understand 
how they’re executed with respect to threads. The thread that’s execut-
ing the body can change when the workflow waits for an asynchronous 
operation, but the body of a single mailbox processor instance will never 
run on multiple threads concurrently. If a new message is received while 
we’re processing an existing one, it’s just queued and handled later. Our 
example doesn’t perform any complicated computations, so it will almost 
always process the message immediately. Mailbox processors are thread- 
safe by design, so when we use them to store state that’s accessed concur-
rently, we don’t have to worry about race conditions. 

Now that we have the mailbox processor ready, let’s see what changes we need to 
make in order to use and update the state stored in the processor.

16.4.3 Communicating using messages

Listing 16.13 created a mailbox processor called state, which has a type MailboxPro-
cessor<DrawingMessage>. Note that the Start method we used to create it was a 
member of a nongeneric class of the same name. This is the same pattern we’ve used 
in C# to take advantage of type inference. Before we start integrating this into our 
code, we’ll see what operations are supported by mailbox processors. Table 16.2 shows 
the most important instance methods of the generic type. 

Table 16.2 The most important methods provided by the MailboxProcessor<'Msg> type 

Mailbox function Description of the function

Post Sends a message to the mailbox processor without waiting for any reply. If 
the mailbox processor is busy, the message is stored in the queue.

PostAndReply Sends a message that expects AsyncReplyChannel<'T> as an argu-
ment to the mailbox processor and blocks the calling thread until the mail-
box processor invokes the Reply method of the channel. It then returns 
the value sent to the channel by the processor.

PostAndAsyncReply Similar to PostAndReply with the exception that it runs asynchronously. 
This is usually invoked from an asynchronous workflow using let! so that 
the calling thread isn’t blocked while the message is waiting to be processed.
Licensed to   <kr_wilson@hotmail.com>



484 CHAPTER 16 Developing reactive functional programs
We’ve seen how to use Receive, and we’ll talk about Scan later on. The remaining 
three methods can be used from any thread. Although it’s occasionally useful for a 
processor to send a message to itself, the more typical scenario is for a message to be 
sent to a processor from a different process (for example, an asynchronous workflow 
implementing the GUI interaction or a background worker thread).
IMPROVING THE DRAWING PROCESS

Now we know what’s available, we can change the drawing process to keep all the 
rectangles the user has drawn, and to allow the user to select a different color. First 
we need to change the drawing code. The drawRectangle function originally erased 
the whole screen, which isn’t appropriate if we want to draw multiple rectangles. We 
still need to clear the screen, but just once rather than for every rectangle. List- 
ing 16.14 shows a new function that draws all the rectangles in a specified list. The 
drawRectangle function isn’t shown, but the only change is to remove the first call 
to Clear.

let redrawWindow(rectangles) =
   use gr = form.CreateGraphics()
   gr.Clear(Color.White)
   for r in rectangles do
      drawRectangle(r)

The function clears the content of the form and iterates over all the elements of the 
given list, drawing each individual rectangle using drawRectangle. The list stores rect-
angles as tuples with three elements (the color and two opposite corners), which is 
compatible with the tuple expected by the drawRectangle function.

 Now we’re finally ready to modify the process that handles the user interaction. 
Because the whole code is implemented as an asynchronous workflow, we can use the 
asynchronous method PostAndAsyncReply when we need to get information from the 
mailbox processor that stores the state. This is the preferred option when it’s possible 
to use it, because it doesn’t block the calling thread. Most of the code in listing 16.15 
is the same as it was in listing 16.11, so we’ve highlighted the lines that have changed.

Receive We used this method when creating the mailbox processor to asynchronously 
receive the next message from the queue, so that we can process it inside 
workflow. This method shouldn’t be used outside the mailbox processor.

Scan Like Receive, this method shouldn’t be used outside the mailbox proces-
sor. It can be used when the processor is in a state when it can’t process 
all types of messages. The provided lambda function returns an option 
type, and it can return Some containing asynchronous workflow to process 
the message or None when the message can’t be processed. Unpro-
cessed messages remain in the queue to be processed later.

Listing 16.14 Utility function for drawing rectangles (F#)

Table 16.2 The most important methods provided by the MailboxProcessor<'Msg> type (continued)

Mailbox function Description of the function
Licensed to   <kr_wilson@hotmail.com>



485Storing state in reactive applications
let rec drawingLoop(clr, from) = async {
   let! move = Async. AwaitObservable(form.MouseMove)
   if (move.Button &&& MouseButtons.Left) = MouseButtons.Left then
      let! rects = state.PostAndAsyncReply(GetRectangles)          
      redrawWindow(rects)                                            
      drawRectangle(clr, from, (move.X, move.Y))              
      return! drawingLoop(clr, from)
   else  
      return (move.X, move.Y) }

let waitingLoop() = async {
   while true do
      let! down = Async. AwaitObservable(form.MouseDown)
      let downPos = (down.X, down.Y)
      if (down.Button &&& MouseButtons.Left) = MouseButtons.Left then        
         let! clr = state.PostAndAsyncReply(GetColor)                   
         let! upPos = drawingLoop(clr, downPos)
         state.Post(AddRectangle(clr, downPos, upPos)) }  

Let’s begin by looking at the changes we did in the drawingLoop function, at the point 
where we update the window. Originally, we needed to erase whatever was there 
before and draw the new rectangle, but now we also need to draw all the rectangles 
that were drawn earlier. We obtain the list of rectangles from the mailbox processor by 
sending it the GetRectangles message B. The message takes an argument of type 
AsyncReplyChannel<'T> that will be used by the mailbox processor to reply to the 
caller, but we don’t specify the channel explicitly in the code. The F# compiler treats 
the discriminated union constructor (GetRectangles) as a function that takes a single 
argument. We could write the same thing like this:

let! rects = state.PostAndAsyncReply(fun chnl -> GetRectangles(chnl))

If we write the code in this longer form, it’s easier to see what’s going on in detail. The 
PostAndAsyncReply method creates a channel for the reply and uses the specified 
lambda function to create the message that carries the channel. The message is then 
sent to the mailbox processor and the workflow is suspended until a reply is sent to 
the channel. Once we receive the reply with a list of rectangles, we can draw them. We 
then draw the new rectangle that the user is drawing right now C. Note that the reply 
can be sent from a background thread. The PostAndAsyncReply method returns 
to the caller thread after completion, so the rest of the workflow will execute on the 
GUI thread.

 The second change is in the waitingLoop function, at the point where the user 
starts drawing a new rectangle. First we read the currently selected color D. We 
haven’t implemented the UI aspect of selecting a different color yet, but that will 
come soon, so we might as well be ready for it. We have to retrieve the color after the 
call to AwaitObservable completes; otherwise the user could change the color after 
we fetch it but before we start drawing. Once we’ve got the color, we can call the draw-
ingLoop function to handle the period of time when the user is still pressing the 

Listing 16.15 Changes in the drawing process (F#)

B
C

D

E

Licensed to   <kr_wilson@hotmail.com>



486 CHAPTER 16 Developing reactive functional programs
mouse button. We use the Post method to send all the information about the newly 
created rectangle to the mailbox processor E.
ADDING THE USER INTERFACE

The UI of the application will be quite 
simple, but we’ll need to call the mail-
box processor from various places to 
work with the current application state. 
First we’ll add a handler for the Paint
event, so the application redraws the 
rectangles when any part of the window 
is invalidated. This could happen if the 
application is resized, or if another win-
dow is moved in front of it. Second, 
we’ll add a toolbar with a single button 
that allows the user to change the cur-
rent color. Figure 16.6 shows an exam-
ple of the application in action.

 Listing 16.16 shows the most inter-
esting parts of the remaining applica-
tion code. We’ve omitted the code that 
creates the toolbar and the button, but 
the full source is on this book’s website.

let btnColor = new ToolStripButton(...)  

btnColor.Click.Add(fun _ ->
   use dlg = new ColorDialog()
   if (dlg.ShowDialog() = DialogResult.OK) then       
      state.Post(SetColor(dlg.Color)) )        

form.Paint.Add(fun _ ->
   let rects = state.PostAndReply(GetRectangles)  
   redrawWindow(rects) )    

[<STAThread>]
do
   Async.StartImmediate(waitingLoop())  
   Application.Run(form)

Most of the code is fairly straightforward. We create the UI and register a handler for 
two events. We don’t need to do anything complicated with these events, so we’re call-
ing the Add method instead of using functions from the Observable module. The first 
handler displays a ColorDialog so the user can select a new color. If a color is 
selected, we post a message with the new color to the mailbox processor B. We don’t 
need to wait for any reply to this message, so this operation is performed without 
blocking the thread.

Listing 16.16 Implementing the user interface (F#)

Creates user 
interface (omitted)

Shows dialog for 
color selectionB

C

Starts rectangle-
drawing workflow

Figure 16.6 Running the application with a 
drawing consisting only of rectangles.
Licensed to   <kr_wilson@hotmail.com>



487Storing state in reactive applications
 The second event handler is for the Paint event. First it needs to obtain the list of 
existing rectangles, which it does using the PostAndReply method C. This constructs 
the message with a reply channel and then waits until the mailbox sends a reply. This 
method blocks the thread, so it should be used only when we can’t complete the oper-
ation asynchronously. Updating the window of the application based on the Windows 
Forms request is definitely one of these situations, so this use is correct.

 So far, we’ve been using the mailbox processor object directly. That’s okay in the 
early stages of development, but once the application becomes larger, or if we want to 
turn part of the application into a separate library, it would be better to encapsulate 
the mailbox processor in an object. Even though we’re not going to extend our draw-
ing application much further, it’s worth taking a look at what this involves.

16.4.4 Encapsulating mailbox processors

To encapsulate the mailbox processor, we’ll change the global value representing the 
processor into a local field within a normal object type. We’ll add methods that send 
the messages to the private mailbox, which is also good for encapsulation: we don’t 
have to expose all of the messages that the mailbox can respond to, if some of them 
are only intended for internal use.

 Making this change doesn’t require any modification to the message-processing 
code. You can see the declaration of the concrete object type in listing 16.17; the pro-
cessing code itself is omitted because it hasn’t changed.

type DrawingState() = 
   let mbox = MailboxProcessor.Start(fun mbox ->  
      let rec loop(clr, rects) = async { 
         let! msg = mbox.Receive()
         // Message processing code as before
      }
      loop(Color.Black, []) )

   member x.SetColor(clr) =        
      mbox.Post(SetColor(clr))       
   member x.AddRectangle(rc) =    
      mbox.Post(AddRectangle(rc))

   member x.AsyncGetRectangles() =             
      mbox.PostAndAsyncReply(GetRectangles))  
   member x.AsyncGetColor() =                     
      mbox.PostAndAsyncReply(GetColor))      

   member x.GetRectangles() =            
      mbox.PostAndReply(GetRectangles)  
   member x.GetColor() =                   
      mbox.PostAndReply(GetColor)      

let state = new DrawingState()    

To create a local mailbox processor inside the class declaration, we use a local 
let binding B. This becomes a part of the constructor of the class, which means 

Listing 16.17 Encapsulating mailbox processor into a type (F#)

B
Creates private 
mailbox processor

C Updates state 
without blocking

D Reads state 
asynchronously

E Reads state 
with blocking
Licensed to   <kr_wilson@hotmail.com>



488 CHAPTER 16 Developing reactive functional programs
that the mailbox will be started when the instance is created. Values declared using 
local let bindings are turned into fields, so they’re accessible from anywhere inside 
the class.

 The members of the type are mostly boilerplate code. Members that update the 
state of the mailbox processor and don’t wait for any return value C send their mes-
sages using the Post method. The second group of members D read state asynchro-
nously, using the PostAndAsyncReply method. Note that we’re using the Async prefix
in the name of these members. This is a standard notation used across the entire F# 
library to denote members that can only be accessed from asynchronous workflows. 
The final two methods E are simple blocking methods that use the synchronous 
PostAndReply method.

 Once we’ve encapsulated the mailbox processor inside a class, we need to modify 
the rest of the code where it’s accessed. Instead of sending a message explicitly, we 
simply call one of the methods. For instance, the calls in the asynchronous workflow 
to get and set the selected color turn into these lines:

let! clr = state.AsyncGetColor()
state.SetColor(clr)

Now that we’ve encapsulated the mailbox processor in a class, it can be compiled 
into an F# library and distributed as a reusable component. Unfortunately it’s hard 
to use methods that return asynchronous workflow objects (Async<'T>) from C#, so 
if you want to be able to use the component from C#, you should also provide meth-
ods that take a delegate to act as a callback, and run that when the asynchronous 
operation completes.

 In the next section we’ll add one more feature to our application to show another 
aspect of event handling using the AwaitObservable primitive inside asynchronous 
workflows. 

16.4.5 Waiting for multiple events

In all the AwaitObservable examples so far, we’ve only been waiting for a single event 
to occur. The rectangle drawing application first waits for the MouseDown event and 
then repeatedly waits for MouseMove. What if we wanted to wait until either the Mouse-
Move event or some other event occurred? We might want to be able to cancel drawing 
the new rectangle in some way. We’ll implement exactly this scenario, using a key 
press as our cancellation event.

 We’re going to need to change the return type of the drawingLoop function. There 
are now two possibilities when the function returns: either the user has drawn a rect-
angle (in which case the calling function needs to know the details of it) or the user 
canceled the drawing. This is a perfect match for an option type: the return type was 
originally Async<int * int>, and after the change it will become Async<option<int *
int>>. Of course we won’t need to explicitly change the return type: the F# compiler 
can infer it as normal.
Licensed to   <kr_wilson@hotmail.com>



489Storing state in reactive applications
 When the user hits the Esc key, we’ll stop the drawingLoop and return None as the 
result. To do this, we need to wait for the MouseMove or the KeyDown event and handle 
the one that occurs first. You can find the modified code for the drawingLoop func-
tion in listing 16.18.

let rec drawingLoop(clr, from) = async {
   let! args = Async.AwaitObservable(form.MouseMove, form.KeyDown)     
   match args with
   | Choice1Of2(move) when
         MouseButtons.Left =
         (move.Button &&& MouseButtons.Left) ->     
      let! rects = state.AsyncGetRectangles()
      redrawWindow(rects)
      drawRectangle(clr, from, (move.X, move.Y))
      return! drawingLoop(clr, from)
   | Choice1Of2(move) ->                               
      return Some(move.X, move.Y)
   | Choice2Of2(key) when key.KeyCode = Keys.Escape ->  
      form.Invalidate(); 
      return None
   | _ -> return! drawingLoop(clr, from) }

In all the previous examples, we used the AwaitObservable method, which takes just 
one event as an argument. However, the source code for the book also implements an 
overload, which allows us to specify multiple events and waits for the first occurrence 
of any of the specified events, ignoring any subsequent occurrences. In our case, this 
means that the call B will block until either a mouse is moved or a key is pressed; it 
will run the processing code. If the processing ends with a recursive call, then Await-
Observable will be called again to wait for the next event, but otherwise the next 
occurrence will be ignored. To better understand how the overload taking two param-
eters works, let’s look at its type signature:

AwaitObservable : IObservable<'T> * IObservable<'U> -> Async<Choice<'T * 'U>>

When AwaitObservable returns, we need to know which of the events occurred and 
what argument it carried. Also, the values carried by the events can be different for all 
the provided events. In this situation, the method can’t simply return the carried argu-
ment, so let’s look at the type of the returned value. The type Choice is a generic dis-
criminated union and can represent one of several choices. The type is overloaded by 
the number of type parameters. In listing 16.18, we have two different choices, so the 
type of the args value is Choice<MouseEventArgs, KeyEventArgs>.

 When the MouseMove event occurs first, the returned value will use the discriminated 
union constructor Choice1Of2 carrying information about the mouse event; otherwise 
the constructor Choice2Of2 will be used with a value of type KeyEventArgs. If you 
wanted to wait for more events, you’d use a name such as Choice1Of3 and so on.

 Responding to multiple events appropriately is a task that lends itself to pattern 
matching. The first branch C is called when the mouse moves while the user is still 

Listing 16.18 Drawing rectangle with cancellation using the Esc key (F#)

B

Waits 
for any 
event

C
Continues 
drawing

Returns 
rectangle

D

Cancels drawing, 
returns None
Licensed to   <kr_wilson@hotmail.com>



490 CHAPTER 16 Developing reactive functional programs
pressing the left button. In that case we update the window and continue drawing. If 
the mouse button has been released, the next case D will be called. This means that 
the user finished drawing, so we can return the end location of the rectangle. 

 The last two cases respond to the KeyDown event. Again we use a when clause, this 
time to determine whether the key being pressed was Esc. If that’s the case, we cancel 
the drawing process and return None as the result; otherwise we ignore the keyboard 
event and continue waiting for another event.

 Having changed the drawingLoop function, the final step is to tweak the waiting-
Loop function so that it sends the AddRectangle message only when a rectangle is 
actually drawn. This is a simple change that doesn’t introduce any new concepts, so 
you can find it in the full source code on the book’s website.

 We started this section by discussing how to use a mailbox processor to store the 
state of the application in a scenario where we need to handle various events. In all 
our examples so far, we’ve limited ourselves to events coming from the UI. An impor-
tant feature of mailbox processors is that they can be also used in scenarios involving 
concurrency. We’ll take a look at this topic in the next section.

16.5 Message passing concurrency
When we discussed developing concurrent programs in chapter 14, we focused on 
techniques where we could avoid using mutable state. Without mutable state, we can 
run several parts of a computation in parallel, because they can’t interfere with each 
other. This works very well for many data processing problems that can be imple-
mented in a functional way, but there are also problems when the processes need to 
exchange information more frequently.

 The most widely known solution is using the shared memory and protecting access to 
the shared state using locks. The problem with this technique is that using locks cor-
rectly is quite difficult. You have to make sure that all the shared memory is properly 
locked (to avoid race conditions when multiple threads write to the same location). 
Another difficulty is that when we don’t use caution when acquiring locks we can 
cause a deadlock, where two threads become blocked forever, each waiting for the 
other to complete.

 The MailboxProcessor<'Msg> type in F# can be used to implement concurrent 
programs using a technique called message passing concurrency. This approach isn’t as 
widely used, but is the basis of concurrency in a functional language called Erlang
[Armstrong et al., 1996], which is known for its scalability. We’ve already seen this 
approach when we stored the state of our rectangle-drawing application in a mailbox, 
but that scenario was designed to explore asynchronous logic and event handling 
more than true concurrency.

 In this section, we’ll look at using a mailbox processor from multiple threads to 
demonstrate this approach. We’ll use an example with a single mailbox processor and 
multiple asynchronous workflows (running on multiple threads) that access it. More 
sophisticated programs that use message-passing concurrency often use multiple mail-
box processors that communicate with each other.
Licensed to   <kr_wilson@hotmail.com>



491Message passing concurrency
16.5.1 Creating a state machine processor

The mailbox processor we created earlier was quite simple. It was able to process four 
different messages and it maintained some local state, but it was always able to process 
any message that it received immediately. This may not always be the case. If a single 
mailbox processor sends a message to two other processors, it may need to collect the 
replies from these processors before reacting to any other message. 

 We can write mailbox processors that represent a state machine in a similar way to 
our event-handling state machine for drawing rectangles using asynchronous work-
flows. A full application demonstrating this is beyond the scope of this book, but we’ll 
create a simple example that shows the concepts involved.

 Our message processor will store an integer that can be modified by a message, 
and have the ability to block and resume operation. While it’s blocked, no further 
modification messages will be processed. To keep things simple, we’re not going to 
provide any way of retrieving the stored integer: when we modify the state we’ll print a 
message to the console so we can see what’s going on. With this goal in mind, it’s easy 
to design the message type:

 type Message = 
   | ModifyState of int
   | Block
   | Resume

The individual messages are simple, and we’ve already explained what ModifyState will 
do. The two other messages are worth considering in more detail. If the process is in the 
initial state and it receives Block, it stops processing all the ModifyState messages and 
waits for Resume. Messages sent to the processor when it’s in the blocked state aren’t 
lost: the processor has an internal queue where the messages are stored, so once we 
resume it again, it will process all the messages it received while it was blocked.

 Listing 16.19 implements this mailbox processor. We’re encoding the state 
machine using recursive asynchronous workflow functions, just like we did for our 
drawing state machine: one function is used to respond to messages in the active
state, and one function responds to (or ignores) messages in the blocked state. The 
two functions call each other when the mailbox changes from one state to the other.

let mbox = MailboxProcessor.Start(fun mbox ->
   let startTime = DateTime.UtcNow
   let rec active(n) = async {
      printfn "[%A] Processing: %d" (DateTime.UtcNow - startTime) n
      let! msg = mbox.Receive()                                               
      match msg with
      | ModifyState(by) -> return! active(n + by)
      | Resume -> return! active(n)
      | Block -> return! blocked(n) }
   and blocked(n) =
      printfn "[%A] Blocking" (DateTime.UtcNow - startTime)

Listing 16.19 Mailbox processor using state machine (F#)

B
Processes 
any message
Licensed to   <kr_wilson@hotmail.com>



492 CHAPTER 16 Developing reactive functional programs
      mbox.Scan(fun msg ->      
        match msg with
        | Resume -> Some(async {                          
            let dt = (DateTime.UtcNow - startTime)
            printfn "[%A] Resuming" dt
            return! active(n) })
        | _ -> None)                       
   active(0) )

The processor is started by calling the active function with zero as the initial state. In 
this state, we can handle any message, so we simply use the Receive primitive B that 
asynchronously returns the next message. If the message is ModifyState, we update 
the number and continue in the active state. The Resume message doesn’t make 
much sense in this state (because we haven’t received the Block message yet), so we 
can ignore it. When we receive the Block message, we need to do something to stop 
processing all messages other than Resume, so we call the blocked function that repre-
sents the second state.

 When the processor is in the blocked state, we have to use the Scan primitive C, 
which allows us to specify what messages we can handle and which messages should 
remain in the queue for later processing. The Scan member takes a function that 
specifies what to do when a message is received. In our example, when the message is 
Resume, we return an asynchronous workflow D that the Scan member will run. The 
workflow prints a message to the console and executes the active function to switch 
back to the active state. When the processor receives any other message in the 
blocked state, the lambda expression executed by Scan will return None E. This 
means that it can’t process the message, so Scan adds the message to the queue and 
waits for another one.

 Note that the mailbox processor as we implemented it doesn’t work well when we 
have multiple threads sending the Block and Resume messages. If it receives a Block
message when it’s already blocked, it doesn’t handle it and instead continues process-
ing once it receives the first Resume message. To solve this more robustly, we’d have to 
handle Block messages in the blocked state and increment some number represent-
ing the count of Block messages. The Resume message would decrement it and we’d 
resume the processing only after the number reached zero again. This isn’t particu-
larly difficult, but we’ll keep the code simple for our example.

16.5.2 Accessing mailbox concurrently

The mailbox processor handles only a single message at time, but it can be safely 
accessed from multiple threads. All the methods for posting message to the processor 
(such as Post and PostAndReply) are thread-safe. Let’s create a small application that 
uses our mailbox processor from three threads to demonstrate the concurrency.

 Listing 16.20 represents the situation where two threads repeatedly perform a 
computation and then send a state update to the mailbox processor. To keep the code 
simple, our threads will just sleep for some time and then generate a random number. 
A third thread repeatedly sends Block and Resume messages to the processor, again 
sleeping in between messages.

C
Only processes 
Resume message

D
Returns workflow 
that will be executed

Skips given 
message

E

Licensed to   <kr_wilson@hotmail.com>



493Summary
let modifyThread() =                                                        
   let rnd = new Random(Thread.CurrentThread.ManagedThreadId)  
   while true do
      Thread.Sleep(500)
      mbox.Post(ModifyState(rnd.Next(11) - 5))     

let blockThread() = 
   while true do
      Thread.Sleep(2000)
      mbox.Post(Block)   
      Thread.Sleep(1500)  
      mbox.Post(Resume) 

for proc in [ blockThread; modifyThread; modifyThread ] do
   Async.Start(async { proc() })

The code for the threads is quite simple. Both functions contain an infinite loop that 
would execute useful work in a real application, and both occasionally send messages 
to the mailbox to synchronize. The first function only uses the ModifyState message B, 
and the second one first sends the message to block the mailbox, then waits for some 
time and unblocks it C. We use Async.Start to start executing the functions in three 
thread pool threads by creating a list of function values representing the processes to 
run and then starting each of them in a for loop. The list contains the modifyThread
function twice, so we’ll have two threads sending updates to the state.

 Let’s analyze the behavior of the application when we execute it. The application 
prints the time of an operation, so you can run it and look at the printed times. It 
starts off by processing the incoming ModifyState messages for about 2 seconds. The 
blocking/resuming thread then sends the Block message, so nothing will be printed 
to the console for the next 1.5 seconds, even though new ModifyState messages will 
still be posted to the mailbox. After that, the mailbox processor will be resumed and 
it’ll process all the queued ModifyState messages, so the state will be updated several 
times in quick succession. It will continue running, processing messages as they arrive 
for the next 2 seconds until the next Block message is received. 

 Even though this example doesn’t implement any particularly useful behavior, it 
should give you a pretty good idea of how to use mailbox processors in a real-world 
application that needs to synchronize state using message-passing concurrency.

16.6 Summary
In this chapter, we covered techniques to develop reactive applications in a functional 
way. We started by talking about first-class events in F#, which allow us to use events as 
standard values that can be passed into or returned from a function. This allows us to 
use higher-order functions (such as Observable.filter and Observable.map) to pro-
cess events. This leads to more declarative code in the same way as processing lists 
using higher-order functions or LINQ queries. 

 This declarative style doesn’t work as well for more dynamic behavior. F# provides 
a convenient alternative using the asynchronous workflows introduced in chapter 13. 
These allow us to write flow control that looks similar to synchronous code but that 

Listing 16.20 Sending messages from multiple threads (F#)

Performs 
calculations

B
Sends update 
to mailbox

C Blocks processing 
for 1.5 seconds
Licensed to   <kr_wilson@hotmail.com>



494 CHAPTER 16 Developing reactive functional programs
executes based on events occurring. This technique works particularly well for trans-
lating a state machine into code, using a natural mapping of states into functions that 
call each other recursively.

 Finally, we faced the problem of managing state in an application that’s encoded as 
asynchronous workflows that handle GUI events. We saw how this can be handled 
using message passing with the MailboxProcessor<'T> type in F#. This type can be 
also used in concurrent scenarios, so we wrapped up with an example showing how to 
use it from a multithreaded application.

 Unfortunately, most of the examples we’ve seen in this chapter rely on asynchro-
nous workflows, so they can’t really be translated into C# directly. In C#, you can 
encode similar patterns using the new .NET 4.0 namespace System.Threading.Tasks. 
Various projects are attempting to offer a more elegant syntax, such as the Concur-
rency and Coordination Runtime [Richter, 2006]. However, none of them provides 
the same clarity as F#. The message-passing concurrency techniques shown later in 
this chapter exists in many different forms. The F# implementation is close to the 
Erlang style of message passing (see, for example, Concurrent Programming in Erlang
[Armstrong, et al., 1996]), but other alternatives exist. One of them is also available as 
a library for C# 2.0, so take a look at the Joins Concurrency Library [Russo, 2007].

 

Licensed to   <kr_wilson@hotmail.com>



appendix:
Looking ahead

We could stop at this point by saying “And so, that is functional programming,” but 
that wouldn’t be accurate for this kind of book. Unlike a programming language or 
a particular technology, functional programming doesn’t have clear borders: there 
isn’t a complete, definitive list of features that we could walk through and then say 
“So, that’s it.” We’ve done our best to explain all the fundamental concepts behind 
the functional paradigm, so you can certainly say that you understand the founda-
tions of functional programming. 

 We’ve combined two different aspects of functional programming in this book. 
We’ve looked at concepts that are very different from those you’re probably used 
to, as well as some of the important real-world uses of functional style. We hope you 
found both ingredients equally interesting: without solid foundations, it’s hard to 
benefit from functional ideas, but even the most beautiful idea is useless until it’s 
applied in the real world. We write that with a degree of sadness, but this book isn’t 
about art, philosophy, or mathematics.

A.1 What have you learned?
We began with a chapter titled “Thinking differently” because learning functional 
programming isn’t the same as learning how to use a library or the newest version 
of your favorite language. It gives you a new way of thinking about problems—a dif-
ferent perspective. The focus on data structures provides an alternative approach 
to application architecture, and aspects like first-class and higher-order functions 
offer simpler but more flexible ways to think about implementation.

 If we had to choose the most interesting aspect of what we’ve covered in this 
book, we’d probably choose F# type signatures. It is amazing how much information 
you can get from so few characters. Thanks to immutability, a function’s type signa-
ture tells us everything about what it can produce. If it uses higher-order functions, 
the signature may also suggest the most likely implementation. Given that it usually 
495

Licensed to   <kr_wilson@hotmail.com>



496 APPENDIX Looking ahead
fits on a single line, that’s often much more than you could achieve with a single natu-
ral language sentence. We hope that with your newly acquired “functional glasses,” 
you’ll see many problems in a much clearer light.

 We’ve seen many real-world scenarios where functional programming can be use-
ful, ranging from parallel programming to composable libraries for writing animations 
or financial contracts. The final chapter demonstrates reactive applications, using F# in 
a novel way that the language designers didn’t originally anticipate. In fact, most of the 
ideas in the chapter came into existence while Tomas was doing an internship with Don 
Syme at Microsoft Research, after the first half of the manuscript was written.

 We mention this to show that F# and functional programming in the real-world 
context are still actively evolving. We believe that within the next few years you can 
expect to see many interesting frameworks built using functional principles—perhaps 
with F# itself—that will make you more productive and that will make development 
more enjoyable. We want to encourage you to try new things with F# and functional 
programming. Even though the field has a long history, it’s gaining a new momentum. 
There’s still a good chance that your idea will turn into the “next big thing.”

 Don’t worry about being drowned in a deluge of new technologies. This book has 
given you a solid foundation, so understanding any technology built on top of func-
tional ideas shouldn’t present any problems.

A.2 Where do you want to go next?
As we’ve mentioned, this book offers one view of functional programming. If you find 
functional programming interesting and want to see a slightly different approach, you 
may want to look at other functional languages. 

 Scheme, a language based on LISP, offers the greatest difference in perspective. It 
puts strong emphasis on meta-programming—that is, writing programs that generate, 
modify, or manipulate other programs. This may sound complicated, but Scheme has 
an extremely simple syntax. This technique is also essential for out-of-process LINQ—
the manipulation with expression trees that makes LINQ to SQL possible is a great 
example of meta-programming. If you want to learn more, Structure and Interpretation 
of Computer Programs [Abelson, Sussman, and Sussman, 1985] is a great starting point. 

 Another language that definitely deserves attention is Haskell. You may find it 
interesting if you like the clarity and purity of functional programming, because 
Haskell takes this approach even further. The Haskell School of Expression [Hudak, 2000] 
explains essential Haskell ideas using many elegant and fun examples working with 
multimedia. Even though Haskell isn’t integrated with a big ecosystem such as .NET or 
Java, Real World Haskell [O’Sullivan, Stewart, and Goerzen, 2008], does a great job of 
showing how to use pure functional programming to solve a wide range of interesting 
problems. The book presents a more traditional functional point of view than we’ve 
done here, because we’ve often tried to find a compromise between a purely func-
tional style and the traditional .NET style.
Licensed to   <kr_wilson@hotmail.com>



497Where do you want to go next?
 There are several books you may find interesting if you want to learn more about 
the F# language. In this book we focused more on functional programming, so we 
didn’t cover all the features and details of F#. 

 The Definitive Guide to F# [Syme, Granicz, and Cisternino 2009] doesn’t spend a 
long time explaining principles, but moves quickly to advanced F# techniques show-
ing most of the language. 

 Programming F# [Smith, 2009] covers the constructs organized by language features.
 F# for Scientists [Harrop, 2008] focuses on advanced numerical computing, visual-

ization, and many other related topics. 
 F# in Action [Laucher, forthcoming 2010], published by Manning, as is this book, 

discusses, among other topics, concurrency, service-oriented architecture, and devel-
opment of F# business rules engines.

 

Licensed to   <kr_wilson@hotmail.com>



resources
All URLs listed here were valid at the time of publishing. No doubt some of these will 
change over time. Some of the cited works are academic articles that are available only in 
journals or conference proceedings. Where possible, we also include a URL to the article on 
the author’s website.

Works cited

In print

 Abelson, Harold, Gerald Jay Sussman, and Julie Sussman. Structure and Interpretation of Computer  
Programs. MIT Press, 1985.

 Armstrong, Joe, Robert Virding, Claes Wikström, and Mike Williams. Concurrent Programming in 
ERLANG, 2nd ed. Prentice Hall International Ltd., 1996. First part available at http://
erlang.org/download/erlang-book-part1.pdf. 

 Dean, Jeffrey, and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. Proceedings 
of Operating System Design and Implementation (OSDI), 2004, pg. 137–50. http://labs.google.com/
papers/mapreduce.html

 Elliott, Conal and Paul Hudak. Functional Reactive Animation. Proceedings of International Confer-
ence on Functional Programming (ICFP), 1997, pp. 263-273. Available at  http://conal.net/
papers/icfp97/icfp97.pdf.

 Harrop, Jon. F# for Scientists. Wiley-Interscience, 2008.
 Hudak, Paul. The Haskell School of Expression: Learning Functional Programming through Multimedia.  

Cambridge University Press, 2000.
 Jones, Simon Peyton, Jean-Marc Eber, and Julian Seward. Composing Contracts: An Adventure in Finan-

cial Engineering. Proceedings of International Conference on Functional Programming (ICFP), 
2000, pp. 280–92. http://research.microsoft.com/en-us/um/people/simonpj/papers/ 
financial-contracts/contracts-icfp.ps.gz

 Laucher, Amanda. F# in Action, Manning Publications, forthcoming, 2010. 
 Leijen, Daan and Erik Meijer. Parsec: A Practical Parser Library. Electronic Notes in Theoretical Computer Science 

(41): 1, 2001. http://research.microsoft.com/en-us/um/people/emeijer/papers/parsec.pdf.
 O’Sullivan, Bryan, Don Stewart, and John Goerzen. Real World Haskell. O’Reilly Media, 2008.
 Russo, Claudio. The Joins Concurrency Library. Proceedings of Practical Aspects of Declarative  

Languages (PADL), 2007, pp. 260–74 http/::research.microsoft.com:en-us:um:people: 
crusso:papers:padl07.pdf. For more information see http://research.microsoft.com/ 
en-us/um/people/crusso/joins
498

Licensed to   <kr_wilson@hotmail.com>

http://research.microsoft.com/en-us/um/people/emeijer/papers/parsec.pdf
http://erlang.org/download/erlang-book-part1.pdf
http://erlang.org/download/erlang-book-part1.pdf
http://labs.google.com/papers/mapreduce.html
http://labs.google.com/papers/mapreduce.html
http://conal.net/papers/icfp97/icfp97.pdf
http://conal.net/papers/icfp97/icfp97.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/financial-contracts/contracts-icfp.ps.gz
http://research.microsoft.com/en-us/um/people/simonpj/papers/financial-contracts/contracts-icfp.ps.gz
http://research.microsoft.com/en-us/um/people/emeijer/papers/parsec.pdf
http://research.microsoft.com/en-us/um/people/crusso/papers/padl07.pdf
http://research.microsoft.com/en-us/um/people/crusso/papers/padl07.pdf
http://research.microsoft.com/en-us/um/people/crusso/joins
http://research.microsoft.com/en-us/um/people/crusso/joins


RESOURCES 499
 Skeet, Jon. C# in Depth, Manning Publications, 2008.
 Smith, Chris. Programming F#. O’Reilly Media, 2009.
 Syme, Don, Adam Granicz, and Antonio Cisternino. The Definitive Guide to F#. Apress, 2009.

Online

 Bolognese, Luca. An Introduction to Microsoft F#. 2008. http://channel9.msdn.com/pdc2008/TL11/
 Chrysanthakopoulos, Georgio and Satnam Singh. An Asynchronous Messaging Library for C#.  

Proceedings of Synchronization and Concurrency in Object-Oriented Languages (SCOOL) 
conference (online), 2005. http://research.microsoft.com/en-us/um/people/tharris/scool/
papers/sing.pdf

 ECMA, C# Language Specification (Standard ECMA-334). 2006. http://www.ecma-international.org/ 
publications/standards/Ecma-334.htm

 F# home page, Microsoft F# Developer Center. http://msdn.microsoft.com/fsharp 
 F# Language specification. Search http://msdn.microsoft.com/fsharp for language specification.
 F# Documentation. Visual F#, MSDN Documentation, Microsoft. http://msdn.microsoft.com/en-us/

library/dd233154(VS.100).aspx
 Fowler, Martin. Domain Specific Languages. 2008 http://www.martinfowler.com/dslwip/
 Gates, Bill. TechEd Keynote interview. 2008. Interviewed by Dan Fernandez. http://channel9.msdn.com/

posts/Dan/Bill-Gates-TechEd-Keynote/
 Hamilton, Kim, and Wes Dyer. Inside .NET Rx and IObservable/IObserver in the BCL (VS 2010).  

Channel 9 Video. 2009. http://channel9.msdn.com/shows/Going+Deep/ 
Kim-Hamilton-and-Wes-Dyer-Inside-NET-Rx-and-IObservableIObserver-in-the-BCL-VS-2010/ 

 HaskellWiki, Lifting, Community content. http://www.haskell.org/haskellwiki/Lifting 
 Hurt, Brian. The “Hole in the middle” pattern. 2007. http://enfranchisedmind.com/blog/2007/07/10/

the-hole-in-the-middle-pattern/
 Hutton, Graham, editor, Frequently Asked Questions for comp.lang.functional. 2002. http://

www.cs.nott.ac.uk/~gmh/faq.html
 Meijer, Erik, Wolfram Schulte, and Gavin M. Bierman. Unifying Tables, Objects and Documents. Proceedings 

of Declarative Programming in the Context of Object-Oriented Languages (DP-COOL), 2003. 
http://research.microsoft.com/~emeijer/Papers/XS.pdf

 Petricek, Tomas. Asynchronous Programming in C# Using Iterators. 2007. http://tomasp.net/articles/
csharp-async.aspx

 Petricek, Tomas. Reactive Programming (II) – Introducing Reactive LINQ. 2008. http://tomasp.net/blog/
reactive-ii-csevents.aspx

 Richter, Jeffrey. Concurrency and Coordination Runtime. 2006. http://msdn.microsoft.com/en-us/ 
magazine/cc163556.aspx

Additional resources

In print

 Calvert, Charlie, and Dinesh Kulkarni. Essential LINQ. Addison-Wesley, 2009. Discusses the concepts 
behind LINQ project and presents technologies that build on top of LINQ, including LINQ to 
Entities, LINQ to XML, and LINQ to SQL.

 Gamma, Erich, Richard Helm, Ralph Johnson, John M. Vlissides. Design Patterns: Elements of Reusable 
Object-Oriented Software. Addison-Wesley Professional, 2004. The essential book about design pat-
terns that describes all the patterns referenced in chapters 7 and 8.

 Marguerie, Fabrice, Steve Eichert, and Jim Wooley. LINQ in Action. Manning Publications, 2008. Presents 
general-purpose LINQ query facilities in C# 3.0 and Visual Basic 9 and describes how to use LINQ 
when working with objects, XML documents, and databases.
Licensed to   <kr_wilson@hotmail.com>

http://channel9.msdn.com/pdc2008/TL11/
http://research.microsoft.com/en-us/um/people/tharris/scool/papers/sing.pdf
http://research.microsoft.com/en-us/um/people/tharris/scool/papers/sing.pdf
. 2006. http://www.ecma-international.org/publications/standards/Ecma-334.htm
. 2006. http://www.ecma-international.org/publications/standards/Ecma-334.htm
http://msdn.microsoft.com/fsharp
http://msdn.microsoft.com/fsharp
http://msdn.microsoft.com/en-us/library/dd233154(VS.100).aspx
http://msdn.microsoft.com/en-us/library/dd233154(VS.100).aspx
http://www.martinfowler.com/dslwip/
http://channel9.msdn.com/posts/Dan/Bill-Gates-TechEd-Keynote/
http://channel9.msdn.com/posts/Dan/Bill-Gates-TechEd-Keynote/
http://channel9.msdn.com/shows/Going+Deep/Kim-Hamilton-and-Wes-Dyer-Inside-NET-Rx-and-IObservableIObserver-in-the-BCL-VS-2010/
http://channel9.msdn.com/shows/Going+Deep/Kim-Hamilton-and-Wes-Dyer-Inside-NET-Rx-and-IObservableIObserver-in-the-BCL-VS-2010/
http://www.haskell.org/haskellwiki/Lifting
http://enfranchisedmind.com/blog/2007/07/10/the-hole-in-the-middle-pattern/
http://enfranchisedmind.com/blog/2007/07/10/the-hole-in-the-middle-pattern/
http://www.cs.nott.ac.uk/~gmh/faq.html
http://www.cs.nott.ac.uk/~gmh/faq.html
http://research.microsoft.com/~emeijer/Papers/XS.pdf
http://tomasp.net/articles/csharp-async.aspx
http://tomasp.net/articles/csharp-async.aspx
http://tomasp.net/blog/reactive-ii-csevents.aspx
http://tomasp.net/blog/reactive-ii-csevents.aspx
http://msdn.microsoft.com/en-us/magazine/cc163556.aspx
http://msdn.microsoft.com/en-us/magazine/cc163556.aspx


RESOURCES500
 Mitchell, John C. Concepts in Programming Languages. Cambridge University Press, 2003. If you want to 
learn about different programming paradigms (including object-oriented, imperative, functional, 
and logic) and their origins, this is a book for you. 

 Paulson, Lawrence C. ML for the Working Programmer. Cambridge University Press, 1996. F# inherits the 
core principles from the ML language, so if you’re interested in learning more about the history of 
this kind of functional language, this book provides a great overview.

 Skeet, Jon. C# in Depth, 2nd Ed. Manning Publications, forthcoming 2010. In-depth explanation of all 
new C# features, including functional features (such as lambda expressions and the query syntax) 
as well as recent C# 4 additions.

Online 

 Companion website: http://www.functional-programming.net
 Book website:  http://www.manning.com/FunctionalProgrammingintheRealWorld.com
 Erlang.org: http://erlang.org/
 Haskell.org: http://www.haskell.org/
 LINQ Developer Center: http://msdn.microsoft.com/en-us/data/cc299380.aspx
 Windows Presentation Foundation: http://windowsclient.net/wpf
 World Bank–Data: http://www.worldbank.org/data
 xUnit.net: http://www.codeplex.com/xunit
Licensed to   <kr_wilson@hotmail.com>

http://www.functional-programming.net
http://www.manning.com/FunctionalProgrammingintheRealWorld.com
http://erlang.org/
http://www.haskell.org/
http://msdn.microsoft.com/en-us/data/cc299380.aspx
http://windowsclient.net/wpf
http://www.worldbank.org/data
http://www.codeplex.com/xunit


index
Symbols

_ (pattern) 66, 87
- - (combinator) 425
- - operator 450
-= operator 462
-= operator (C#) 102
-> (type constructor) 135
-> symbol 49
: (operator) 70
: (pattern) 71
:: operator 166
! operator 217
? 303
? operator 254
?: operator 36
?? 303
?> operator 254
() value 96
[ .. ] syntax 70
[ ... ] syntax 321
[] (indexer) 85
[] (pattern) 71
[] (value) 70
[| ... |] syntax 275, 321
@ operator 483
* (type constructor) 60, 111
/// comment 236
\ 249
&& 303
&&& operator 462
%A (format specifier) 91
%d (format specifier) 91
%f (format specifier) 91
%s (format specifier) 91
%s format specifier 23

+ operator 47
+= operator 462
+= operator (C#) 102
+> (custom operator 145
<- operator 59
= operator 217
=. See equality operator, F#
==. See equality operator
=> (lambda function) 133
> operator 253
>> operator 160, 435

implementing 161
| symbol 49
|> operator 146
|> operator. See pipelining  

operator
|| 303
||| operator 447

Numerics

2D arrays 278
32-bit integer 265

A

abstract
class 47, 241
keyword 241

abstract method 114
adding 114

abstract syntax 
representation 422

abstract value description 242
abstraction 143

Accept method 203
accessed members 210
accessibility area 55
accessing data 363–372
accumulated state

event processing 464
accumulating

elements 272
events 465
more code 281

accumulator argument  
264–266, 281

list processing 271
summing list 265

action
representing 213

Action delegate 135
Action<T> delegate

parallelizing for loop 385
active patterns 201
actual value 340
ad rotator 429
adaptive document layout 196
Add method 208
Add Reference 92, 192, 293
adding

operations 202
types vs. functions 118

adding members
avoiding changes in the 

code 238
to a type declared earlier 238

addition
optimization 266

addressing memory 397
Aggregate clause 469
501

Licensed to   <kr_wilson@hotmail.com>



INDEX502
Aggregate method 172
summing clicks 469

aggregated statistics 364
aggregated value

generic type 79
so far 465

AggregateList method 76
AggregateNumbers method 40
aggregating

finding largest 79
list 76

aggregation
of documents 198
integers 78
of a numeric range 40
operation 170
state 198
Visual Basic queries 469
See also folding

AI 18
algorithm

available information 389
choosing 273
choosing dynamically 212
decision tree 223
expressing 11
loan suitability 223
See also complexity

Alt+Enter 23
shortcut 92

alternating operations 171
alternative values 114–122

higher-order functions 151
processing using HOFs in 

C# 153
always function 466
analyzing type signature 156
and keyword 225
angle, calculating 95
animated value 16, 428–434
animation 445–454

Behavior type 445
click event 472
combinator library 428
composing 450
concept 445
constant 446
creating 445
declarative C# library 16
displaying 446
drawing shadows 449
frame 439
individual observations 433
introducing 428
primitive combinators 449

reacting to events 471
rotating planets 425
rotation 452
solar system 452
speed up 451
switch function 472
using behaviors 448
in WPF 15

animation example
using discriminated 

union 424
using LISP 421

animation library
drawings 440
independent 

components 429
AnimShape type 427
anonymous methods 77, 133
anonymous type

inside flattening 
projection 333

use in aggregation 172
anonymous type (C#) 179
anonymous types

(C# 3.0) 110
anti-pattern

repetition 87
AOP 44
API

design 240
of F# library 294
key 363

apostrophe-type 126
appending members 238
application

behavior-centric 206
creating 399
design 83
designing structure 411
partial 139
startup code 94
state 213
structure 178
See also function application

Application.Run method 312
ApplicationClass class 379
applying filters 205
arbitrary size integer. See bigint
architecture

reactive 460
argument

irelevant value 301
missing 109

arguments
introduction of named 95

arithmetic
for behaviors 449

array
2D 380
blurring values 277
cloning 276
converting to a list 90
creating new 398
expression 321
F# syntax 275
generating 321
initialization 275
not mutating 276
slicing syntax 376
type annotations 277
using functionally  

276–277, 398
using functionally in C# 278

array processing
parallel 405

Array.map function 276
for color filters 398

Array2D module 278, 398
Array2D.init function 380
Array2D.map

function 399
parallelizing 405

Array2D.Parallel module 406
arrays 275–279

vs. lists 277
arrow symbol 135
as this construct 447
ascending sequence 316
AsParallel method 21, 387, 418
aspect

of declarative 
programming 39

aspect of code 349
aspect-oriented programming. 

See AOP
AspectJ 44
assembly

dynamic loading 208
Assert.Equals method 293
assignment

in C# 36
assignment operator 127

avoiding 33, 276
using arrays 275

asterisk (type) 60
asterisk symbol 111
Async

module 357
prefix 488

async value 356
Licensed to   <kr_wilson@hotmail.com>



INDEX 503
Async.FromContinuations 
method 361

Async.Parallel method 358
Async.RunSynchronously 

method 357
Async.Start method 357, 413
Async.StartAsTask method 358
Async<’a> type 356
AsyncGetResponse method 356
asynchronous

callback 357
control flow 6
state machine 477
waiting for events 474

asynchronous operations
using delegate 488

asynchronous 
programming 353–372

in C# 362
model 361

asynchronous workflow  
354, 412

building using 
continuations 362

in C# 362
computation type 360
delayed code 357
dispose continuation 360
error continuation 360
executing 357
executing thread 475
handling exceptions 365
implementing primitives 361
parallel execution 358
processing messages 482
programming UIs 474
recursive loop 365
running on GUI thread 479
sequence of workflows 372
step-by-step 359
waiting for events 475

AsyncPostAndReply 
method 484

AsyncReplyChannel type 481
AsyncSleep method 361
attribute

Fact 295
augmenting

code meaning 337
type 235

automatic
conversions 88
logging 346
properties 208

automatic generalization  
87, 130, 164–165

F# algorithm 164
restricting 170

automatic property
immutable type 73

average color
calculating 407
weighted 397

averaging
array values 277

AwaitEvent
method 489
primitive 474

B

background
computations 312
process 412
type checking 47

background operation
running using asynchronous 

workflows 413
balanced tree 280
bar chart 323
base class 114
batch processing 178
BeginGetResponse method 360
BeginXyz/EndXyz pattern 361
behavior 206

adding easily 206
collection 206–210
composed 219
as interface 207
loading using Reflection 208
multiple functions 219
OO representation 207
parallelizing 408
preserving 289
specifying 43

behavior (value)
absolute value 436
addition 436
addition using lifting 437
applying function 435
calculating with 450
changing using mutation 473
combining with events 471
constant 432
creating 431–434
creating animations 448
creating from event 472
hiding implementation 431
introducing 429–431

lifting in C# 438
lifting in F# 437
multiplying floats 448
oscilating 432
overloaded operators 450
potentially infinite set 440
primitive functions 431–434
primitives in C# 431
primitives in F# 433
reading value 434
real-world applications 429
representing in C# 430
representing in F# 429
speed up 451
squaring 435
type signatures 433
visualizing 432
working with 434

behavior difference 288
behavior-centric application 408

image processing 395
improving 240–243

behavior-centric program  
178, 206

Behavior.lift1 function 437
Behavior.map function 435
Behavior<’T> type 429
Behavior<Drawing> type 445
behavioral design patterns 212
big list 261
big O notation 274
bigint type 88
binary tree 119

generating 391
parallel processing 391
representing in C# 393

BinaryExpression class 119
bind function 334
Bind member 340
Bind method

implementing 
SelectMany 345

bind operation 174
analysis 156
asynchronous 

computations 359
for options 155
queries 335
step-by-step evaluation 156
three steps 347
typical structure 344

binding
recursive 69
unit value 348
Licensed to   <kr_wilson@hotmail.com>



INDEX504
Bitmap
converting to array 397
type 311

bitmap
drawing 100
file 82
in-memory 100

BitmapUtils module 397
blur effect 396

implementing 406
blur filter 278
blurring

parallelization 385
values 277

body
interpretation 318

boilerplate code 130
Boolean operator 35
bounding box 182, 190
branch

pattern matching 67
recursion 69

break statement 36
bringing a structure 354
brush 95
buffered download 355
bug

dereferencing null value 120
eliminating 292
fixing early 92

building blocks
putting together 421

built-in
concepts 39
language construct 386

business rules 423
busy loop 411

C

C 8, 94
C#

accessing F# members 237
anonymous types 313
calling F# code 255
events are special language 

constructs 102
functional design 159, 178
higher-order functions 159
integration 233
interoperability 294
lambda expression 131
only expressions 56
params keyword 84
specify types 45

C# - F# parity 249
C# 2.0 355

iterators 316
lifting 436

C# 3.0 13, 93
anonymous types 110
closures 218
collection initializers 207, 402
extension methods 145, 239
object initializers 94
query syntax 328
similarity to F# 208
type inference 63, 127
type inference for local 

variables 46
C# 4.0 45, 95

dynamic 255
C# class library

using from F# 400
C# compiler

automatic lifting 437
implicit conversion 252
iterator transformation 317
query translation 469
statements 56

C# in Depth 163
C# Language Specification 163
C++ 8
caching

lazy values 307
list cells 308
results 266
using lazy values 310

calculation
using tuples 64

callback function 461
caller

returning to 263
caller thread

waiting 392
calling function twice 266
captured parameter 215
capturing 215

mutable state 217
reference cells 217
state in C# 214
state in F# 215

capturing mutable state 267
casting

class hierarchies 118
casting. See type cast
catching an exception 365
categories

classification 223
CCR 362

chain
event processing 468

chart
drawing 322
drawing bars 323
save as a bitmap file 82
See also pie chart

ChartWizard method 381
child element 193
Choice type 489
Choice1Of2 constructor 489
Choice2Of2 constructor 489
Church, Alonzo 6, 31
circle

colorful 444
creating drawing 442
moving center 443

city
incrementing inhabitants 64
representing using tuple 61

city information
processing 160

class
constructing 93–94
functional and 

imperative 249
inheritance in F# 447
named 242
purely functional 249

class declaration 242
in F# 248

class hierarchy 47, 114
decision tree 227
representing document 203
revealing structure 114

classifying input 223
clean-up

encapsulating 184
cleaning resources 245
client

suitability 206
using record 209

client-server 480
CLIEvent attribute 471
cloning

objects 181
cloning a list 274
closure 215–219

in C# 218, 267
capturing color filter in 

C# 401
capturing reference cells 217
compilation 217
for loop 218
Licensed to   <kr_wilson@hotmail.com>



INDEX 505
closure (continued)
sharing value 217
using for memoization 267

CLR 4
clue

type of function 167
code

assumptions about 289
augmenting with logging 346
block 286
changing 5
combining 14
compositionality 427
dependencies 19, 289, 390
duplication 221, 287
execution 384
fluency 159
lock-free 11
manipulating with 315
organizing using 

modules 399
path 287
readability 11
recurring 185
scalability 383
separation 324
sharing 95
verbosity 63
See also readability
See also reasoning about code

code block
independent 390

code structure
similarity 221

coding conventions 242
coding style

sequence expressions 323
collection 271–279

of commands 213
composing primitives 444
filtering 130
of filters 205
fully evaluated 410
of functions 207–208
initializers 207
parallel processing 384
of places 288
processing 130, 290
unified processing 314
using queries 110

collection initializers
composing values 424

collection of behaviors 206–210
in C# 207
in F# 209

collection processing 13, 169
function composition 162
schedule example 154
simulating animals 415

color
adjusting 396
calculating with 395
invalid 398

color filter 396
applying 398
creating in F# 398
implementing in C# 397
turning to effects 401

color type
customized 395

combinator
for financial contracts 456
using together 425

combinator library 425
for animations 428
declarative description 436
implementing in C# 426

combining
concepts 237
elements 334
values 109

comma-separated value. See CSV
command

in imperative languages 8
organizing 8
parallel composition 11

Command component 214
command component

created implicitly 214
command pattern 213
command-line arguments 92
comment

documentation 236
common language 173
common language runtime. See 

CLR
Common Lisp 44
common operations 194
commonality

identifying 221
communicating using 

message 483
communication

lightweight processes 480
comparison

C# and F# classes 252
compilation order 225
compile-time

checking 51
error 292

compiler
discriminated unions 118
enforcing null handling 120
type inference 127

complete pattern 67
complex product 222
complex structure

building 420
complexity 274
component

projection 148
component-wise operations 397
composability 420

monads 342
option processing 345
sequence expressions 319

composable design 421–428
composable library 420–459

comparing approaches 423
composed values 424
composing functions and 

objects 425
executable computation 422
implementing 422
in C# and F# 423
single expression 427
tree-like data structure 422

Compose method 162
composed behavior 219

building 221
in C# 223

composed entity 423
composed value 424–425

creating in C# 424
generic 122
structure 148
See also alternative values
See also function values
See also multiple values

composed workflow 358
composing functions 425
composing sequences 319
composite

data type 34
design pattern 50
format string 90
pattern 200

composite value 200
behavior 428

composition
animations 16
of basic commands 42
financial modeling 

primitives 457
graphical drawings 444
Licensed to   <kr_wilson@hotmail.com>



INDEX506
composition (continued)
in XAML 14
operator 160
public 201
testing 299
types 45
unit testing 299

compositionality 17, 420, 427
tuples 112
types 420

computation
augmenting with logging 346
customized meaning 337
expression block 346
recursion 263
recursive 68
termination 69
using values 107

computation builder 340
async 356
Bind member 340
Combine member 390
Delay member 359
for member 389
for options 343
Return member 341
return! keyword 356
TryFinally member 366
TryWith member 366
Using member 359
working with behaviors 440
Zero member 346, 390

computation by calculation  
37, 302

bind operation 156
processing documents 190

computation expression  
334–350

applications 315
asynchronous 358
complicated logic 339
composing 342
delayed 359
do! keyword 348
for keyword 336, 389
for options 343
implementing builder 340
language-oriented 

programming 423
let! keyword 336
limitations 315
operation types 341
parallel sequences 389
primitives 390
refactoring 349

return keyword 337
translation 340, 349

computation type 338
Async 360
logging 346
primitives 339
underlying structure 339
value wrapper 338

computer memory 275
computing

on demand 307
concepts

built-in 39
combining 237
object-oriented 47
using together 441

conceptual relation 328
concrete

tests 207
value 242

concrete object type 248–251
with events 470

concurrency 10
message passing 490
shared memory 490

Concurrency and Coordination 
Runtime. See CCR

concurrency models
See also declarative parallelism
See also task-based parallelism

concurrent programming 460
condition

testing clients 206
conditional compilation 293
configurable income test 217
configuration

switching 300
configuring

loan tests 214
objects 427

cons cell 69
decomposing 71

Cons discriminator 166
consistency

of styles 243
console

application 89
window 89

console output
changing color 246

Console.WriteLine method 90
constant complexity 274
constant function. See always 

function
ConstantExpression class 119

constructor
in F# 248
overloading 249
referencing this 447
using from F# 93

context 300
of data processing 187
scope using use 247

continuation 279–283
argument 281
asynchronous execution 360
in C# 281
disposal handling 360
error handling 360
let! keyword 360
syntactic sugar 360
writing code 281

contract data type 455
contract. See financial contract
control

accessing from threads 475
program execution 460

control flow 261
asynchronous 6
rectangle drawing 477
sequences 320

control flow construct
reactive applications 474

control flow logic. See logic
control structure

adding 9
implementing 43

conversion
from XML 366

converting representations 188
coordinates

representing 112
specifying by moving 443

copy and paste 403
copying code

avoiding 76
core meaning 349
core part

extracting 184
corner case

null value 120
correctness 261
corresponding

representations 193
type 78

cosine function 452
Count method 209, 387
counting clicks 475

limiting rate 476
Licensed to   <kr_wilson@hotmail.com>



INDEX 507
counting words 194
cross join operation 335
CS0815 127
CSV 82, 84

parsing 83
CSV file 83

as an argument 100
culture-specific code 247
current

instance 236
result 264
time 429

Current property 315
currently executing 

statement 36–37
currying 140

See also partial function  
application

custom operator 305
infix notation 145
mimicking in C# 145
See also overloaded operator

customizing the meaning 315

D

data
application design 177
binding 311
definition 109
exploring 354
importance 177
lists 166
recognizing 109
representation 178
reusing interactively 234
sample portion 369
untyped format 363

data and behaviors 223
data manipulation

application design 177
data mining. See gathering  

information
data parallel code 384
data parallelism 386–390
data representation

converting 188
multiple 178

data set 370
data source agnosticism 328
data structure 6, 178

for chart drawing 86
context 187
conversions 188

design 200
designing 177
immutable 33, 60
keeping behaviors 205
points 211
potentially infinite 286
traversal 198
world simulation 408
See also infinite data structure

data type
converting 189
projection 148

data types
functional point of view 305

data vs. value 109
data-centric applications

improving 234–240
parallelizing 408

data-centric program 178
data-driven programming  

353–382
database 287

asynchronous operations 354
join 330

DataMember property 311
DataSource property 311
date and time

formatting 91
DateTime type 91
DateTimeOffset type 91
deadlock 10, 490
decision tree 223–229

building automatically 223
in C# 227
in F# 224
processing 226

declaration
order 225
See also value binding

declarative
data parallelism 417
event handling 461
event handling in C# 467
event handling in Visual 

Basic 469
language 44
libraries 16
parallelism 11, 20
programming 12

declarative code
visualizing 466

declarative description
well-understood 

functions 436

declarative library
as DSL 423

declarative library. See compos-
able library

declarative programming
blur example 406
implementing technical 

details 422
parallelism 383
style 39–45

declarative specification 427
executable 425

declarative style
animations 16
composable design 421
execution details 386
and immutability 34
using .NET attributes 15
See also LINQ
See also XAML

decomposing
argument 309
lists 87
result 347
tuples 87

decomposition
of tuples 65

deconstructing value 49
decorator pattern 201
deduction

of types 45
deepest level of recursion 263
default operator 294
default value 111
defaultof function 294
degree (angle) 101
delayed computation

evaluating 304
See also lazy evaluation

delayed execution 286
delegate 132

automatic wrapping 214
function as argument 77
in C# 1.0 133
in C# 2.0 133
using events 462
using in F# 258

delegate vs. function 133
delegates

family of 133
dependencies

hidden 5
depth of the tree 391
derived class 47
design level 11
Licensed to   <kr_wilson@hotmail.com>



INDEX508
design pattern
command 213
decorator 201
façade 403
functional monad 337
lifting 436
object-oriented 178
recursive discriminated 

unions 166
strategy 212
template method 228
visitor 119, 202
See also composite design  

pattern
design patterns 11, 199–204, 

211–219
as functional concepts 8

design principle
compositionality 420

designer
Windows Forms 399

designing type 298
developing country

indicators 369
development

methodologies 286
phases 235

development process 24, 222
explorative programming 369

diagramming application 440
dialog

opening a file 102
dictionary

caching values 266
Dictionary class 244
Dictionary type

caching values 267
directories

listing 175
discoverability 235
discriminated union 47

adding members 240
arguments 116
C# 393
compiled representation 118
creating value 115
document elements 182
encoding in C# 122
extracting values 117
financial contracts 458
as a language 424
mimicking in C# 117
pattern matching 116
processing using HOFs in 

F# 151

recursive 166, 187
representing messages 481
single-case 338, 430
specifying syntax 424
unnamed generic choice 489
working with 116
See also option type

discriminated union constructor
as function 485

discriminated unions 115–122
single discriminator 308
structural equality 296

discriminator 115
adding 119
single-case unions 338
type inference 164

disk
asynchronous operations 354

DisplayMember property 402
Dispose method 245

automatic call 245
disposing 97
distance

calculating 415
DivideByInt member

list average 407
division with a remainder 109
DivRem method 110
do block 94
do! keyword 348
document 178

aggregating parts 197
annotated sample 187
class hierarchy 203
counting words 199, 203
decoration 201
displaying 186
drawing 178
drawing to a form 184
exploring structure 370
flat representation 182–187
list of elements 183
loading XML 191
manipulating 194
merging parts 196
parts 187
processing 178
recursive processing 190
structured 

representation 187–194
terse representation 188
text elements 182
writing operations 194–199
XML representation 191

document drawing
testing interactively 186

documentation
comment 236
using types 51

DocumentPart type 188
DOM API 191
domain 111

cross product 111
of values 109, 111

domain-specific language. See 
DSL

dot notation 145, 235
and pipelining 147

downcast 254
final result to XElement 368

download
asynchronous 354

downloading data
reliability 366

drag and drop
functional 

implementation 477
drawing 440–445

animated circles 448
charts 322
composing 440, 444
creating 442
document 184
graphics 95
lifting to animations 448
representing 440
skewing, rotating, scaling 445
specifying location 443

drawing a flowchart. See flow-
chart, drawing

drawing changing over time 445
drawing rectangles

accessing state 484
cancellation 489
collaboratively 480
UI 486
using mailbox 484

drawing rectangles. See rectangle 
drawing

drawing shapes problem 477
drop-down

listing effects 402
DSL 423

123.0f.forever 433
embedded 423

dual-core machine 389
dynamic

loading 208
Licensed to   <kr_wilson@hotmail.com>



INDEX 509
dynamic (continued)
typing 6
work distribution 384

dynamic type 255
test 118

E

eager evaluation 301
efficiency

array processing 277
asynchronous operations 358
of list processing 273
sequence expressions 325

Elapsed event 362
elapsed time 403
element

removing 299
XML 192

elif keyword 387
Elliott, Conal 428
else clause

inside sequence 
expressions 332

embedded language 43, 424
empty

computation 346
log 347

empty list 69
representing failure 373

encapsulation 177
higher-order operations 168
of data types 235

encoding sequence 
expressions 331

end of the sequence 316
EndGetResponse method 360
Enumerable.Range method 316
enumeration 114

type 462
enumerator object 326

using directly 327
equality

customizing 243
See also reference equality
See also structural equality

equality operator 296
F# 297
overloading 296

Equals method 268, 297
equation 285

mathematics 286
equivalence

function declarations 133

Erlang
concurrency 490

errors
when using mutable 

objects 289
Esc key

handling 489
evaluation 32–39

of arguments 38, 301
step-by-step 37, 156
strategy 302
See also eager evaluation
See also lazy evaluation

evaluation order 300
in Haskell 39
in mainstream languages 301

event 312
Add method 102, 462
AddHandler method  

102, 462
in C# 462
C# compatible 471
carried value 466
choosing one 488
declarative handling 461
declaring in F# 470
in F# 462
filtering 462
handler 102
keeping internal state 464
merging 467
multiple 488
pattern matching 489
Publish member 470
publishing in F# 470
raising 471
reacting to 460
in reactive animations 428
registering handler 461
RemoveHandler method  

102, 462
similarity with lists 463
time-varying values 472
transforming 462
Trigger member 471
triggering 470
using from F# 102
waiting for 474
waiting for occurrence 361

Event class 470
event handling

declarative 462
declarative in C# 467
imperative 461

using asynchronous 
workflows 475

using LINQ 467
event keyword 470
event of behaviors 473
event processing

using queries in C# 468
event-driven applications 460
Event.filter function 463
Event.listen function 463, 467
Event.map function 464
Event.merge function 465
Event.scan function 464, 467
EventArgs type 469
evolution 222

functions in C# 133
Excel 83, 378–381

chart 381
writing data to 378

exception
handling 245
throwing 84
uncatchable 261

Exception type 360
executable computation

composing 422
executing

as compiled code 315
executing thread

waiting in GUI 474
execution

controlling 460
environment 315, 423
of imperative programs 37
order 6
pattern 392
recursive computation 262
timing 394
tracing on paper 37

execution path
selecting 75

execution point
lazy processing 410

exn type. See Exception type
expected value 298
experimental code 83
explicit

cast 252
class declaration 249
conversions 88
interface implementation 251
lambda function 211
mutable values 63
parameter typing 134
readonly fields 63
Licensed to   <kr_wilson@hotmail.com>



INDEX510
explorative programming  
353, 362

accessing data 364
See also data-driven  

programming
expose as member 238
expressing algorithms 11
expression 35

alternative interpretation 318
data structure 119
describing result 14
empty 99
let binding 56
programming using 14
scoping 246
sequencing 57
tree 119, 134, 423
type inference 128
See also object expression

Expression Builder 428
Expression type 119
expression vs. statement 35
expressions

generating sequences 317
extending type 235
extensibility 118, 288

of the code 143
designing types 430
of a language 39

Extensible Application Markup 
Language. See XAML

extension
methods 42
property 433

extension method 115
for arrays 398
as custom operator 145
lifting behaviors 439
for numeric literals 432
supporting queries 344
for tuples 150
type extensions (F#) 239

external events 460
extracting value 344

F

F#
class 26, 233
deconstruct the value 49
designer support 400
features 249
introducing 21
library project 256
module 399

native interoperability 397
object type 233
project 92
quotations 315, 423
redistributable 256
script file 22, 356
value treatment 56

F# abbreviation
seq type 316

F# code
evolution 222
how developed 82
standard meaning 423

F# compiler
closures 217
computation expression 

compilation 340
deducing interface 

declarations 241
discriminated unions 118
event treatment 471
generated constructor 257
measure attribute 374
merging type extensions 239
object expression 

compilation 243
scoping 56
sequence expression 

compilation 329
Struct attribute 395
type inference 47, 165

F# development process 24, 222
optimization 270

F# Interactive 23, 83
experimenting with 

animations 446
measuring speed 388
printing sequences 316
shell 234
terminating commands 25

F# language
customizing 336

F# library
array processing 276
asynchronous 

programming 357
calling from C# 255
function composition 161
option functions 154
option type 125
pipelining operator 144

F# object type 440
F# PowerPack

asynchronous I/O 361
units of measure 374

F# programming
iterative development 270

F# type
using from C# 256
See also type

F# type declarations
attractive aspects 188

F# type extensions 238–240
façade pattern 403
factorial

generating sequence in 
C# 316

generating sequence in 
F# 320

iterative implementation 68
recursion 68

factorial function
optimizing using 

memoization 268
failing operations 346
failure

detailed information 221
failwith function 84, 192
FastFunc type 258
field

declarations 34
immutable 60
public access 249

file reading 89
files

listing 175
filesystem

hiding in Haskell 346
FileSystemWatcher class 461
FillEllipse method 442
filter

blur 278
name 219
See also color filter

filter function 131
tail recursive 

implementation 271
filter operation 173

for documents 199
for events 462

filtering 130
filtering a list

strategy pattern 212
financial

application 214
financial contract

active date 456
combinators 456
evaluating trades 455
Licensed to   <kr_wilson@hotmail.com>



INDEX 511
financial contract (continued)
modeling 455
modeling language 457
primitives 455
using abstract values 458

financial modeling 
language 454

finished application 222
first argument 150
first-class events

combining with 
behaviors 473

first-class functions 41
first-class value

events 468
flags

pattern matching 192
flat document 

representation 182–187
flattening projection  

329–334, 390
C# 332
nesting 332
replacing outer loop 331
SelectMany method 330
Seq.collect function 330
in sequence expressions 330
using directly 331

flexibility
computation expressions 341
using interfaces 241

flexible
income test 214
typing 289

float function 88
float type

with units of measure 52
float32 function 88
floating aggregate 465
floating point

number 88
scientific 91

flowchart
drawing 474
rectangle drawing 477

fluency 159
fluent integration 233
fluent interface 428

for functional code 428
fold operation 170

in C# 172
inverse operation 316
merging text parts 197
See also Event.scan function

folding
documents 198
See also aggregation

font
drawing 101
name 191

for ... in construct 184
for loop 42, 90, 152

array processing 276
capturing variable 218
parallel sequence 

expression 389
parallelization 385
replacing with Seq.collect 331

foreach loop
inside iterator 326

foreach statement (C#) 90
forestation percentages 374
Forever method 16
format string 23
formatting strings 90
Fowler, Martin 422, 428
frame 439
framework

creating animations 428
Fran project 428
from clause 328

custom computations 340
multiple 175, 333
translation to SelectMany 333

FS0025 72
FS0040 269

warning 322
FSharp.Core.dll assembly 256
FSharp.PowerPack.dll 

library 355
fst function 61, 113
fsx file 22
FSX files. See scripts
fun keyword 133
Func delegate 40, 77, 133, 206

interoperability 258
replacing interfaces 207
using from F# 258

FuncIntInt delegate 133
FuncList class 72
FuncList.Cons method 74
FuncList.Empty method 74
function 40

aggregation 130
applying to behaviors 435
arguments 23
behavior 166
calling from C# 258
compilation 292

creating named 242
curried form 140
declaration 57
different setting 436
evolution in C# 133
from operator 78, 149
generalization 170
generic 87, 129
higher order 129–130
implicit conversions for 

calls 367
instead of interface 41
as interface 132
joining 161
lambda notation 133
let binding 133
mathematical concept 31
mathematical notion 131
multiple arguments 137
name 235
nested 58, 99
optimizing 261–271
parameter syntax 97, 144
parameters with units 375
processing 160
pure 132
representing behavior 206
representing color filter 396
returning 136, 401

See also currying
signature 57
similarity with interfaces 241
thinking using 40
time-varying values 429
type 77
type as a specification 45
type signature 133, 136
using as parameters 40
as value 130, 206
value in C# 76
value in F# 77
versioning 234
without arguments 57
See also higher-order function

function application
in lambda calculus 31

function call
independence 299
nesting 261
reordering 299
tracking dependencies 390

function composition 160, 435
implementing 161
in C# 162
point-free style 211
Licensed to   <kr_wilson@hotmail.com>



INDEX512
function composition (continued)
types 161
using 161

function declaration
inferring the type 164

function type 135
equal 403
relation with tuples 135
turning to objects 240

function value 130–140
defined 131
encapsulated 455
processing using HOFs 160
refactoring 287
representing 

computations 357
wrapped 431

functional
application design 418
class 249
collection 34
design 177
library 44
reactive programming 471

functional C#
option type 122

functional data structures 178
implementing in C# 181

functional design
thinking 178

functional languages 9
fundamental features 4
union type 115

functional libraries 420–459
functional list 165

.NET support 410
F# implementation 165
immutability 34
See also list

functional list. See list
functional pattern

lifting 436
functional program

evaluation 32–39
information 

representation 187
parallelizing 383
simplicity 190
See also computation

functional programming
arguments 383
closure 215
composing functions 345
defined 4
DSL 423

foundations 31
generic code 143
influence 11
lifting 436
principles 6
using HOFs in C# 159
using mutable types 410

functional reactive animations. 
See Fran project

functional skills
understanding type 155

functional style
in C# 159
working with arrays 276

functional technique
efficiency 260
working with sequences 315

functional types 47
functionality

adding 119
localization 119

functions 55–60
multiple 219
using lists of 209
as values 40, 75–79, 220

functions vs. interfaces 144
Future class 20
Future type 312

G

GAC 192
gallery of values 166
garbage collection 6
Gates, Bill 353
gathering information 372–378
generalizing code 406
generated comparisons 297
generating

composed behaviors 221
numbers 309
random number 

generators 414
reports 287

generating sequences 315–320
implementing 

IEnumerable 315
using higher-order 

functions 316
using iterators 316
using sequence 

expressions 317
generic 46

C# 123
F# 125

function 129
higher-order functions 143
list 73
value 70, 122, 129–130

generic class
initializing 63

generic code
functional vs. object-

oriented 143
implicitly 165

generic functions 87
in F# 144

generic method
calling 163
extensible code 143

generic parameter
explicit 63

generic type 125
declaration 122
syntax options 126

generic type parameters
units of measure 376

generic type signature
understanding 149

geometrical transformation 399
get member 250
GetPixel method 278, 397
getter 249
Global Assembly Cache. See GAC
global mutable state

logging 346
using 480

global state 414
functions 131

global value 55
Google MapReduce. See  

MapReduce algorithm
grammar rules 45
graphical designer 92
graphical editor 213, 219
graphical effect 395–408

creating as lambda 
function 401

creating from filters 401
parallelizing 395
representing 400

graphical filter 178, 205
representation 206

graphical shapes
representation 47

graphical user interface
See also GUI
See also UI

graphics. See drawings
grayscale filter 397
Licensed to   <kr_wilson@hotmail.com>



INDEX 513
group clause 329
grouping operation 329
guard

in match expression 49
GUI 82, 460

applications 92
creating in F# 400
thread 412, 475, 479
See also UI

guidelines
using tuples 112

H

Handler delegate 471
handler. See event handler
hard-to-use type 241
hash

code 244
type 289, 331

Haskell 6, 39
animations 428
evaluation strategy 301
infinite lists 324
lazy lists 308
monads 334
working with state 346

head 70
head (list) 86
headache

mutable value type 396
heap allocation 396
Hello world 22
HelloWindow class 26
hexadecimal format 91
hidden class 243
hiding

mutation 277
value 117

hiding implementation
computation type 339

hierarchical data 191
higher-order function  

41, 129–176
array processing 276
in C# 150
combining 210
Count method 209
for discriminated union 151
for documents 195
encapsulation 168
event processing 462
in F# 144
for functions 160–163

generating sequences 315
generics 143
implementing interfaces 441
in lambda calculus 32
measuring time 403
nesting 156
for options 158–159
processing sequences 327
recuring pattern 165
refactoring 288
for schedule values 151–154
signature in C# 150
simplified processing 154
strategy pattern 212
for tuples 147–151
two-dimensional arrays 397
type inference 163–165
type signature 136, 195
understanding type 166
using from C# 258
working with arrays 279
wrapping code 185

HOF. See higher-order function
hole in the middle pattern 184
Hollywood Principle 461
host language

extending 423
HTML format 187
HTTP communication 355
HttpUtility class 364
Hudak, Paul 428
hundreds of tasks 358
Hurt, Brian 185

I

IComparable interface 296
ideal representation 187
identifying commonality 221
identity

function 283
monad 345

IDEs 286
idiomatic .NET solution 243
idioms

working with functions 211
IDisposable interface 245

using object expressions 246
IEnumerable type 288
IEnumerable<T>

using in immutable types 410
IEnumerable<T> interface  

167, 317
implementing 315

IEqualityComparer 
interface 244

IEvent type 462
if condition 300
if expression

using pattern matching 67
if-then-else

expression 37
type inferrence 128

IL 217
image

applying filter 397
blurring 278
processing 205

imbalanced tree 280
immediate testing. See interactive 

testing
immutability 33–34

in C# 181
consequences 18
data structures 33
declarative syntax 427
record type 180
tracking code 

dependencies 289
understanding code 17
values 33

immutable
array 398
data structures 12
value 23

immutable class
creating 18
implementing 181
in C# 63
initialization 95

immutable data structure 60–68
calculating with 64
parallel processing 391
parallelism 383
suitable operations 274

immutable data type
implementing in C# 181
members 237
using arrays 277

immutable list. See list
immutable type

changing values 181
comparing 296
syntax 426
value or reference 108

immutable value 33
initializing 226

immutable variables. See immuta-
ble value
Licensed to   <kr_wilson@hotmail.com>



INDEX514
imperative
class 249
configuring objects 427
for loop 152
islands 385–386
languages 8
solution 209

imperative program
executes 37

imperative programming
array 275
function 131

imperative style
scalability limitations 383

imperial units of measure 51
implementation

inheritance 241
level 11
parallel 384
sequential 384

implicit
class syntax 253
constructor 248

implicit conversion
in F# 254
to base class 367

implicit type conversions 366
implicitly generic code 165
in keyword 56
in-memory bitmap 184
in-memory processing 369
incompatible type 62

correcting code 345
incomplete pattern 67

match 72, 197
matching 50

indentation 128, 235
style 323

independent
code blocks 390
iterations 385
lines 19

independent components
animation library 429

index
in projection 190

indexer 85
indicator

obtaining 371
infinite

number of elements 314
recursion 322

infinite data structure 309
sequence 322

infinite list 308, 324
aggregating 310
of colors 308
of integers 309
projections 310

infinite loop 69
asynchronous 475

infinite sequence 314, 322–324
of colors 322

InfiniteInts type 308
infinity 309
infix notation 145
informal specification 223

transcription 188
inherit keyword 447
initialization

encapsulating 184
recursive values 226
soundness 269
values 294
of a variable 33

input
array 385
classification 223

instance members
calling 85

instantiation
type inference 128

int function 88
Int32.Parse method 84
integer 88

operator 35
intelligent behavior 411
IntelliSense 235, 256

computation builder 
value 356

for F# objects 237
interactive

execution 234
programming 23
shell 292

interactive development
drawing documents 186
using mutation 447

interactive shell 353
INTERACTIVE symbol 293
interactive test 293

evolving 293
interactive testing 82, 364

asynchronous workflows 358
interface

C# 222
declaring in F# 241
drawings in F# 440
explicit implementation 251

in F# 241–243
as function 132
implementing 242
implementing in a class 251
implementing using object 

expressions 243
keyword 253
single method 207
type 222
using Func instead 207
writing extensible code 143

interfaces
using from F# 243–248

interference 300
interleaving order 327
intermediate language. See IL
internal representation

hiding 430
interpretation

of type signature 161
Into keyword 469
IntOption type 122
intrinsic type extension 239

adding operations 411
See also type extension

invalid
state 182
value 108

invariant culture 376
inversion of control 461
Invoke method 259, 412
is operator 254
it value 181
iteration

local state 405
iterative development 82

adding unit tests 92
creating project 92
interactive testing 82

iterative development process
optimization 270

iterative development style 235
iterator

asynchronous 
programming 362

local state 317

J

JavaScript 8, 44, 255
JIT 264

tail recursion 264
join

clause 333
operation 330, 335
Licensed to   <kr_wilson@hotmail.com>



INDEX 515
joining sequences 319
Joins Concurrency Library 494
just-in-time. See JIT

K

keeping values alive 234
Kennedy, Andrew 376
key

customizing equality 243
key data structure 219
key-based access 244
keyword

and 225
do! 348
event 470
for 336, 389
fun 133
in 56
inherit 447
interface 253
Into 469
let 55
let rec 320
let! 336–337, 356, 475
lock (C#) 414
match 71
module 399
mutable 250
namespace 256
rec 69, 225
return 135
return! 356, 478
struct 10, 108, 395
this 236
type 115, 225, 374
use 245–246
using 245
val 414
var 63, 127
with 180, 182, 243, 447
yield 332, 369, 389
yield break 317
yield return 317
yield! 319, 389

kilometers per hour 52
Kleene, Stephen C. 6
km^2 375

L

labeled tuple 179
lambda

Greek letter 31, 131
object 223

lambda calculus 6, 31–32, 131
typed 6

lambda expression 77, 131
closures 218
See also lambda function

lambda function 131–135
as a code block 185
conversion to delegate 132
explicit 211
function as parameter 209
as a handler 312
implementing operation 144
laziness 304
multiple arguments 133
nested 138
parallel for 386
parameter type 134
returning 401
running on a thread 412
statement block 135
strategy pattern 212
writing tests 207
See also object expression

lambda objects 242
language

built-in construct 386
changing the meaning 423
common 173
creating animations 423
extending 423
multiparadigm 233
specific domain 423

Language Integrated Query. See 
LINQ

language-oriented 
programming 43, 423

languages
See also functional languages
See also imperative languages
See also object-oriented  

languages
large amount of data

tail recursion 273
large collections 271–279
large data sets 260

processing in parallel 390
largest value 79
last element 274
last recursive call

jumping out 263
layer 99
layout

adaptive 196
calculation 190

Lazy class 394

lazy evaluation 302
in Haskell 39
I/O and user interface 301
using functions 303
using lazy values 304

lazy keyword 304
lazy list

accessing values 309
using sequences instead 322

Lazy type 304, 306
lazy value

computation builder 350
in C# 306
in F# 304
practical uses 307
primitive functions 305
primitive operations 394
relation with tasks 394
resized photos 310

LazyCell discriminator 308
LazyList type 308
leaf 280

counting primes 391
length

comparing 298
let

clause 340
keyword 55

let binding
declaring functions 57
factoring expressions 427
inside classes 253
nesting 58

let rec ... and construct 226
let rec binding 69
let rec keyword 86, 320
let! keyword 337

asynchronous operation 356
library

compositional way 423
functional 420–459
immutable type 251
loading dynamically 208
shared 114

lifting 436
drawings to animations 448
method 438
nullable types 436
numeric operators 451
translation function 448
using Behavior.map 437

#light directive 56
lightening filter 397
lightweight process 480
Licensed to   <kr_wilson@hotmail.com>



INDEX516
lightweight syntax 57, 128, 210
turning off 56

line break 57
LINQ 13, 110, 134

anonymous types 110
asynchronous 

programming 362
collection processing 168
Count operator 209
creating animated values 440
expression trees 119
extension methods 42
goal 15
language-oriented 

programming 423
method chaining 426
processing events 468
query operators 329
Select operator 279
standard terminology 438
in Visual Basic 469
working with behaviors 440
working with events 468
and XAML 12

LINQ query
for option values 344

LINQ to Objects 278, 288
implementing 326

LINQ to SQL 315
language manipulation 423

LINQ to XML 191, 366–369
LISP 6, 44, 421
List

module 387
type 290

list 68–75
adding and removing 70
aggregating elements 76
of all integers 322
alternative value 166
appending elements 273
calculating sum 86
cell 308
comparison 298
creating in F# 70
decomposing 71, 87
diagram 69
efficient usage 273
empty 69
expression 321
F# implementation 165
filtering 287
of functions 206
generating 321
head 70

higher-order functions 131
hundreds of thousands 

elements 262
immutability 70
implementing HOFs 170
implementing in C# 72
infinite 308
iterating over elements 184
of prime numbers 308
of operations 235
pattern matching 71
pipelining 146
processing 74, 288
processing using tail 

recursion 271
representing documents 182
reverse 272
sorting 287
suitable operations 274
summing elements in C# 74
summing elements in F# 75
tail 70
using efficiently 271
using partial function 

application 139
working with 42, 165–175

list (LISP) 422
list of functions 209
list processing 130, 165–175

abstracting 76
composability 421
domain-specific language 423
example 167
filtering 166
language 43
operation order 169
parallelizing 387
projecting 166
schedule example 152
similarity with events 462
using function 

composition 161
using pipeline 146

list type
in F# 165

List.average function 407
average color 407

List.bind. See List.collect
List.collect function 175
List.concat function 190
List.filter function 42
List.fold function 171
List.forall function 197
List.hd function 146
List.init function 265

List.map function 43, 139
List.mapi function 190
List.ofseq function 84
List.partition function 298
List.rev function 146, 272
List.sortBy function 288
List<T> class 167
literal collection 

expressions 422
little bit of code 354
#load directive 388
loading behaviors 208
loan

testing using collection 208
loan suitability

decision tree 224
loan test

adding reporting 219
configurable 214
creating with reporting 220
default set in C# 207
default set in F# 210
executing 208
similar structure 221
using decision tree 223
using interfaces 242

local function
additional argument 392
lambda 416

local value 109
localization

of functionality 119
of representation 

processing 119
location

at specified time 428
specifying 443
working with 414

lock function (F#) 414
lock keyword (C#) 414
lock-free code 11
LockBits method 397
locking

minimizing 384
shared objects 413

locks
minimizing 414

log messages 346
logger

state 346
logging 346

primitive function 347
logging computation 346

using 347
Licensed to   <kr_wilson@hotmail.com>



INDEX 517
logic
expressed explicitly 142

logical operators 145
loop

busy 411
using recursion 35

lower-level
parallel programming 391

M

machine learning 223
mailbox

accessing concurrently 492
ignoring messages 492
Receive method 482
Scan method 492

mailbox processor 480–493
AsyncPostAndReply 

method 483
communicating 490
concurrency 483
creating 481
encapsulating 487
encoding state machine 491
implementing 482
Post method 483
PostAndReply method 483
Receive method 484
Scan method 484

MailboxProcessor
members 483
type 482

main
application 399
window 93

maintainability 222
map function

tail recursive 
implementation 271

Map method 345
See also Select method

map operation 148
for behavior values 435
for behaviors in C# 438
for documents 194
for events 462, 464
merging document parts 196
for options 155
for schedule 151
for tuple 148

map task 22
Map type 244
Map.contains function 377
Map.ofSeq function 376

mapFirst function 148
MapReduce algorithm 22
mapSecond function 148
Marshal class 397
massive amount of data 354
match

construct 66
expression 49, 67

match construct 84, 366
C# analogy 118
nesting 154

match keyword
processing lists 71

MatchFailureException 
exception 72

MatchNone method 124
MatchSome method 124
Math.Pow method 414
Math.Sqrt method 414
mathematical definition

correspondence 68
mathematical operators 31, 145
mathematical purity

in Haskell 37, 39
mathematics

function 131
monad 337
relation 131

mature code
using members 240

max function 79
MaxBy extension method 417
maximum

finding 79
maybe monad 345
McCarthy, John 6
meaning

of the code 315
preservation 300
of symbols 422

Measure attribute 374
MeasureString method 101
MeasureTime method 404
measuring the speedup 388
member

adding to F# types 235
call syntax 236
calling 236
declaration 235
keyword 236
See also abstract keyword

memoization 266–271
in C# 267
first call 269

of recursive functions 269
reusable function 267

memoize function 268
memory

continuous block 275
limitations 308

merging
events 465, 467
routines 287

message
communicating 483
queueing 483
replying to 481
skipping 492
type 481
unprocessed 484
See also mailbox, Scan method

message passing 481
concurrency 490
encapsulation 487

message type 491
method

adding 145
converting to delegates 397
declaring 132
in F# 248
group 402
overriding in F# 447
See also member

method call
type inference 73

method chain 426
parallel query 388

method chaining 182
method signature 129

adapting 402
See also currying

metric system 51
micro-optimization 273
Microsoft Excel 378–381
Microsoft Research. See MSR
Microsoft Robotics studio 362
miles per hour 52
Milner, Robin 6
minimum

finding 79
mistake

avoiding using units 375
mixing concepts 227
ML language 6
modeling

financial contract 454
modeling language

using 457
Licensed to   <kr_wilson@hotmail.com>



INDEX518
modern programming
reusability 143

modifying
list 289
unfamiliar programs 285

module 258
automatic naming 292
compilation 292
keyword 399
unit tests 295

monad 334–350
bind and return 341
bind operation 337
identity 345
maybe 345
return operation 338
unwrapping value 340

monadic type 337
See also computation type

monadic value binding 337
monads. See computation 

expressions
Mondrian, Piet 486
Monitor class 414
mouse clicks

counting 475
mouse location 469
MouseMove event

handling 477
movement

composing 427
MoveNext method 315
MSR 7, 94, 384
multicore processor 6, 383
multiline

commands 25
comment 145

multiparadigm 233
language 6

multiple
arguments 97, 144
data sources 318
data structures 178
functions 219
output elements 330
sources 327

multiple elements
returning 330

multiple representations
transition 223

multiple threads
communicating 492

multiple values 109–114
higher-order functions 147
returning 109

multithreading 10
mutable

by default 218
class 108
field 249
list 299
property 216

mutable data structure
array 275
problems 290

mutable keyword
class declaration 250

mutable objects
method chaining 427

mutable state
avoiding in classes 249
documenting 215
handling events 461
hiding 214
modifying 299
reference cells 216
top-level 412
user interface 466

mutable types 34
GUI interaction 401

mutable value 59–60
in F# 39
limitations 216

mutation
accidental 290
hiding in C# 279
initialization 226
using interactively 447
using internally 277

mutually recursive
functions 269
types 224
values 225

N

name
find longest 290
find multiword 290

named
arguments 95
class 242
function 242

namespace
keyword 256
opening 84

naming convention 258
interface in F# 441
interfaces 241

NASA Climate Orbiter 51
nested

document parts 187
function 99
function calls 261
function declaration 58
pattern 50, 87
sequence processing 332

nested element
finding 367

nested for loops
parallelization 405

nesting tuples 112
.NET

attributes 15
class library 208
coding style 442
enumeration 462
events 461
exceptions 84
generics 6
integration 233
object model 26
programming guidelines 222
thread pool 358
See also interfaces

.NET 2.0
handling stack overflow 261

.NET 3.0
WPF part of 92

.NET 3.5
Func delegate 77

.NET 4.0 20
Parallel Extensions to 

.NET 384
Zip method 326

.NET APM. See asynchronous 
programming model

.NET applications
developing in F# 81

.NET collections
using from F# 244

.NET languages
interoperability 255

.NET libraries
callable from C# 241
mutable types 410

.NET object model 222
features 249

.NET Reactive Framework 468

.NET types
interoperation 120
null value 120
thread-safety 405
Licensed to   <kr_wilson@hotmail.com>



INDEX 519
network
communication 481
operation 365
traffic flow 429

new keyword
optional 152

newly calculated value 317
newton 376
Nil discriminator 166
nil list 69
NodeType property 119
None discriminator 120
nonempty log 347
nongeneric utility class 73
nonparallel version 392
nonstandard behavior 350
notation

See also type constructor
null value 120, 294

checking 120
type inference 127

Nullable type 121
nullable type

lifting 436
nullable types (C# 2.0) 121
nullable values

addition 437
NullReferenceException 

exception 109, 120
number

converting 87
of failing tests 221
floating-point 88
literals 87
parsing 111
of requests 369

numeric
conversions 88
range 40
types 87

numeric literals
extension methods 432

O

O notation 274
object

equality 296
identity 296
keeping state 487
state 177

object expression 223, 242
complex code 251
drawing objects 441
key equality 244

lambda function analogy 242
using with .NET types 243

object initializers
composing values 424

object initializers (C# 3.0) 94
object tree 424
object type 233

inheritance in F# 447
object-oriented

design 11, 177
features 248
and functional 249
ideas 233
languages 8
organization 237
refactoring 286
representing behavior 207

object-oriented languages
method chaining 427

object-oriented programming. 
See OOP

object, notion of 8
Object.Equals 296
Object.ReferenceEquals 

method 297
observation

evaluation of lazy values 305
obvious code 260
OCaml 6

generic types 126
string libraries 90
syntax 126
See also records of functions

Office 2007 381
online rectangle drawing 480
OnPaint method 447
OOP 8, 30

fluent interface 428
generic code 143
representing alternatives 114

open directive 26
OpenFileDialog class 102
operation

adding 114
adding in OOP 202
belonging to a type 235
composing 160
for composition 420
designing 177, 194, 411
discoverability 235
failing 346
recurring 184
reordering 300
separated 234
sequencing 426

specifying 143
structure 148

operator 35, 57
custom 145
as function 78
implementing or 303
lifting for behaviors 437
overloading 395
provided by a type 396
using as function 149

operator (Haskell) 325
operators as functions

point-free style 211
optimization 300

functional techniques 260
using lazy evaluation 39

optimizing functions 261–271
Option class 123

declaration 123
pattern matching 124

Option module 154
Option type

supporting queries 344
option type 109, 120–127, 294

in C# 122
extracting value 129
nested pattern matching 154
nongeneric version 122
processing using HOFs 154
processing using HOFs in 

C# 159
processing using queries 335

option value
implementing computation 

builder 343
processing 170

Option.bind function
implementing 158

Option.map function 155
behavior analogy 435
implementing 158

or-pattern 199
order

of arguments 163
of magnitude 275
of parameters 152
of statements 19
of operations 169
recursive processing 198

orderby clause 329
out parameters

calling from F# 111
outer loop 331
output array 385
Licensed to   <kr_wilson@hotmail.com>



INDEX520
output elements
multiple 330

Output Type 92
overloaded

constructor 249
delegate 133

overloaded operator 396
for behaviors 450
for vector 410
working with vectors 415

overloading
number of type 

parameters 64
overriden method 447

P

paged data 370
paradigm

combining 8, 249
functional 7

parallel
array processing 405
combining workflows 358
execution 10
programming 20
running asynchronous 

workflow 357
Parallel Extensions to .NET  

20, 384
Parallel LINQ. See PLINQ
Parallel module 387
Parallel.For method 404
Parallel.ForEach method 386
Parallel.ofSeq function 388
parallelism 383–419

amount of 371
downloading data 371
important concepts 383
independent code 20
state 480

parallelization 12
bearing in mind 396
image processing 404
techniques 384–395

parallelizing
animal movement 415
simulation 417

ParallelQuery 388
parameter

name 57
specifying units 375

parameterization 76
processing functions 143
using functions 288

parameterized function
benefits 79

parameterized task 212
parameterizing functions 287
parameterless constructor 93
parameters

comma separated 97, 144
order 150
refactoring 288
space separated 97, 144, 442
using tuples 236

params keyword (C#) 84
parentheses

avoiding 145
Parsec library 426
parser combinators 426
parsing numbers 111
parsing values 372
partial function application 139

composition operator 161
creating graphical effects 402
document drawing 186
filtering collections 289
point-free style 211
schedule example 152
working with behaviors 436

partitioning 298
Pascal case 258
pattern 65

asynchronous methods 361
command 213
composite 200
decorator 201
drawing primitives 443
explorative development 369
hole in the middle 184
lifting 436
list processing 99
in match expression 49
multiple 67
processing composed 

values 143
processing events and 

lists 463
recursive function 69
recursive workflow 476
repeated 5
strategy 212
template method 228
temporary state change 247
underscore 66
using immutable types 64
visitor 202
with conditions 49

WithXyz method 250
See also recursion pattern

pattern matching 48, 55
active patterns 201
Boolean flags 192
checking conditions 197
complete 121
complete pattern 67
decomposing lists 71
decomposing tuples 65
discriminated union 116
discriminated unions 308
on events 489
exceptions 366
extracting values 75
for … in construct 90
function parameters 97
incomplete 197
incomplete pattern 67
lists 84, 86, 295
mimicking in C# 124
nested 87
or-pattern 199
order of patterns 99
on parameters 197
single-case discriminated 

union 338, 342
testing threshold 392
tuples 87
and type inference 164
underscore 87
using visitor pattern 203

per-pixel
filter 396
processing 398

performance
asynchronous operations 354
measuring 389

phase
application design 177
operation design 177
sinusoidal movement 452

photo browser 310
physical units 375
PIA 378
pie chart 82, 308

calculating angle 99
drawing 99
drawing labels 101
drawing segments 96

pipe 168
pipeline

array processing 278
event processing 466
Licensed to   <kr_wilson@hotmail.com>



INDEX 521
pipelining 43
carried values of events 466
list processing example 168
processing tuples 149
schedule example 152
using dot notation 147

pipelining operator 43, 146, 
168, 211

composition 421
reading time-varying 

values 434
supporting 152
syntax 144
type inference 164

PLINQ 20, 384
using method calls 386

point-free style 211
examples 211
function composition 211
operators as functions 211
partial function 

application 211
population

representing using tuple 61
PostAndReply method 487
PostSharp 44
PowerPack 308

library 85
PowerThreading library 362
pragmatic choice

mutable state 480
pragmatism 215
predicate 131

specifying 131
prepending an element 272
primary concern

behavior 178
data 178

Primary Interop Assemblies. See 
PIA

primes
counting 386

primitive
adding 425
animation in LISP 422
components 200
composing 420
creating rotation 452
custom computations 339
defining in LISP 421
drawings 442
execution specification 386
logging a message 347

moving drawings 443
type 108
workflows 361

primitive behavior
squaring 435

primitive functions
custom computations 339

primitive operation
as an argument 212
of lazy values 305

printf function 23, 90
format specifiers 91

printing output 89
private

fields 249
utilities 238

private setter
immutability 73

process
inside application 480
is terminated... 262
UI component 479

processing
language 173
messages 482

processing sequences 325–334
filtering and projection 327
using higher-order 

functions 327
using iterators 326

productivity 20
program

correctness 261
as an expression 31, 36
See also behavior-centric pro-

gram
See also data-centric progra

program data
representation 178

program state. See state
programming

See also asynchronous pro-
gramming

See also data-driven program-
ming

programming style
point-free 211

programming techniques
mimicking 44

project properties 92
projection

with index 190
projection operation 148

for documents 194
See also flattening projection

projection operation. See map 
operation

property
accessing 85
in F# 248
intializing 93
of type Func 431
See also member

property declaration
C# 250

prototype 222
prototype-based object 

systems 44
pseq computation builder 390
public

API 242
composition 201

publishing events in F# 470
pure function

lazy values 305
optimization 266

purely functional
class declarations 249
members 237

Python 255

Q

queries 328–334
query 110

asynchronous 
programming 362

events in Visual Basic 469
in LINQ 21
method chaining 426
processing option values 335
returning multiple values 110
translation 333
writing behaviors 440

query expression 13, 169, 328
customizing 335
internals 328
meaning 328
validity 328
working with events 468

Query Generator 363
query operators 329

for value computations 342
question mark symbol 254
queue

mailbox messages 491
of messages 483

quotations 423
Licensed to   <kr_wilson@hotmail.com>



INDEX522
R

#r directive 192, 293, 356
race condition 10

avoiding 418
avoiding using message 

passing 483
radian (angle) 101
raising an event 471
random

color 95
tree 391

Random class
thread-safety 413

random numbers
mutable state 131

randomBrush
function with side effects 96

randomly generated array 278
reactive animations 471
reactive application 358, 466

storing state 480
understanding 474

Reactive LINQ 468
reactive programming 460–494
Reactive.Attach method 468
read-eval-print loop. See REPL
read-only property 249
readability 285

animation in LISP 422
list processing 168
point-free style 211
tupled parameters 97
tuples 113
using extension methods 146
using infinite sequences 322
using records 219
wrapping functions 399

readonly modifier 18, 34,  
63, 181

real-world
creating animations 428
discriminated unions 119
document processing 

example 182–204
drawing with infinite 

sequences 324
financial modeling 454
first application 81
graphical effects 395
logging 347
parallelization 395
simulation 409
testing loan suitability 206
time-varying values 429

using F# members 240
XML processing 191

reasoning
about code 6, 37
point-free style 211

rec keyword 69, 225
recompilation

avoiding 118
recomputing a value 266
record type 179

adding members 236
changing value 180
cloning 180
representing clients 209
storing functions 219
succinct syntax 210

records
accessing elements 181
combining data and 

behavior 225
per page 365
structural equality 296

records of functions 219, 240
converting to interfaces 241

Rect type 179
rectangle

deflating 180
rectangle drawing 477–490

online 480
RectangleF class 180
recurring pattern 87, 165

value processing 173
recurring task

decomposing values 143
recursion 34, 68–75, 261

asynchronous workflow 475
asynchronous workflows 365
busy loop 412
data type 68
depth 280
encoding loops 35
hiding 39
infinite list processing 310
keeping state 189
limitations 261
order 198
processing XML 192
returning result 262
termination 262
transformation 189
tree processing 280
types 166
using explicitly 39
See also tail recursion

recursion pattern
working with lists 87

recursive
let bindings 226
sequence expressions 320
type 166
workflow 475

recursive call
before and after 263
continuation argument 281
inside sequence 

expression 320
jumping out 263
operation before 264
summing list 74
work after 263

recursive discriminated 
union 187

composite 200
recursive function 69

asynchronous 482
list processing 86
processing messages 482
rewriting 263
stack overflow 260

recursive part
hiding 75
reusing 76

recursive processing
parallel 391

recursive reference
run-time checking 322

recursive value
compilation error 226
invalid code 270
memoization 270
self-reference 270

reduce task 22
ref

function 216
type 216

refactoring 19, 39, 286
common behaviors 221
errors 292
evaluation order 300
lazy values 311
using computation 

expressions 349
using functions in C# 289
valid 292

reference
equality 297
type 108

reference cell 216
in C# 216
capturing 217
Licensed to   <kr_wilson@hotmail.com>



INDEX 523
region codes 368
region information

exploring 368
registering callback 462
relation 131
releasing a thread 358
remote data source 363
RemoveAll method 290–291
removing duplication 221
reordering operations 300
repeated schedule 114
repetition

avoiding 185
repetition anti-pattern 87
REPL 23
replacing values 157
reply

waiting for 483
reply channel 483

using in a message 485
reporting details 219
representation

adding types 119
runnable function 422
tree-like data-structure 422
See also document representa-

tion
requests

number of 369
required income

modifying 218
resizing photos 310
resources

cleaning 245
consuming 355

rest of the computation 340
Result property

blocking behavior 392
retry attempts 365
return keyword

inside lambda function 135
return keyword (F#) 337
Return member 341
return operation 338
return statement 36
return! keyword 356

asynchronous return 356
recursive looping 478

returning
a new instance 249
new value 64

returning result
using continuations 282

reusability 131
of control structures 43
event processing 466

generic functions 143
generic types 125

reusable .NET libraries 241
reusing instances 414
reverse list 146
RGB components 395
Richter, Jeffrey 362
right associativity 70
robustness

accessing values 75
root

decision tree 224
element 192

rotate primitive 425
rotation 452
rotation speed 452

changing with clicks 473
routine 131
Ruby 255
running threads 358
runtime

problems 255
stack optimization 263

runtime error
recursive reference 270

S

SaveFileDialog class 102
scalability 383
scaling time 451
Scan method 492
scene

animation 429
schedule

adding members 238
processing 151
processing using HOFs in 

C# 153
processing using HOFs in 

F# 151
Schedule type 114
ScheduleType enumeration 117
Scheme 44
scheme. See LISP
scientific format 91
scope 55

explicit specification 245
implicit specification 245
of mutable state 215
nested 58
specifying using use 246

ScreenElement type 183
scripts 293

search function
arguments 109

seed
random numbers 413

select
clause 328
operator 14

Select method 139, 168
for behaviors 438
for events 468
implementing 326
for option values 345
using with arrays 278

Select operation
for value computations 342

SelectMany method 175
implementing using bind 345
for option values 345
See also flattening projection

SelectMany operation
for value computation 342

SelectMany operator
implementing 343

self-explanatory code 399
semicolon

separating properties 210
separate class declaration 251
separate line

record properties 210
separation

algorithm parts 322
of concerns 323
of varying functionality 39

separation of concerns
event handling 462

separator 171, 210
seq block 317

preceeding code 319
seq identifier 170, 317
Seq module 193, 316, 327
seq type 288
Seq.cache function 325
Seq.collect function

bind operator 334
importance 332
instance of monad 338
See also flattening projection

Seq.filter function 327
Seq.fold function 367
Seq.groupBy function 329
Seq.hd function 193
Seq.iteri function 323
Seq.map function 327
Seq.maxBy function 415
Seq.sortBy function 329
Seq.take function 318
Licensed to   <kr_wilson@hotmail.com>



INDEX524
Seq.unfold function 316
Seq.zip function 323
seq<’a> type 184, 316
sequence 314

caching 324
end of 316
event streams 464
of factorials in C# 316
of factorials in F# 320
finite 314
generated dynamically 314
IEnumerable interface 314
mathematics 314
of operations 160
of tuples 323
of values 463
parallel 388
See also generating sequences
See also processing sequences

sequence expression 153, 170
caching 325
composing 319
filtering 328
generalization 315
if ... then ... else 332
internals 328
introducing syntax 317
lists and arrays 321
nested for loops 330
optimization 329
parallel implementation 389
projection 328
recursive calls 320
side effects 318
type 318
unifying concepts 315
using flattening 

projection 331
using recursion 320
value binding 318
yielding empty list 373
yielding list elements 319

sequence expressions 317–324, 
328–332

processing regions 369
sequence processing

using queries 328
using sequence 

expressions 328
sequencing

of expression 57
operations 332, 426

sequential code
parallelizing 384
waiting for events 474

set member 250
SetPixel method 278, 397
shape

functional representation 48
shared library 114

modifying 118
shared memory 384
shared object

accessing safely 413
shared processing functions 173
shared state 299

tracking dependencies 390
sharing code 95, 185
shifting time 451
short-circuiting behavior 303
side effects

avoiding 291
in C# and F# 301
explicit 291
in Haskell 39
initialization 93
object-oriented code 237
order 301
random numbers 96
See also pure function

signature
See also type signature

Silverlight 378
simplicity

corresponding 
representations 193

simplification
mathematics 285
as refactoring 286

simulation 408–418
designing operations 411
drawing operation 411
parallelizing 417
running 411
state 409

simulation state
in C# 410

single argument function 109
single expression 14

event processing 465
single method 207

interface 132, 213
single stack frame 263
single-threaded

application 480
GUI 479

skeleton
application 413

Sleep method 361
slicing 376

slot, immutable 60
smoothing values 277
snd function 61, 111
solar system 452

declarative specification 427
running simulation 453

solution
refinement 82

Solution Explorer 92, 192
solving problems

using existing library 44
Some discriminator 120
Sort method 41
sorting a list 40
source code

representing 119
sources

multiple 327
special case

using pattern matching 68
specification

rewriting to code 224
transcription 188
using method chaining 427

speedup 393
measuring 388

sprintf function 91
SQL 15, 131
stable codebase 114
stack

size limited 261
stack frame 37, 261

dropping 263
never used 263
throw away 263

stack limit 262
stack overflow 69, 260

avoiding 261
list processing 271
tree processing 280

stack space
using continuations 282

StackOverflowException 
exception 261

standalone application 27, 312
standard function

combining 210
standard notation

asynchronous methods 488
starting with simplicity 222
StartNew method 392
state

affected by an operation 9
capturing 214
changing 34
Licensed to   <kr_wilson@hotmail.com>



INDEX 525
state (continued)
changing with messages 481
encapsulating 487
in GUI applications 479
iterator code 317
keeping as function 

parameter 482
of a logger 346
new 347
of object 9
reactive applications 480
restoring using use 246
tracing 37
working with safely 480

state machine
as mailbox processor 482, 491

state parameter
unfolding operation 316

statement 35
in F# 318
sequencing 56
switch order 286
See currently executing  

statement
statement block 135

type inference 128
STAThreadAttribute 

attribute 94
static class 146
static method 145–146

accessing in F# 84
generic 64

static property 259
static typing 45

in a functional language 45
statically typed language 45, 255
statistics 377

sampling 433
step

of an evaluation 37
step-by-step

automatic generalization 164
computation 156

Stopwatch class 403
strategy

data selection 288
pattern 212

streams 309
strict typing 289
String

immutable type 10
string

alignment and padding 91
concatenating 172
concatenation 146, 197

convert array to list 84
formatting 90, 171
in F# 84
indexing 85
sprint function 91

String class 84
string comparison

ignoring spaces 244
string type

immutability 34
String.Concat method 85
String.Format method 47
String.Join method 85
String.Split method 84
StringBuilder class 172
Struct attribute 395, 409
struct keyword 10, 108, 395
struct type (C) 179
structural

comparison 268
equality 296
patterns 200

structure
encapsulation 178
exposed 178
information 178
projection 148
revealing 114
of tuples 113

structured document 
representation 187–194

structuring application 11
subexpression

evaluation 157
substitution

mathematics 286
as refactoring 286
in unit testing 286

substring 192
Substring method 34
subtree

counting primes 391
subtree processing

independent 391
success flag 111
succinct syntax 11
suitable operations 274
summing

event values 467
summing list 261

in C# 74
in F# 75
using tail recursion 265

SumNumbers method 40
surface area 373

switch keyword
pattern matching 118
using inside HOF 153

switch statement 48
symbol 31

defining meaning 422
in LISP 44

symbol (LISP) 422
Syme, Don 7
synchronization

minimizing 384
syntactic sugar

asynchronous workflows 356
creating lists 70
disposal 245
queries 468

syntactic transformation
parallelizing for loops 404

syntax
calling operators 149
creating libraries 423
creating objects 152
declaring immutable class 73
default 56
flexibility in LISP 44
higher-order functions 144
lists and symbols 422
member call 236
nested calls 146
OCaml-compatible 56
of LISP 421
significant whitespace 56
using discriminated 

unions 424
using extension members 433
using immutable types 426
working with collections 170

system callback 358
System namespace 84
System.Collections.Generic 

namespace 244
System.Drawing namespace  

92, 180
System.Drawing.dll 

assembly 234
System.IO namespace 90
System.Numerics namespace 88
System.Reflection 

namespace 208
System.Threading 

namespace 385
System.Web namespace 364
System.Xml.Linq.dll 192
Licensed to   <kr_wilson@hotmail.com>



INDEX526
T

’T type 126
Tag property 49, 114, 118
tagged union. See discriminated 

union
tail 70
tail (list) 86
tail call

when using continuations 282
tail recursion 261, 263–266, 

271–273
sequence expressions 321
tree processing 280
See also accumulator argument

target representation 193
task

for one subtask 392
ideal number of 393
incomplete 392
limiting the number 392
map and reduce 22
optimizing number 405
parallelization 384
primitive operations 394

Task class 392
Task Parallel Library. See TPL
task-based parallelism 11, 20, 

390–395, 417
in C# 393
execution pattern 392
nonparallel version 392
overhead 392
speedup 393

Task.Factory property 392
TaskFactory class 392
technical details

hiding 14
revealing 422

technologies
declarative 13

template method pattern 228
functional 

implementation 228
temporarily changing 

context 247
termination of recursion 69
test

data 87
request 364

testing 292
complicated data 

structures 296
composition 300
imperative code 299

input 265
interactively 293
primitive pieces 300
side effect free functions 299
suitability 206
unit testing 294
using structural equality 298

text labels 101
TextContent type 183
The Haskell School of 

Expression 37
theory

infinite sequences 324
thinking about

problems using functions 40
this

keyword 236
modifier 146
referencing inside 

constructor 447
thread

current 357
expensive creation 355
pool 357
program state 37
releasing 358
switching during workflow 

execution 360
used for callback 357

thread-safety 405, 481
Thread.Sleep method 361
threading model 94
threshold

choosing 393
parallelization 392

throwing an exception 84
tick-type. See apostrophe-type
time

addition 451
measuring 403
multiplication 451
of an operation 389
shifting and scaling 451

#time directive 273, 388
time-dependent value 428
time-varying

drawing 445
value 428

time-varying value
See also behavior

Time.Current property 432
Time.Forever method 432
Time.Wiggle property 16, 432
timer

waiting asynchronously 361

ToArray method 278
tools

data-oriented 353
ToolStrip control 399
ToolStripComboBox 

control 399
TPL 384
tracking dependencies. See code 

dependencies
trade

evaluating 455
primitive 456

trading
window 457

traditional .NET 241
transformation

between representations  
178, 188

calculating information 189
function 187
of the iterator code 317
of a sequence 328

transforming
document 190
sequences 326

transition 222
GUI control states 478
to parallel version 389
from simple to complex 

types 108
TranslateTransform 

method 185, 443
translating representations 190
translation

transformation 443
variable animations 448

traversal 198
tree 119

balanced and imbalanced 
example 280

depth of processing 392
height 281
large 283
processing 279–283
processing using 

continuations 282
recursive processing in 

C# 393
summing values 279
See also decision tree

trigger event 470
trigonometric functions 101
try … with block 366
try-finally block 245
TryParse method 88, 111
Licensed to   <kr_wilson@hotmail.com>



INDEX 527
tuple 60–68
calculating with 64
choosing representation 113
comparison 297
compatibility 113
complexity 113
compositionality 112
decomposing 65
in C# 61
incomplete pattern 67
nested 112, 138
of functions 217, 219
processing elements 148
processing using HOFs in 

C# 150
processing using HOFs in 

F# 149
reconstructing 147
structural equality 296
type 111
using interactively 366
using records instead 113
working with 61, 147, 149

Tuple class 62
Tuple class 150

value equality 268
tuple type

relation with functions 135
tupled parameters 97

in DSL 442
tuples 109–114

decomposing 87
vs. records 113
See also multiple values

turning into
complex product 222

two-dimensional array 380, 397
higher-order function 397
processing in F# 398

# type 331
type

adding 115
adding members 235
alias 98
in C# 45
complexity 108
complicated structure 142
composing 108, 420
composing functions 161
constraint mismatch 254
conversion 254
of a drawing function 98
enumeration 462
of an expression 45
extensibility 118

function 135
in functional languages 47
in functional 

programming 45
future extensibility 430
giving a name 430
as grammar rules 45
meaning of value 374
partially specified 129
recursive 166
recursive definition 224
recursive structure 68
scheme 112
specification 161, 165
specifying explicitly 63
of a value 109
See also F# type

type ... and construct 225
type annotation

aggregation function 78
for arrays 277
function calls 163
for functions 134
not needed 210
and pipelining operator 164
record 181
two ways 129
unnecessary 405

type argument
automatic deduction 163
cannot be inferred 128
inference 73
specifying 128

type cast
in F# 253

type checking
invalid units of measure 375

type constructor
composing types 420
discriminated unions 115
function 135
tuples 111
what is 111

type declaration 115
generic 122
members 235
as specification 188

type definition
recursive 187

type extension
adding operators 451
for numeric type 433
intrinsic 239

type extensions 238–240

type inference 11, 24, 45,  
127–129, 163–165

accessing records 210
algorithm 130
in C# 3.0 46
construction 63
discriminated union 

creation 126
in F# 128
for function calls 163
for functions 144
for generic methods (C#) 124
for local variables 46
for loop 289
for method calls 163
generic method calls 64
insufficient information 128
missing in C# 63
order of arguments 163
from pattern matching 164
record type 179
summing list 75
tricky examples 129
tuple type 60
from type signature 164
using object expressions 245
for values 127
See also automatic generaliza-

tion
type inference algorithm

in C# 163
in F# 163

type information
loss 60
understanding 98

type keyword 115, 225
declaring interfaces 241
declaring units 374

type mismatch
units of measure 51

type parameter
automatic naming 129, 149
inferred 149
of generic method 129
substitution 402

type signature 57, 98
adapting 402
aggregation 78
analyzing 156
bind and return 341
bind operation 335
continuation passing style 283
creating graphical effects 402
deducing behavior 166
function 136
Licensed to   <kr_wilson@hotmail.com>



INDEX528
type signature (continued)
generating behaviors 222
graphical form 78
higher-order functions 148
interface member 241
list processing functions 166
memoization 268
possible interpretations 161
processing schedules 152
projecting documents 195
reactive animations 472
reading 78
similarities 173
translation function 189
of tuples 113
understanding 155, 166
understanding bind 174
working with locations 414
See also generic type signature

type system 108
compositionality 420

type-safety 125, 165
types 45–52

U

UI 101
browsing photos 311
control flow 460
intialization 226
using asynchronous 

workflow 474
undefined

result 120
value 120, 344

underscore
pattern 66, 87
type 245

understanding code 300
using units of measure 375

unfold operation 316
unification

iterators and queries 326
uniformity

sequence processing 328
union

in the C language 48
unit of work 213
unit testing 6, 19, 292

composition 299
setup and teardown 292

unit tests
failure 296
pointless for immutable 

data 299
separating 295

unit type 37, 56, 95
units of measure 51–52,  

373–377
^ (power) 374
/ (division) 374
simplification 375

unmanaged memory 397
unprocessed messages 484
unreachable

branch 197
code 153

unresponsiveness 354
untyped data format 363
unwrapping value 340
upcast 254

returned element to 
XContainer 368

updatable field 250
upper bound

inclusive 385
URL

building programatically 363
UrlEncode method 364
use keyword 245

programming 246
useful information 372
user interface interaction

threading 480
using keyword 245
utility function 58, 238

V

val keyword 414
valid state transition 182
valid value 294
value 166

abstract description 242
accessibility 55
animated 428
available operations 143
binding 55
captured 215
complexity 108
composing 424
constructor 111
deconstructing 49
domain 111
hiding 117
instead of variables 34
missing 109, 294
mutable 59
not available immediately 463
pulling 317
recognizing 109
recomputing 266

recursion 225
recursive definition 225
scope 55
shared by closures 217
type 108
type as meaning 374
using from C# 258
valid 294
what is? 108
See also animated value
See also behavior
See also immutable value
See also value binding

value binding 23, 33
customized 337
inside sequence 

expression 318
monadic 337

value hiding 198
Value property

lazy values 304
value structure

abstracting 143
value type

immutability 396
implementing in F# 395

value vs. type 109
value wrapper computation 338
values 55–60

ensuring consistent use 45
values vs. variables 33
var keyword 46, 63, 127
variable

declaration 23
declaring new 33
initialization 33
mutating 33

variable reference
avoiding 111

VB.NET
integration 233

vector
calculating with 415
graphics 206

Vector type
implementing 409

vent
merging 465

verbosity 163
verification

partial 298
of systems 31

virtual method
adding 114, 119

visitor pattern 119, 202
Licensed to   <kr_wilson@hotmail.com>



INDEX 529
Visual Basic
event processing 469

Visual Studio 83, 192, 286
designers 400
using F# in 47
See also F# Interactive

Visual Studio 2010 4, 7
Visual Studio project 92
visualization 378–381

declarative programs 466
vocabulary

extending 42
of the computer 8

void
keyword (C#) 37
type 135

W

waiting asynchronously 361
walking down

XML tree 368
warning

FS0025 72
FS0040 269, 322
incomplete pattern 

match 197
web page

downloading 354
website

photo browsing demo 310
weighted average 397
when clause 50, 197

exception handling 366
processing events 490

WHERE clause 131
where clause 328

filtering events 469
Where method 131, 168, 387

for events 468
implementing 326

where operator 14
while loop

asynchronous GUI 
processes 479

while(true) loop 322

whitespace
syntax 56

Windows application 92
Windows Forms 92, 102,  

193, 311
declarative event 

handling 466
designer 399
drawing shapes 477
GUI thread 412
in F# 400
switch function 474
thread-safety 412

Windows Presentation Founda-
tion. See WPF

with keyword 180, 243, 447
mimicking in C# 182

WithXyz method 250
WithXYZ methods 181
work

See also computation
worker thread 384, 394

in the GUI 480
workflow 334–350

See also asynchronous  
workflow

working with lists 165–175
See also list processing

working with values
using functions 143

worksheet
creating 378

world
simulation 408

World Bank 362–372
downloading data 370
registration 363

World Development 
Indicators 363

WPF 14, 92
wrapper type

configuring mutable 
objects 428

wrapping
code 240
value 342
See also lazy keyword

X

XAML 14
XContainer class 367
XDocument class 193, 368
XElement class 192, 367
XML

comment 236
document representation 191
following a path 368
helper functions 366
parsing attributes 191
reading attributes 368
reading values 368
syntax (C) 94
working with 191–194,  

366–369
XML data

exploring 368
reading values 372

XML element
recursive processing 192

XSLT 15
xUnit.net framework 292

Y

yield
elements 319
multiple 390

yield break keyword 317
yield keyword 318

replacing with flattening 
projection 332

yield return keyword 317
yield! keyword 319

lazy evaluation 319
tail-call optimization 321

Z

Zero member 346, 396
list average 407

Zip operation
implementing in C# 326

zip operation 323
Licensed to   <kr_wilson@hotmail.com>



Quick Reference – F# Language Constructs

  PRIMITIVE EXPRESSIONS 

VALUES AND FUNCTIONS

PATTERNS

 

sin(3.1415) Calling a single-parameter function (parentheses optional)
max 2 4 Calling a function with multiple parameters (3.1.2, 5.5.3)
fst(2, "two") Calling a function that takes parameters as a tuple (4.4.2)
new System.Random() Creating an instance of an F# (9.4) or .NET object (4.4.1)
rnd.Next() Calling an F# member (9.4) or .NET method (4.4.2)
fun a -> a + 10 Creating a function using the lambda syntax (3.4, 5.5.1)
(3, "three") Creating a tuple value with two members (3.2.1, 5.2)
() Tuple with zero members; also called unit value (3.1)
Some(10) Creating a value of a discriminated union (5.3.4)
rnd :> Object Safe type conversion to a base class (9.4.2)
someObj :?> Random Dynamic type cast to a derived class or interface (9.4.2)
someObj :? Random Dynamic type test returning a Boolean value (9.4.2)
if n > 0 then +1 else -1 If expression that returns a value of type int (2.2.4)
if n > 0 then printf "+" Imperative if expression that returns a unit value
10::[] Creating a list with a head (value) and a tail (list) (3.3.2)
[3; 9; 4; 2; 5; 5 ] Creating a list by enumerating elements (3.3.2)
[| 1 .. 20 |] Creating an array from a number sequence (10.2.3)
buffer.[n] Accessing the nth element of an array (10.2.3)
seq { yield 10 } Creating a collection using sequence expression (12.1.3)

let num = 10 Value binding that creates an immutable int value (3.1.1)
let foo() = printf "foo" Function taking a unit (no value) as an argument (4.4.2)
let mul(a, b) = a * b Function taking parameters as a tuple (4.4.2)
let add a b = a + b Function taking two parameters (3.1.2, 5.5.3)
let add10 = add 10 Partial function application of one argument (5.5.3)
let rec fib(n) = <expr> Declaration of a recursive function (3.3.1, 10.1)
let <pattern> = <expr> Value binding using pattern matching (3.2.4)
let f(<pattern>) = <expr> Pattern matching on a function’s parameter (3.2.4, 15.2.2)
match value with

| <pattern> -> <expr>

Pattern matching against one or more cases (3.2.4, 5.3.2)

_ Underscore pattern that matches any value (3.2.4)
42 Matches when the value equals the specified constant
Some(n) Pattern matching on discriminated union cases (5.3.2)
(a, b, c) Decomposes a tuple value into its components (3.2.4)
[] Matches an empty list (3.3.2)
head::tail Decomposes a nonempty list into its head and tail (3.3.2)
[a; b; c] Matches a list that contains three elements and decomposes it (4.4.2)
(a, b)::tail Nested pattern matching on list of tuples (4.2.2)

Licensed to   <kr_wilson@hotmail.com>



ISBN 13: 978-1-93    -  -43988 92
ISBN 10: 1-933988-92-4

9 7 8 1 9 3 3 9 8 8 9 2 4

99945

F
unctional programming languages are good at expressing 
complex ideas in a succinct, declarative way. Functional 
concepts such as “immutability” and “function values” make 

it easier to reason about code—as well as helping with concur-
rency. Th e new F# language, LINQ, certain new features of C#, 
and numerous .NET libraries now bring the power of functional 
programming to .NET coders. 

Th is book teaches the ideas and techniques of functional pro-
gramming applied to real-world problems. You’ll see how the 
functional way of thinking changes the game for .NET develop-
ers. Th en, you’ll tackle common issues using a functional ap-
proach. Th e book will also teach you the basics of the F# lan-
guage and extend your C# skills into the functional domain. No 
prior experience with functional programming or F# is required.

What’s Inside

Th inking the functional way
Blending OO and functional programming
Eff ective F# code

Microsoft  C# MVP Tomas Petricek is one of the leaders of the 
F# community.  He was part of the Microsoft  Research team for 
F# and is interested in distributed and reactive programming 
using F#. Microsoft  C# MVP Jon Skeet is a veteran C# and Java 
developer, prolifi c “Stack Overfl ow” contributor, and author of 
C# in Depth.

For online access to the authors, and a free ebook for owners 
of this book, go to manning.com/Real-WorldFunctionalProgramming

$49.99 / Can $62.99  [INCLUDING eBOOK]

Real-World  Functional Programming

PROGRAMMING

“You will never look at your 
  code in the same way again!”
  —From the Foreword by Mads  
       Torgersen, C# PM, Microsoft  
       
“A truly functional book!”
  —Andrew Siemer, .NET Architect

“.NET needs more functional
  programmers...this book shows
  you how to become one.” 
  —Stuart Caborn, Lead Consultant 
       Th oughtworks

“Warning: this book has a very 
  high Wow! factor. It made my 
  head hurt...in a good way!” 
  —Mark Seemann 
       Developer/Architect, Safewhere

“I recommend it to all soft ware
  craft speople, not just .NET
  developers.” 
  —Paul King, Director, ASERT

M A N N I N G

SEE  INSERT

Tomas Petricek with Jon Skeet         FOREWORD BY  MADS TORGERSEN


	Front cover
	Quick Reference – Functional Programming Concepts
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	What will this book give you?
	What won’t this book give you?
	Roadmap
	Typographical conventions
	Naming conventions
	StyleCop and FxCop
	Source code downloads
	Author Online
	Other online resources

	about the cover illustration
	Learning to think functionally
	Thinking differently
	1.1 What is functional programming?
	1.2 The path to real-world functional programming
	1.2.1 Functional languages
	1.2.2 Functional programming on the .NET platform

	1.3 Being productive with functional programming
	1.3.1 The functional paradigm
	1.3.2 Declarative programming style
	1.3.3 Understanding what a program does
	1.3.4 Concurrency-friendly application design
	1.3.5 How functional style shapes your code

	1.4 Functional programming by example
	1.4.1 Expressing intentions using declarative style
	1.4.2 Understanding code using immutability
	1.4.3 Writing efficient parallel programs

	1.5 Introducing F#
	1.5.1 Hello world in F#
	1.5.2 From simplicity to the real world

	1.6 Summary

	Core concepts in functional programming
	2.1 The foundation of functional programming
	2.2 Evaluation of functional programs
	2.2.1 Working with immutable values
	2.2.2 Using immutable data structures
	2.2.3 Changing program state using recursion
	2.2.4 Using expressions instead of statements
	2.2.5 Computation by calculation

	2.3 Writing declarative code
	2.3.1 Functions as values
	2.3.2 Higher-order functions

	2.4 Functional types and values
	2.4.1 Type inference in C# and F#
	2.4.2 Introducing the discriminated union type
	2.4.3 Pattern matching
	2.4.4 Compile-time program checking

	2.5 Summary

	Meet tuples, lists, and functions in F# and C#
	3.1 Value and function declarations
	3.1.1 Value declarations and scope
	3.1.2 Function declarations
	3.1.3 Declaring mutable values

	3.2 Using immutable data structures
	3.2.1 Introducing tuple type
	3.2.2 Implementing a tuple type in C#
	3.2.3 Calculating with tuples
	3.2.4 Pattern matching with tuples

	3.3 Lists and recursion
	3.3.1 Recursive computations
	3.3.2 Introducing functional lists
	3.3.3 Functional lists in C#
	3.3.4 Functional list processing

	3.4 Using functions as values
	3.4.1 Processing lists of numbers
	3.4.2 Benefits of parameterized functions

	3.5 Summary

	Exploring F# and .NET libraries by example
	4.1 Drawing pie charts in F#
	4.2 Writing and testing code in FSI
	4.2.1 Loading and parsing data
	4.2.2 Calculating with the data

	4.3 Creating a console application
	4.4 Creating a Windows Forms application
	4.4.1 Creating the user interface
	4.4.2 Drawing graphics
	4.4.3 Creating the Windows application

	4.5 Summary


	Fundamental functional techniques
	Using functional values locally
	5.1 What are values?
	5.1.1 Primitive types, value types, and objects
	5.1.2 Recognizing values and data

	5.2 Multiple values
	5.2.1 Multiple values in F# and C#
	5.2.2 Tuple type and value constructors
	5.2.3 Using tuples compositionally

	5.3 Alternative values
	5.3.1 Discriminated unions in F#
	5.3.2 Working with alternatives
	5.3.3 Adding types vs. functions
	5.3.4 Using the option type in F#

	5.4 Generic values
	5.4.1 Implementing the option type in C#
	5.4.2 Generic option type in F#
	5.4.3 Type inference for values
	5.4.4 Writing generic functions

	5.5 Function values
	5.5.1 Lambda functions
	5.5.2 The function type
	5.5.3 Functions of multiple arguments

	5.6 Summary

	Processing values using higher-order functions
	6.1 Generic higher-order functions
	6.1.1 Writing generic functions in F#
	6.1.2 Custom operators

	6.2 Working with tuples
	6.2.1 Working with tuples using functions
	6.2.2 Methods for working with tuples in C#

	6.3 Working with schedules
	6.3.1 Processing a list of schedules
	6.3.2 Processing schedules in C#

	6.4 Working with the option type
	6.4.1 Using the map function
	6.4.2 Using the bind function
	6.4.3 Evaluating the example step-by-step
	6.4.4 Implementing operations for the option type

	6.5 Working with functions
	6.5.1 Function composition
	6.5.2 Function composition in C#

	6.6 Type inference
	6.6.1 Type inference for function calls in F#
	6.6.2 Automatic generalization

	6.7 Working with lists
	6.7.1 Implementing list in F#
	6.7.2 Understanding type signatures of list functions
	6.7.3 Implementing list functions

	6.8 Common processing language
	6.8.1 Mapping, filtering, and folding
	6.8.2 The bind operation for lists

	6.9 Summary

	Designing data-centric programs
	7.1 Functional data structures
	7.1.1 Using the F# record type
	7.1.2 Functional data structures in C#

	7.2 Flat document representation
	7.2.1 Drawing elements
	7.2.2 Displaying a drawing on a form

	7.3 Structured document representation
	7.3.1 Converting representations
	7.3.2 XML document representation

	7.4 Writing operations
	7.4.1 Updating using a map operation
	7.4.2 Calculating using an aggregate operation

	7.5 Object-oriented representations
	7.5.1 Representing data with structural patterns
	7.5.2 Adding functions using the visitor pattern

	7.6 Summary

	Designing behavior-centric programs
	8.1 Using collections of behaviors
	8.1.1 Representing behaviors as objects
	8.1.2 Representing behaviors as functions in C#
	8.1.3 Using collections of functions in C#
	8.1.4 Using lists of functions in F#

	8.2 Idioms for working with functions
	8.2.1 The strategy design pattern
	8.2.2 The command design pattern
	8.2.3 Capturing state using closures in F#

	8.3 Working with composed behaviors
	8.3.1 Records of functions
	8.3.2 Building composed behaviors
	8.3.3 Further evolution of F# code

	8.4 Combining data and behaviors
	8.4.1 Decision trees
	8.4.2 Decision trees in F#
	8.4.3 Decision trees in C#

	8.5 Summary


	Advanced F# programming techniques
	Turning values into F# object types with members
	9.1 Improving data-centric applications
	9.1.1 Adding members to F# types
	9.1.2 Appending members using type extensions

	9.2 Improving behavior-centric applications
	9.2.1 Using records of functions
	9.2.2 Using interface object types

	9.3 Working with .NET interfaces
	9.3.1 Using .NET collections
	9.3.2 Cleaning resources using IDisposable

	9.4 Concrete object types
	9.4.1 Functional and imperative classes
	9.4.2 Implementing interfaces and casting

	9.5 Using F# libraries from C#
	9.5.1 Working with records and members
	9.5.2 Working with values and delegates

	9.6 Summary

	Efficiency of data structures
	10.1 Optimizing functions
	10.1.1 Avoiding stack overflows with tail recursion
	10.1.2 Caching results using memoization

	10.2 Working with large collections
	10.2.1 Avoiding stack overflows with tail recursion (again!)
	10.2.2 Processing lists efficiently
	10.2.3 Working with arrays

	10.3 Introducing continuations
	10.3.1 What makes tree processing tricky?
	10.3.2 Writing code using continuations

	10.4 Summary

	Refactoring and testing functional programs
	11.1 Refactoring functional programs
	11.1.1 Reusing common code blocks
	11.1.2 Tracking dependencies and side effects

	11.2 Testing functional code
	11.2.1 From the interactive shell to unit tests
	11.2.2 Writing tests using structural equality
	11.2.3 Testing composed functionality

	11.3 Refactoring the evaluation order
	11.3.1 Different evaluation strategies
	11.3.2 Comparing evaluation strategies
	11.3.3 Simulating lazy evaluation using functions
	11.3.4 Lazy values in F#
	11.3.5 Implementing lazy values for C#

	11.4 Using lazy values in practice
	11.4.1 Introducing infinite lists
	11.4.2 Caching values in a photo browser

	11.5 Summary

	Sequence expressions and alternative workflows
	12.1 Generating sequences
	12.1.1 Using higher-order functions
	12.1.2 Using iterators in C#
	12.1.3 Using F# sequence expressions

	12.2 Mastering sequence expressions
	12.2.1 Recursive sequence expressions
	12.2.2 Using infinite sequences

	12.3 Processing sequences
	12.3.1 Transforming sequences with iterators
	12.3.2 Filtering and projection
	12.3.3 Flattening projections

	12.4 Introducing alternative workflows
	12.4.1 Customizing query expressions
	12.4.2 Customizing the F# language

	12.5 First steps in custom computations
	12.5.1 Declaring the computation type
	12.5.2 Writing the computations
	12.5.3 Implementing a computation builder in F#
	12.5.4 Implementing query operators in C#

	12.6 Implementing computation expressions for options
	12.7 Augmenting computations with logging
	12.7.1 Creating the logging computation
	12.7.2 Creating the logging computation
	12.7.3 Refactoring using computation expressions

	12.8 Summary


	Applied functional programming
	Asynchronous and data-driven programming
	13.1 Asynchronous workflows
	13.1.1 Why do asynchronous workflows matter?
	13.1.2 Downloading web pages asynchronously
	13.1.3 Understanding how workflows work
	13.1.4 Creating primitive workflows

	13.2 Connecting to the World Bank
	13.2.1 Accessing the World Bank data
	13.2.2 Recovering from failures

	13.3 Exploring and obtaining the data
	13.3.1 Implementing XML helper functions
	13.3.2 Extracting region codes
	13.3.3 Obtaining the indicators

	13.4 Gathering information from the data
	13.4.1 Reading values
	13.4.2 Formatting data using units of measure
	13.4.3 Gathering statistics about regions

	13.5 Visualizing data using Excel
	13.5.1 Writing data to Excel
	13.5.2 Displaying data in an Excel chart

	13.6 Summary

	Writing parallel functional programs
	14.1 Understanding different parallelization techniques
	14.1.1 Parallelizing islands of imperative code
	14.1.2 Declarative data parallelism
	14.1.3 Task-based parallelism

	14.2 Running graphical effects in parallel
	14.2.1 Calculating with colors in F#
	14.2.2 Implementing and running color filters
	14.2.3 Designing the main application
	14.2.4 Creating and running effects
	14.2.5 Parallelizing the application
	14.2.6 Implementing a blur effect

	14.3 Creating a parallel simulation
	14.3.1 Representing the simulated world
	14.3.2 Designing simulation operations
	14.3.3 Implementing helper functions
	14.3.4 Implementing smart animals and predators
	14.3.5 Running the simulation in parallel

	14.4 Summary

	Creating composable functional libraries
	15.1 Approaches for composable design
	15.1.1 Composing animations from symbols
	15.1.2 Giving meaning to symbols
	15.1.3 Composing values
	15.1.4 Composing functions and objects

	15.2 Creating animated values
	15.2.1 Introducing functional animations
	15.2.2 Introducing behaviors
	15.2.3 Creating simple behaviors in C#
	15.2.4 Creating simple behaviors in F#

	15.3 Writing computations with behaviors
	15.3.1 Reading values
	15.3.2 Applying a function to a behavior
	15.3.3 Turning functions into “behavior functions”
	15.3.4 Implementing lifting and map in C#

	15.4 Working with drawings
	15.4.1 Representing drawings
	15.4.2 Creating and composing drawings

	15.5 Creating animations
	15.5.1 Implementing the animation form in F#
	15.5.2 Creating animations using behaviors
	15.5.3 Adding animation primitives
	15.5.4 Creating a solar system animation

	15.6 Developing financial modeling language
	15.6.1 Modeling financial contracts
	15.6.2 Defining the primitives
	15.6.3 Using the modeling language

	15.7 Summary

	Developing reactive functional programs
	16.1 Reactive programming using events
	16.1.1 Introducing event functions
	16.1.2 Using events and observables
	16.1.3 Creating a simple reactive application
	16.1.4 Declarative event processing using LINQ
	16.1.5 Declaring events in F#

	16.2 Creating reactive animations
	16.2.1 Using the switch function
	16.2.2 Implementing the switch function

	16.3 Programming UIs using workflows
	16.3.1 Waiting for events asynchronously
	16.3.2 Drawing rectangles

	16.4 Storing state in reactive applications
	16.4.1 Working with state safely
	16.4.2 Creating a mailbox processor
	16.4.3 Communicating using messages
	16.4.4 Encapsulating mailbox processors
	16.4.5 Waiting for multiple events

	16.5 Message passing concurrency
	16.5.1 Creating a state machine processor
	16.5.2 Accessing mailbox concurrently

	16.6 Summary


	appendix: Looking ahead
	A.1 What have you learned?
	A.2 Where do you want to go next?

	resources
	Works cited
	In print
	Online

	Additional resources
	In print
	Online


	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Quick Reference – F# Language Constructs
	Back cover

